Semi-Supervised Learning for Biomedical Image Segmentation via Forest Oriented Super Pixels(Voxels)

Motivation

- Collecting massive biomedical data is easy, but annotating them is expensive as it necessitates specific knowledge.
- How to predict the pathological region without training data.

Our Solution

Key observation is that the homogeneous connected areas of

low con-fidence (Fig.1(b)) tends to confuse the classifier with limited training data.

Figure 1: The pipeline.

1. Our method segments the images into super pixels(voxels)

Input images

Ground-truth

Low confidence

Our method Standard RF

Input Image

Standard RF

Figure 4: X-ray images of hand.

Our Method

(Fig.1(c)) to pick up the low confidence samples.

- 2. From suspicious super pixels (Fig.1(d)), we train a Random Forest to predict the low confidence areas (Fig.1(f)).
- 3. By suppressing found low confidence area, our proposed method shows superior performance on challenging 2D retinal and X-ray im-ages and 3D Neuron Data.

Our Key Contribution

Unlike existing methods, such as SLIC[1], based on unsupervised colour space, our Forest Oriented Super Pixels(Voxels) works on the distance defined on forest based code.

Results

Input Image

Standard RF

Figure 5: BigNeuron dataset [4].

Our Contributions

- 1. We propose a novel Forest Oriented Super Pixels (Voxels) to capture the complementary information of random forest, offering an advan-tage in the random forest based semisupervised learning.
- 2. Our super pixel (voxel) is discriminant to segmentation task. 3. We succeed in unsupervised prediction of the suspicious regions i.e. pathological regions that would otherwise confuse the classifier.
- 4. We have made our source code public available at GitHub, please check https://github.com/lingucv/ssl superpixels

PR Curves

F1 vs Labelled Data Size

Figure 2: Quanatative Comparision on DRIVE dataset. We evaluate our method on the retinal dataset DRIVE, Xray hand image and 3D Big Neuron Challenge[4]. We compare the segmenta-tion performance with two semisupervised method: TSVM[2], Ro-bust Node Random Forest[3]. All of the methods are trained with only 500 labelled samples.

References

- [1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk. Slic superpixels compared to state-of-the-art superpixel methods. *IEEE sactions* on Pattern Analysis and Machine Intelligence, 2012.
- [2] Thorsten Joachims. Transductive inference for text classification using support vector machines. In ICML1999, 1999.
- [3] X. Liu, M. Song, D. Tao, Z. Liu, L. Zhang, C. Chen, and J. Bu. Random forest construction with robust semisupervised node splitting. TPAMI, 2015.
- [4] Hanchuan Peng, Michael Hawrylycz, Jane Roskams, Sean Hill, Nelson Spruston, Erik Meijering, and Giorgio A. Ascoli. Bigneuron: Large-scale 3d neuron reconstruction from optical microscopy images. Neuron, 2015.

Figure 6: Please scan our QR [5] Shaoqing Ren, X. Cao, Yichen Wei, and J. Sun. Global refinement of random forest. In CVPR 2015, 2015.

Acknowledgements

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

