

COVID-19対策を契機とした 大学情報環境の変革に向けて

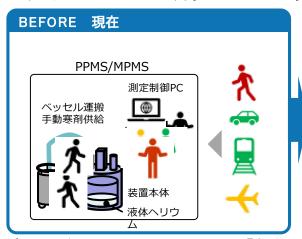
北海道大学 情報基盤センター長・教授 (情報環境推進本部 情報化推進室長) 棟朝 雅晴

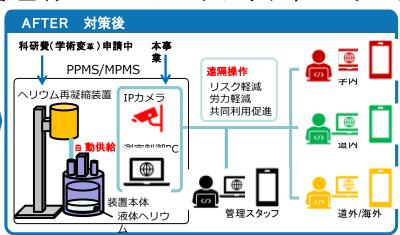
北海道大学の情報環境に係るCOVID-19対策の概要

- 2020年 3月23日:新型コロナウイルス感染症対策本部設置
 - 新型コロナウイルス感染防止のための行動指針(BCP)策定
- 教育系(次回のシンポジウムで重田准教授より説明予定)
 - オンライン授業への対応(情報環境:サーバ・ネットワーク資源の確保)
 - 教員への支援、研修の実施、学生への支援(ルータ貸出等)
- 研究系
 - 情報系:スパコン・クラウドの利用拡大・資源逼迫(利用率ほぼ100%)
 - 実験系:物理的な実験の遅延 → リモート対応の検討 (グローバルファシリティセンターとの連携)
- 業務系
 - オンライン会議システム(ライセンス)の調達・利活用
 - リモートワークへの対応(学外からの業務系システム利用)
 - SSO・グループウェアの新システムへの更新

情報システム関連の対応状況

- 2019年12月にSSOシステムを更新済み
 - 学外からほぼ全ての業務系システムに対して、 2段階認証(ワンタイムパスワード、Google Authenticator)でアクセス可能


(教務情報システムのみ学外アクセス不可としていたが、制限を緩和)


- 2020年3月に教育用計算機システム(ELMS)を更新済み
 - 仮想サーバのコア数、メモリ容量等の資源量を調整
 - さらに物理サーバを1台増強することで乗り切った
- その他の対応
 - 2月末にWebExライセンスを緊急発注(その後Zoomライセンスも調達)
 - リモートワーク用の暗号化USBメモリの配布
 - 事務VLANへの接続用VPN装置の手配、グループウェアの更新
 - リモートワークにおけるセキュリティ関連の注意事項の文書配布 等

研究系の対応状況

- 情報系(スパコン・クラウド)については運用上特に支障ないが、 利用増大のため、資源が逼迫
 - スパコンノード稼働率95%超(長時間の実行待ちが発生)
 - クラウドコア利用率ほぼ100%(新規申込を一時停止)
- 実験系については、安全対策を行いつつ実施
 - 三密を避けつつ実験を継続するための対応として、実験機器の遠隔操作 クラウド上での研究データ管理(グローバルファシリティセンター)

北大グローバルファシリティセンター「物性測定(PPMS)/磁化測定(MPMS)自動化・遠隔利用システム」

今後に向けた大学DXの推進について

※ 個人的な意見であり、北大の公式 見解をまとめたものではありません。

学際大規模計算機システム

(スパコン・クラウド) の拡充・高性能化

研究ビッグデータ管理基盤の 拡充整備・実験機器データ連携

人工知能・5G・IoTなど先進ICT 技術の導入および利活用

研究

教育 DX

教育用計算機システム・

教務情報システムの高機能化 ラーニングアナリティクスへの対応

学生支援• UXの向上

HOKKAIDO UNIVERSIT

遠隔教育.

ハイフレックス教育への対応

キャンパスネットワークの高速化・ 高度化(セキュリティ強化)

遠隔会議システム・グループウェア 事務ファイルシステムの整備等 業務系システムの高度化

業務 DX

人材確保• 育成•研修

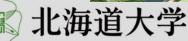
大学ICTの専門家(情報科学の 研究者ではなく)の確保・育成 (長期的な視点でのキャリア形成) 全学的な教職員研修を通した ICTスキルおよび知識レベル の向上・セキュリティ意識の啓発

ゼロトラストモデルに基づく 総合的なセキュリティ対策 情報格付けに基づく対策の徹底

サイバーセキュリティ・ ガバナンス

情報システム調達・利用のガバナンス

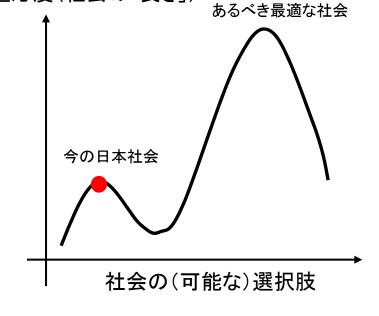
- → 責任体制、運用管理体制の確立
- → サイロ化・シャドーIT化を防ぐ


次世代データセンター整備

サステナブルキャンパス

Virtual Campus Real Campus

研究DXの実現に向けた検討事項(案)

