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Problem

* Several benefits from Autonomous Driving (AD)

* However, collisions during AD can lead to disruptive
damages

* |mportant to explore why these collisions can occur
and how to solve them

* Autonomous Driving Systems (ADS) contain various
components with various parameters

* Difficult to localise the suspicious parameters
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Our study

* We propose an approach to assess ADS collisions

* We apply spectrum-based techniques (borrowed from
software debugging) to analyse the relationship
between the incorrect behaviours of ADS components
and the parameters of these components

* QOur approach shows which parameters can cause AD

collisions

Why can collisions occur?

[ Sometimes, collisions are detected during testing! ]
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Localising suspicious neurons for DNNs

Benchmark: an industrial path planner (PP)
At runtime, automatically generate safe and efficient path for the ego car
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Spectrum-based analysis for PP
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Spectrum-based analysis for DNN models
Activated Outputs

. . Assessment
inputs images  through DNN  neurons (correct or not)
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is activated

Neuron 3 is activated in error cases =2 it has a higher suspiciousness
score =2 responsible for the misclassification from a cat to a dog

Intersection of the
suspicious neurons
among different
misclassifications

Experiments

Errors synthesised

| by activating the

N S - P SUSPICIOUS neurons

~ 10.0-}1{20_0 21.{1m 200 16.0 12.0 /5.0
-100%2{5_0 13.0 8.0 za.o-m

- 7.0 2?.0% Bl 22.0 7.0 mw.o
™ 50 -13_:3 21.0 13.0‘}2’129.0 m- 7.0
™ 5.0 -22.:3 13.0 0N 16.0 g 7.0 [N 14.0

AN

o

Dataset — MNIST,
CIFAR10

DNN — CNN with
various structures

3

4

riginal labels

. z \,BQ - 4'0__ -'19_:3 23.0 1:.,2_0 10.0 22.0 K! __
W'N R ,} O = 120m 7.0 11.0 230 EXJIN -m.uMw
/’Ong/ @ ™ 12.013.0/60 8.0 25.0 0 -1.«_0}‘L
abe/ &\QO 01234MC5678
S O Wrong labels

r . . . )
The intersection sizes are small =
Different misclassifications are suspicious neurons can indeed

| caused by different neurons ) ( produce misclassifications (errors)!

Duran, Matias, Xiao-Yi Zhang, Paolo Arcaini, and Fuyuki Ishikawa. "What to Blame? On the Granularity of Fault
Localization for Deep Neural Networks." In 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE), pp. 264-275. IEEE, 2021.

e .. . . )
Synthesising inputs by triggering the

EIRE : Xiao-Yi Zhang (BEBI8)./ EIiLIGERFHFTFR P—FFIF v HRIF

A7k Email : xiaoyi@nii.ac.jp



