Structured 3D Reconstruction:
From geometric sensing to perception

Yasutaka Furukawa

Evolution of 3D Reconstruction Techniques

Sensing Perception

Sensing Perception

| Google Project Tango | | CANVAS by Occipital () |

1985 1990 1995 2000 2005 2010 2015 2020

Ice-age, 20th Century Fox

lce-age: A long period of reduction In the
temperature of the Earth’s surface and
atmosphere | wikipedia |

Ice-age, 20th Century Fox

lce-age: A long period of reduction In
the Impact to our society

Sensing Perception

| Google Project Tango | | CANVAS by Occipital ()]

1985 1990 1995 2000 2005 2010 AONES! 2020

1985

Sensing Perception

| Google Project Tango | | CANVAS by Occipital ()]

Perception- Revolution

1990 1995 2000 2005 2010 AON RS 2020

1985

Sensing Perception

| Google Project Tango | | CANVAS by Occipital (

) |

1990 1995 2000 2005 2010 AONES! 2020

obe 891 buisusasg

Problem setting

* |nput

* Visual sensor data (e.g., Image, depth-images, point-clouds, ...)

* Calibration and camera poses (e.d., Intrinsic/extrinsic camera params)
* QOutput

* Geometric model (e.qg., point-clouds, meshes, ...)

Problem example: 3D reconstruction from images

Image acquisition Camera pose 3d reconstruction

. Structure from Motion (SfM) Multi-view Stereo (MVS)

. Simultaneous Localization &
Mapping (SLAM)

- Match-moving

. Visual Odometry

Problem setting

* |nput
* Visual sensor data (e.g., Image, depth-images, point-clouds, ...)
*_Calibration and camera poses (e.d., Iintrinsic/extrinsic camera params)
* QOutput
* Geometric model (e.qg., point-clouds, meshes, ...)

% Refer to “Structure-from-Motion” (SfTM) and
“Simultaneous Localization & Mapping” (SLAM) literatures.

obe 891 buisusasg

3 mistakes In “sensing ice-age”

* Point-wise photo consistency

* Global optimization dilemma

® Occlusion dilemma

A Theory of Shape by Space Carving

Steve Seitz and Kyros Kutulakos
ICCV 1999, Best Paper Award (Marr Prize)

(a)

Figure 5. Plane-Sweep Visibility. (a) The plane-sweep algorithm ensures that voxels are visited in orde

cameras. The current plane and active set of cameras is shown in orange. (b) The shape evolves and ne
moves through the scene volume.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letcy, ..., c; be the cameras above I1 for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat — —
Step 2 until V lies above I1.

C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letcy, ..., c; be the cameras above I1 for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat — —
Step 2 until V lies above I1.

C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep

plane IT such that V lies below I (1.e., I 1s swept

towards V). V
Step 2: Intersect IT with the current shape V.
Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;); N\

. if v 1s inconsistent then set V = V) — {v}, other- N
wise mark the pixels to which v projects.

Step 4: Move IT downward one voxel width and repeat Ci1 —t —
Step 2 until V lies above I1.

C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep

plane IT such that V lies below I (1.e., I 1s swept

towards V). V
Step 2: Intersect IT with the current shape V.
Step 3: For each surface voxel v on IT:

Step 2 until V lies above I1.

s ¥ | . ;
. letey, ..., ¢; be the cameras above IT for which
v projects to an unmarked pixel;
. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);
. if v 1s inconsistent then set V = V) — {v}, other- N V.
wise mark the pixels to which v projects.
Step 4: Move I1 downward one voxel width and repeat C1 = — Cs
C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letcy, ..., c; be the cameras above I1 for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep

plane IT such that V lies below I (1.e., I 1s swept

towards V). V
Step 2: Intersect IT with the current shape V.
Step 3: For each surface voxel v on IT:

Step 2 until V lies above I1.

s ¥ | . ;
. letey, ..., ¢; be the cameras above IT for which
v projects to an unmarked pixel;
. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);
. if v 1s inconsistent then set V = V) — {v}, other- N V.
wise mark the pixels to which v projects.
Step 4: Move I1 downward one voxel width and repeat C1 = — Cs
C2

Space Carving: An algorithm

Plane Sweep Algorithm I I N A

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

consistk = (N ,—,

. letcy, ..., c; be the cameras above I1 for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;);

. if v 1s inconsistent then set V = V) — {v}, other- N V.
wise mark the pixels to which v projects.