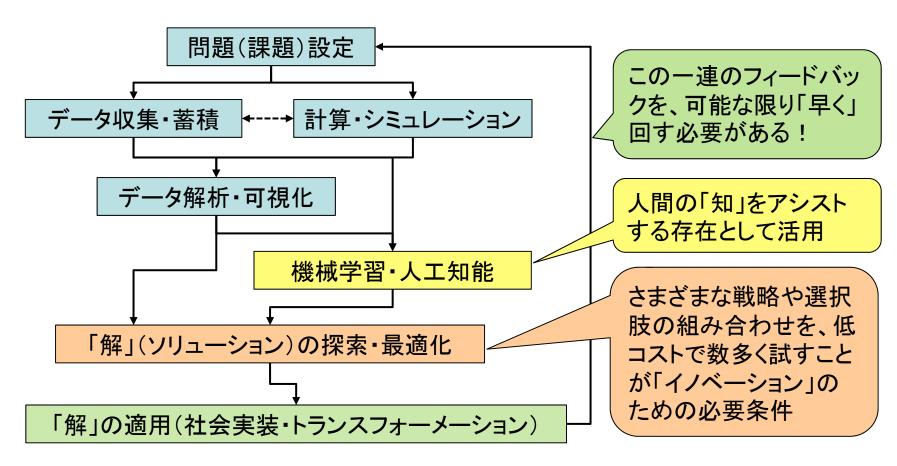

※ 個人的な意見であり、北大の公式 見解をまとめたものではありません。

観点	検討すべき事項	対応案(例)
研究手法の変革	■ ICT技術を活用し、第3(計算科学)・第4 (データ駆動)・第5?(人工知能・サイ バーフィジカル・量子計算等)の科学に 対応した研究手法の変革 ■ 研究に係るオーバーヘッドの最小化・効 率化(研究データ管理等) ■ 学際的・異分野融合・共同研究等の支 援・活性化	 ★規模科学技術シミュレーションに係る研究の一層の活性化 データ駆動型研究や人工知能関連研究を支援するためのシステム整備、データ収集~解析・学習~利用・公開の全般に渡るワークフローの支援 実験機器のネットワーク対応、センサーネットワーク等の整備、情報基盤との連携等に関する環境整備 異分野連携・共同研究を支援する情報システム整備
人的側面(人材獲得・育成・コミュニティ形成等)	■ 研究DXに対応する人材(研究データ管理等)の獲得・育成 ■ 研究DXを促進するための学内研究者コミュニティの形成	■ 研究DX対応人材の確保・育成(URA、情報環境推進本部等) ■ 情報分野と応用分野のリエゾンとなる人材の確保・育成(研究者、URA等) ■ 計算科学・データ科学・人工知能等に係る学内研究者コミュニティの形成
情報セキュリティ・ガ バナンス	■ 研究データの安全な管理手法の確立および普及■ リモート(学外での研究)対応■ 研究公正対応(10年保存義務)	■ セキュアかつサステナブルな研究データ管理システムの構築・サービス提供・利用促進■ ゼロトラストネットワークに対応したセキュリティ機器・ソフトウェアの導入
情報環境•情報基盤	 計算シミュレーション・データ駆動型研究に対応した高性能計算機システムの拡充 人工知能・サイバーフィジカル・量子計算?等の先進的な研究手法に対応した計算機システム・ネットワーク環境の高度化 	 ■ 学際大規模計算機システムの性能向上(少なくとも現行比2倍以上) ■ ビッグデータストレージ基盤の整備拡充(大容量化・高性能化・高信頼) ■ 先進的な情報システムの実現に向けた研究開発(情報基盤センター・情報科学研究院等、関連する部局・研究所・研究センター等)

進化計算(人工進化)研究者の観点から(個人的視点)

DX: デジタル技術により、環境の変化に対応し、大域的な「最適解」に向けて常に変化し続けること

- → 環境の変化が進化の原動力
- これまでの日本:局所的な最適解 (局所解)に陥って動けない状態?
- → COVID-19により環境が大きく変化


適応度(社会の「良さ」)

- → 一時的に悪化しても、それが局所解を抜け出すきっかけとなる
- → 社会のあるべき姿(より優れた大域的な最適解)に向けて進化
- そのために、大学がデジタル技術をどのように活用し、どのよう に社会に貢献していくか?の観点が重要である。

デジタルトランスフォーメーションのための進化的フィードバック

■ 社会の「問題解決」を最大限加速するのためのデジタル技術活用

まとめにかえて

- オンライン教育、遠隔会議、リモートワークなど、ICT技術の利活用が(なしくずし的ではあるが)進んだことは評価できる。
 - → 環境の(強制的な)変化により、大域的な最適解へ向かう
- デジタルトランスフォーメーションのフィードバックループを加速するため、先進的なIT技術を最大限活用すべき。
 - → クラウド技術の活用: クラウドのAgility(すぐに使える)
 - → HPC技術の活用: データ解析・AI・シミュレーションの高速化
- デジタルトランスフォーメーションを実現するためには、その進化 を促す「情報環境」を整備することが特に重要。
 - → 物理環境:データセンター・ネットワーク(IT-BCP・DRも考慮)
 - → 計算機システム:スパコン・クラウド・ビッグデータストレージ
 - → 人的資源: 大学IT人材育成 · ガバナンス体制等

