Implementing learning analytics
and learning design at scale:
Lessons from the Open University
UK
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My aims with you today

1. How the number of student enrolments in
Open University, UK, has changed
before/during/after COVID-197?

2. How learning analytics has become
important during/after COVID-197?

3. 'Research trends and future directions of
learning analytics research
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of the European Union
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Leading global distance learning, delivering high-quality education to anyone, anywhere, anytime
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What we have learned in 10 years in terms of benefits of LA?

The Open
University
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Case-studies included from Arizona State University (USA), Dublin City University (IRE), Georgia State University (USA), Northern Arizona University (USA), New York
Institute of Technology (USA), The Open University (UK), Open Universities Australia (AUS), Purdue University (USA), Rio Salado College (USA), Sinclair Community
College (USA), Tecnolégico de Monterrey (Mex), University of Alabama (USA), University in Ankara (TUR), University of Maryland (USA), University of Michigan (USA),
University of Wollongong (AUS)

Hernandez-de-Menéndez, M., Morales-Menendez, R., Escobar, C. A., & Ramirez Mendoza, R. A. (2022). Learning analytics: state of the art. International Journal on Interactive Design and Manufacturing (IJIDeM), 16, 1209—
1230. https://doi.org/10.1007/s12008-022-00930-0
331 OU papers on Learning Analytics can be found here: https:/tinyurl.com/2p892rf2
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What we have learned in 10 years in terms of challenges of LA?

~

Ethics and privacy. Various questions arise here. e.g., who has access to the data and
personal information, how long 1t 1s kept, how much data 1s safe and who owns the data.

©

J

) . 3
Scope and quality of data. Questions that arise include how much data should be
collected. how much data should have variety, what type of data has value for learning
and how much reliable predictions can be made.

OX

7

Theoretical and educational foundations. There is a lack of attention to leaming and
teaching theories. L4 should be based on pedagogical and epistemological assumptions.

Research. More research 1s needed to establish the foundations of L4 (Dollinger & |
Lodge, 2018). )

Practice. There 1s a lack of transference of L4 theory to practice (Dollinger & Lodge.\
2018). A user center design methodology as well as mclude the final user mn the design

OO0

process 1s needed to develop LA systems and applications (Dominguez F et al., 2020).

Institutions. It 1s essential to align the ponts of view of researchers, educators. learners, |
educational technologists and administrators regarding L4 (Leitner & Ebner, 2019).

Measurement of impact. It is well known that L4 can impact students leaming by1
supporting teaching and learning strategies (Knight, Gibson, & Shibani, 2020).

G

The Open
University

OU has Ethics LA policy since 2014

Data Governance

Actual adoption and sense making

OU #1 in Europe, #2 in world

Actual adoption and sense making

LA embedded in design and practice

Good evidence within a module, more

needed across qualifications and
diversity

Hernandez-de-Menéndez, M., Morales-Menendez, R., Escobar, C. A., & Ramirez Mendoza, R. A. (2022). Learning analytics: state of the art. International Journal on Interactive Design and Manufacturing (IJIDeM), 16, 1209—

1230. https://doi.org/10.1007/s12008-022-00930-0

331 OU papers on Learning Analytics can be found here: https://tinyurl.com/2p892rf2
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What we have learned from large scale adoption of

predictive learning analytics at the OU (2014-2023)
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Kuzilek, J., Hlosta, M., Herrmannova, D., Zdrahal, Z., & Wolff, A. (2015). OU Analyse: analysing at-risk students at The Open University LACE Learning Analytics Review (Vol. LAK15-1). Milton Keynes: Open University.
Kuzilek, J., Hlosta, M., & Zdrahal, Z. (2017). Open University Learning Analytics dataset. Scientific Data, 4, 170171. doi: 10.1038/sdata.2017.171
Wolff, A., Zdrahal, Z., Herrmannova, D., Kuzilek, J., & Hlosta, M. (2014). Developing predictive models for early detection of at-risk students on distance learning modules, Workshop: Machine Learning and Learning Analytics
Paper presented at the Learning Analytics and Knowledge (2014), Indianapolis.
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OUA adoption by teachers across four academic years
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Amongst the factors shown to be critical to the scalable PLA implementation were: Faculty's
engagement with OUA, teachers as “champions”, evidence generation and dissemination, digital
literacy, and conceptions about teaching (online).
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Fig. 2. OUA adoption by teachers during the last 4 academic years.