Step 4: Move IT downward one voxel width and repeat C1 — — Cs
Step 2 until V lies above I1.

C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep

plane IT such that V lies below I (1.e., I 1s swept

towards V). V
Step 2: Intersect IT with the current shape V.
Step 3: For each surface voxel v on IT:

Step 2 until V lies above I1.

s ¥ | . ;
. letey, ..., ¢; be the cameras above IT for which
v projects to an unmarked pixel;
. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);
. if v 1s inconsistent then set V = V) — {v}, other- N V.
wise mark the pixels to which v projects.
Step 4: Move I1 downward one voxel width and repeat C1 = — Cs
C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep

plane IT such that V lies below I (1.e., I 1s swept

towards V). V
Step 2: Intersect IT with the current shape V.
Step 3: For each surface voxel v on IT:

Step 2 until V lies above I1.

. letey, ..., ¢; be the cameras above IT for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V) — {v}, other- N V.
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat C1 = — Cs
C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep

plane IT such that V lies below I (1.e., I 1s swept

towards V). V
Step 2: Intersect IT with the current shape V.
Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;
. determine the photo-consistency of v using

consistg(coly,...,col;, &1,...,§;); N\
. if v 1s inconsistent then set V = V) — {v}, other- V.

wise mark the pixels to which v projects.

C1 = = Cs
C2

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Ci1

C2

Cs

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letcy, ..., c; be the cameras above I1 for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep

plane IT such that V lies below I (1.e., I 1s swept

towards V). V
Step 2: Intersect IT with the current shape V.
Step 3: For each surface voxel v on IT:

. letcy, ..., c; be the cameras above I1 for which
v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;); N\

. if v 1s inconsistent then set V = V) — {v}, other- N
wise mark the pixels to which v projects.

Step 4: Move IT downward one voxel width and repeat Ci1 —t —
Step 2 until V lies above I1.

C2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letcy, ..., c; be the cameras above I1 for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letcy, ..., c; be the cameras above I1 for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly, ..., colj, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

3 mistakes In Ice age

* Point-wise photo consistency
* Global optimization dilemma

® (Occlusion dilemma

Pixel vs. Patch

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms
| Seitz, Curless, Diebel, Scharstein, and Szeliski, CVPR 2006]

Pixel vs. Patch

pixell

Pixel vs. Patch

patch patchl

patch?2

Space Carving: An algorithm

Plane Sweep Algorithm

Step 1: Given an 1nitial volume V/, initialize the sweep
plane IT such that V lies below I (1.e., I 1s swept
towards V).

Step 2: Intersect IT with the current shape V.

Step 3: For each surface voxel v on IT:

. letey, ..., ¢; be the cameras above IT for which

v projects to an unmarked pixel;

. determine the photo-consistency of v using
consistg(coly,...,col;, &1,...,§;);

. if v 1s inconsistent then set V = V — {v}, other-
wise mark the pixels to which v projects.

Step 4: Move I1 downward one voxel width and repeat
Step 2 until V lies above I1.

Space Carving: An algorithm

* Point-wise photo consistency
Use a patch instead of a pixel!

* Global optimization dilemma
Local method works well!

® QOcclusion dilemma
Robust statistics overcome occlusions!

3 mistakes In Ice age

* Point-wise photo consistency
Use a patch instead of a pixel!

* Global optimization dilemma
Local method works well!

® (Occlusion dilemma
Robust statistics overcome occlusions!

abe a9

2000

SKip detalls and refer to

Furukawa and Hernandez. Multi-View Stereo: A Tutorial.
Foundations and Trends in Computer Graphics and Vision, 2015.

500 slides—

First break-through in 2003

Sensing revolution

pA00]0, 2005 PAONK0, 2011 2012

Sensing revolution

pA00]0, 2005 PAONK0, 2011 2012

Sensing revolution

Accurate, Dense, and Robust Multi-View Stereopsis

Yasutaka Furukawa and Jean Ponce
Computer Vision and Pattern Recognition 2007

pA00]0, 2005 PAONK0, 2011 2012

horiuchi
スタンプ

Sensing revolution

Towards Internet-scale Multi-view Stereo
Intel Developper s Conference, 2011 Yasutaka Furukawa, Rick Szeliski, Brian Curless, and Steve Seitz

Computer Vision and Pattern Recognition 2010

pA00]0, 2005 PAONK0, 2011 2012

horiuchi
スタンプ

horiuchi
スタンプ

Sensing revolution

\ 4

pA00]0, 2005 PAONK0, 2011 2012

Sensing revolution

pA00]0, 2005 PAONK0, 2011 2012

Photo Tours
Avanish Kushal, Yasutaka Furukawa, Rick Szeliski, Brian Curless, and Steve Seitz
Interntional Conference on 3D Vision 2011

horiuchi
スタンプ

abe a9

2000

Geometric Elements

3D primitive

2D primitive g
1D primitive /

OD primitive @

Bottom-up +
2D primitive @

*

1D primitive /

OD primitive @

Bottom-up +
2D primitive @

*

1D primitive /

OD primitive @

Bottom-up +
2D primitive @

*

1D primitive /

OD primitive @

Bottom-up +
2D primitive @

*

1D primitive /

OD primitive @

FloorNet: A Unified Framework for Floorplan
Reconstruction from 3D Scans
Chen Liv* Jiaye Wu* Yasutaka Furukawa

Washington University in St. Louis ~ Simon Fraser University

{chenliu, jiaye.wu}@wustl.edu furukawa@sfu.ca

Abstract. The ultimate goal of this indoor mapping research is to auto-

I)

CVPR-ICCV-ECCV papers
for geometry perception...

EEE) I

CVPR-ICC\'ECCV papers
for geometry perception...

Satoshi lkehata

Yoji Kiyota Tomoko O

FloorNet: A Unified Framework for Floorplan
Reconstruction from 3D Scans

o0
—
-
@\

—

au.
=
—
o

Chen Liu* Jiaye Wu* Yasutaka Furukawa
— Washington University in St. Louis Simon Fraser University

{chenliu, jiaye.wu}@wustl.edu furukawa@sfu.ca

[cs.CV

Abstract. The ultimate goal of this indoor mapping research is to auto-

C] . - .
o o CRalE=iha = yxroy || e s 5 o

Manhattan-

S .

Department of Computer Science & Engi

University of Washington, USA

{furUkawarCurlessrSeitZ}@cs.washingt

Abstract

Multi-view stereo (MVS) algorithms now produce recon-
structions that rival laser range scanner accuracy. How-

\‘

“'h L i

Geometry sensing

[Furukawa and Ponce, 2007]

Geometry perception

>

[Furukawa and Ponce, 2007] Planarity/orthogonality enforcement

(Sensing) Depthmap estimation

Possible depth values

‘ I

()= QIQIQIQIO C!Qk Oy=(O=C

Ol O=_ ‘lli'
i

(Sensing) Depthmap estimation

Possible depth values

‘ I

()= QIQ! IQIC C!Qk Oy=(O=C

Ol O=_ ‘lli'
i

(Sensing) Depthmap estimation

Possible depth values

(Serising) Depthmap estimation
(Perception)

(Perception) Depthmap estimation

Possible planes
(RANSAC, Hough Transform)

(Perception) Planemap estimation

d
Possible planes - \
(RANSAC, Hough Transform)

Graphical Model Inference

mcs ZEI (pll — X (Ey (Pl
(Variables) [\%T | P i)

{p(); H1i. P2, } ‘

If sub-modular

Hallvy, v1) + Er ey, mg) = E5 (v, v1) ‘|‘

O @ Q)

PMVS+Poisson Our Result

horiuchi
スタンプ

Reconstructing building interiors from images

Yasutaka Furukawa, Rick Szeliski, Brian Curless, and Steve Seitz
International Conference on Computer Vision 2009