Herodotou, C., Rienties, B., Hlosta, M., Boroowa, A., Mangafa, C., Zdrahal, Z., (2020). Scalable implementation of predictive learning analytics at a distance learning university:
Insights from a longitudinal case study. Internet and Higher Education, 45, 100725.
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We estimate that an increase in usage of just 10 per cent Please do make use of it, but also give us your [

The Open
University

a year could improve pass rates by an estimated 2 per cent .. feedback so we can continue to improve how it works. B8
=

Prof Tim Blackman, Vice Chancellor The Open University, 11 November 2022
https://www.youtube.com/watch?v=Lir6 ThLg6bM
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Figure 22. Heat map example of the density of the fixations on stimuli
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Figure 26. Example of the focus of attention on the individual student AOI long-term predictions

Gillespie, A. (2022). Teachers’ Use of Predictive Learning Analytics: Experiences from The Open University UK. Doctorate in Education, Milton Keynes.
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Figure 2. Student retention rates (number of students present) at each course milestone.

Herodotou, C., Naydenova, G., Boroowa, A., Gilmour, A., & Rienties, B. (2020). How can predictive learning analytics and motivational interventions increase student
retention and enhance administrative support in distance education? Journal of Learning Analytics, 7(2), 72-83. https://doi.org/10.18608/jla.2020.72.4
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Abstract

Research on instructional and leaming design is “booming’ in Europe, although there has been a move from a focus on
content and the way to present it in a formal educational context (i.e., instruction), to a focus on complex learning,
learning environments including the workplace, and access to leamner data available in these environments. We even see
the term ‘learning experience design” (Neelen and Kirschner 2020) to describe the field. Furthermore, there is an effort
to empower teachers (and even students) as designers of leaming (including environments and new pedagogies). and to
support their reflection on their own practice as part of their professional development (Hansen and Wasson 2016:
Luckin et al. 2016; Wasson et al. 2016). While instructional design is an often heard term in the United States and refers

Fig.7 Teacher-led design inquiry
of learning and innovation cycle

(Wassan ct al. 2016) 9 "gsr'“‘ )
TISL: olection LD: X TISL:
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urry eDe eport,
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“Research on the relationship between learning design and learning
analytics has also been a focus in European research in recent years. For
example, in their research at the Open University UK, Toetenel and
Rienties combine learning design and learning analytics where learning
design provides context to empirical data about OU courses enabling the
learning analytics to give insight into learning design decisions. This
research is important as it attempts to close the virtuous cycle
between learning design to improve courses and enhancing the
quality of learning, something that has been lacking in the research
literature. For example, they study the impact of learning design on
pedagogical decision-making and on future course design, and the
relationship between learning design and student behaviour and outcomes
(Toetenel and Rienties 2016; Rienties and Toetenel 2016; Rienties et al.
2015).”

Wasson, B., & Kirschner, P. A. (2020). Learning Design: European Approaches. TechTrends, 1-13.
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Nguyen, Q., Rienties, B., Toetenel, L., Ferguson, R., Whitelock, D. (2017). Examining the designs of computer-based assessment and its impact on student

engagement, satisfaction, and pass rates. Computers in Human Behavior. DOI: 10.1016/j.chb.2017.03.028.
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Rienties, B., Balaban, I., Divjak, B., Grabar, D., Svetec, B., Vonda, P. (2023). Applying and translating learning design approaches across borders. Practicable Learning Analytics.

O. Viberg and A. Gronlund (Eds). Springer Nature.
Rienties, B., Divjak, B., Eichhorn, M., Iniesto, F. Saunders-Smits, G., Svetec, B., Tillmann, A., Zizak, M. (2023). Online professional development across institutions and borders.

International Journal of Educational Technology in Higher Education.
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Next steps

1. How to use Al to identify common design patterns by

teachers?

2. How to use Al to semi-automate some of the design and LA
decisions?

3. How to use Al to provide automatic recommendations of TLA
activities

Ooh yeah, and what about the role of educators and students?

iLed
Innovating Learning Design
A in Higher Education

The Open
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