Kitchen - 22 images

house - 148 images

gallery - 492 images

FloorNet: A Unified Framework for Floorplan
Reconstruction from 3D Scans

o0
—
-
@\

—

au.
=
—
N

Chen Liu* Jiaye Wu* Yasutaka Furukawa
— Washington University in St. Louis Simon Fraser University

{chenliu, jiaye.wu}@wustl.edu furukawa@sfu.ca

[cs.CV

Abstract. The ultimate goal of this indoor mapping research is to auto-

Geometry perception

LB, . 1 %
el b })

#

(Ou r/"_:,ystue [;@F’@Wd.ﬁ Strand
anora view @@@ﬂ trﬁan5|t|@ns |
P y . o g

-

-

horiuchi
スタンプ

Why is this hard?

0.0 fps
J-c" -
Welentuoe S - NBC NEWS LIVE

e Et-t :

| N =

Fixed topology

Arbitrary topology

horiuchi
スタンプ

Planar graph inference

=

Planar graph inference

: T
~t P‘ i

Geometric Elements

2D primitive g
1D primitive /

OD primitive

Planar graph inference

= i_ll I;iijr——l
e

Geometric Elements

2D primitive g
1D primitive /

OD primitive

"Un _ﬁ:n__'_l

=)

Deep
neural
networks

Geometric Elements

2D primitive g
1D primitive /

OD primitive

Optimization
(Integer Programming) »

Deep
neural
networks

Planar graph inference

Toy example

Corner detection

Convolutional Pose Machines
| Wel, Ramakrishna, Kanade, Sheikh, 2016]

Corner candidates

Corner candidates

Corner candidates

Corner candidates

Wall candidates

Wall candidates

Door candidates

Door candidates

Incorrect primitive candidates

Correct primitive candidates

Optimization formulation

1 1f correct

VDV

O iIf Incorrect

Optimization formulation

1 1f correct

VDV

O iIf Incorrect

max)w; +).d;
] Jj

Door constraints

max),w; +).d;
L J

Subject to
di < wi(+wr + w, --+)

Loop constraints

Bath

Loop constraints

Bath
Bath I Bath Bath I
Bath
-

Loop constraints

.1
m kitchen

closet

balcony

Vectorized floorplan

Loop constraints

l‘
m kitchen

alal, el
C|OS€t = = o= = = =

WL/

bedroom bedroom

balcony

Vectorized floorplan

Loop constraints

m kitchen

closet

L/

bedroom bedroom

balcony

Vectorized floorplan

e for junction heatmap regression and two for
assifications. For junctions, there are at total
4 4 4) different types, and one heatmap is re-

ach type, where pixelwise sigmoid cross entropy
ed. For classification tasks, we use pixelwise soft-
ntropy loss. We train three branches jointly, and
s 1s a weighted summation with larger weight,
r junction heatmap regression. Both the input
) have resolution 256x256. Besides common data
augmentation techniques like random cropping and color
litterd e also rotate the image with an angle randomly
0°,90°, 180°, and 270°. During inference, we
nction heatmaps with 0.4 (slightly lower than 0.5
1ore junction candidates for IP to choose), and
naximum suppression to extract junctions.

e network makes very good predictions of junc-

5, it sometimes mis-classfies junction types (e.g.,

s a L-shaped junction as T-shaped). To make the

bust, we allow one mistake in the estimation of

or example, for each detected T-shaped junction,

ate two L-shaped junctions and one X-shaped

t the same location. The integer programming will

ater that at most one of the junctions can be used.

that mis-classification between [and L is rare, and
e hallucination for all the other cases.

tive layer conversion via IP

work makes very good predictions and simple
iffice to extract primitive candidates (i.e., walls,
nd icons). Integer programming then finds the
correct subset while enforcing various geometric and seman-
tic constraints. With the small problem size, 1
2s to find the optimal solution to IP using Gur

4.2.1 Primitive candidate generation

A wall primitive can be formed by two w
1) they are axis-aligned with a tolerance of
2) their aligned orientation is compatible w
orientations. Similarly, two door junctio
primitive if qualified. For icons, four axi
(top-left, top-right, bottom-right, and bo
form an icon primitive.

4.2.2 Integer programming

Integer Programming enforces geometric
straints among primitives to filter out
candidates and guarantee properties of flc
must hold true. For instance, a bedroom 1
by a set of walls forming a 1D loop, wi
associated with the correct side of each

i if the pyj, Openmg C

tor varn s for semantics employ one-

ve two xes, a primitive index and a
vall primitive is associated
tics on its both sides. For
| the py, wall primitive has
1d side.

ive function for maximiza-
the junction and semantic
ts are defined as follows:

e junctions except for the
. whose weight is set to —5
ords, we encourage the use
1s possible, but discourage

’ e semantic indicator variables are
e eeme the per-pixel classification scores
in the junction layer. For an icon type indicator variable,
the weight is simply the average icon type classification
score inside the box. For a room type indicator variable
associated with a wall primitive on one side, we use the
average room type classification score in its neighbor-
hood. A neighborhood is obtained by sweeping pixels
on the wall primitives along its perpendicular direction
(on the side of the room type variable). Each pixel is
swept until it hit another wall primitive candidate.

We have not used primitive indicator variables in the ob-
jective function, as similar information has been already
captured by the junction primitives.

Constraints: We enforce a variety of constraints either as
linear equalities or linear inequalities.

e One-hot encoding constraints: When a wall primitive
does not exist (i.e., Py.u(p) = 0), its wall semantic
variables must be all zero. When it exists, one and only
one semantic variable must be chosen. The same is true
for icon primitives, yielding the following constraints.

£y ~L foo . F 4

bl

-F'.lr'r.l.l.' |_||l‘l II = T‘ -I'-"I.H'rlu |I_|r‘I] l .
Jram——

Connectivity constraint: The degree (i.e., the number
of connections) of a junction must match the number
of incident primitives that are chosen. This applies to

Integer Programming

walls, openings and icons, and here we only show the
constraint for the walls, where the summation is over
all the wall primitives connected with the wall junction:

[# degree} Jan () = Z Puanulp).

Mutual exclusion constraints: Two primitives cannot
be chosen when they are spatially close, in particular,
within 10 pixels. We find every pair of such primitives
and enforce that the sum of their indicator variables
is at most 1. The same constraint is also applied to
wall junctions to ensure that two wall junctions are
not close and hallucinated junctions are not selected
simultan

Loop co

cony. clo

forr

It ¢

by |

T-s

Roo

arro

Ope

mu:

find

(pa

pix

sum

4.3. Fin
The 1

few 1ssug
because

nections.
ing the ju
issue is t
15518, wWe
last 155u¢
room la

derive ro
formed b

Integer Programming

max)wy +). d; +) m
_: j K

m, € {0,1},d; € {0,1},m; € {0,1}

Subject to
W»- + O3 < 1
dl < Wy

Geometric Elements

2D primitive g
1D primitive /

OD primitive

Optimization
(Integer Programming) »

Deep
neural
networks

Quantitative evaluations

FloorNet: A Unified Framework for Floorplan
Reconstruction from 3D Scans
Chen Liv* Jiaye Wu* Yasutaka Furukawa

Washington University in St. Louis ~ Simon Fraser University

{chenliu, jiaye.wu}@wustl.edu furukawa@sfu.ca

Abstract. The ultimate goal of this indoor mapping research is to auto-

I)

CVPR-ICCV-ECCV papers
for geometry perception...

lce-age or revolution?

1985

Sensing Perception

| Google Project Tango | | CANVAS by Occipital (

) |

1990 1995 2000 2005 2010 AONES! 2020

Future challenges

|

]
gy’
o
(4]
O

]

*

|

|

1

|
»
%
iia.

|
|

EHFLrsav

DNN for high-level perception Construction-level perception

3D perception Image (smartphone) only

Acknowledgements

Yoji Kiyota Satoshi lkehata Tomoko Ohsuga

Pushmeet Kohli Ricardo Cabral Jiajun Wu Nelson Nauata

Jean Ponce Steve Seitz Brian Curless Rick Szeliski

Chen Liu Hang Yan Huayl Zeng Jiachen Chen

