A Stabilized GMRES Method for Solving Underdetermined Least Squares Problems

Zeyu LIAO, Ken HAYAMI, Keiichi MORIKUNI, and Jun-Feng YIN

NII-2020-001E
Mar. 2020
A Stabilized GMRES Method for Solving Underdetermined Least Squares Problems

Zeyu LIAO*1 | Ken HAYAMI1,2 | Keiichi MORIKUNI3 | Jun-Feng YIN4

1Department of Informatics, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan
2National Institute of Informatics, Tokyo, Japan
3Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan
4School of Mathematical Science, Tongji University, Shanghai, China

Correspondence
*Zeyu LIAO, Department of Informatics, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies (SOKENDAI), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan, Email: zeyu@nii.ac.jp

Summary
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates of the AB-GMRES method may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the process becomes numerically stable and the system becomes consistent, rendering better convergence and a more accurate solution. Numerical experiments show that the proposed method is robust and efficient for solving inconsistent and ill-conditioned underdetermined least squares problems. The method can be considered as a way of making the GMRES stable for highly ill-conditioned inconsistent problems.

KEYWORDS:
least squares problems, Krylov subspace methods, GMRES, underdetermined systems, inconsistent systems, regularization

1 | INTRODUCTION

Consider solving the inconsistent underdetermined least squares problem

$$\min_{x \in \mathbb{R}^n} \| b - Ax \|_2, \quad A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^m, \quad b \notin \mathcal{R}(A), \quad m < n,$$ (1)

where A is ill-conditioned and may be rank-deficient. Here, $\mathcal{R}(A)$ denotes the range space of A. Such problems may occur in ill-posed problems where b is given by an observation which contains noise. The least squares problem (1) is equivalent to the normal equations

$$A^T Ax = A^T b.$$ (2)

The standard direct method for solving the least squares problem (1) is to use the QR decomposition. However, when A is large and sparse, iterative methods become necessary. The CGLS1 and LSQR2 are mathematically equivalent to applying the conjugate gradient (CG) method to (2). The convergence of these methods deteriorates for ill-conditioned problems and they require reorthogonalization3 to improve the convergence. Here, we say (1) is ill-conditioned if the condition number $\kappa_2(A) = \|A\|_2 \|A^T\|_2 \gg 1$, where A^T is the pseudoinverse of A. The LSMR4 applies MINRES5 to (2).
Hayami et al. proposed preconditioning the $m \times n$ rectangular matrix A of the least squares problem by an $n \times m$ rectangular matrix B from the right and the left, and using the generalized minimal residual (GMRES) method for solving the preconditioned least squares problems (AB-GMRES and BA-GMRES methods, respectively). For ill-conditioned problems, the AB-GMRES and BA-GMRES were shown to be more robust compared to the preconditioned CGNE and CGLS, respectively. Note here that the BA-GMRES works with Krylov subspaces in n-dimensional space, whereas the AB-GMRES works with Krylov subspaces in m-dimensional space. Since $m < n$ in the underdetermined case, the AB-GMRES works in a smaller dimensional space than the BA-GMRES and should be more computationally efficient compared to the BA-GMRES for each iteration. Moreover, the AB-GMRES has the advantage that the weight of the norm in $\| \|$ does not change for arbitrary B. Thus, we mainly focus on using the AB-GMRES to solve the underdetermined least squares problem. Morikuni showed that the AB-GMRES may fail to converge to a least squares solution in finite-precision arithmetic for inconsistent problems. We will review this phenomenon. The GMRES applied to inconsistent problems was also studied in other papers.

In this paper, we first analyze the deterioration of convergence of the AB-GMRES. To overcome the deterioration, we use the normal equations of the upper triangular matrix arising in the AB-GMRES to change the inconsistent subproblem to a consistent one. In finite precision arithmetic, forming the normal equations for the subproblem will not square its condition number as would be predicted by theory. In the ill-conditioned case, the tiny singular values are shifted upwards due to rounding errors. In finite precision arithmetic, applying the standard Cholesky decomposition to the normal equations will result in a well-conditioned lower triangular matrix, which will ensure that the forward and backward substitutions work stably, and overcome the problem. Numerical experiments on a series of ill-conditioned Maragal matrices show that the proposed method converges to a more accurate approximation than the original AB-GMRES. The method can also be used to solve general inconsistent singular systems.

The rest of the paper is organized as follows. In Section 2, we briefly review the AB-GMRES and a related theorem. In Section 3, we demonstrate and analyze the deterioration of the convergence. In Section 4, we propose and present a stabilized GMRES method and explain a regularization effect of the method based on the normal equations for ill-conditioned problems. In Section 5, numerical results for the underdetermined case and the square case are presented. In Section 6, we conclude the paper.

All the experiments in this paper were done using MATLAB R2017b in double precision, unless specified otherwise (where we extended the arithmetic precision by using the Multiprecision Computing Toolbox for MATLAB), and the computer used was Alienware 15 CAAA15404JP with CPU Inter(R) Core(TM) i7-7820HK (2.90GHz).

2 DETERIORATION OF CONVERGENCE OF AB-GMRES FOR INCONSISTENT PROBLEMS

In this section, we review previous results. First, we introduce the right-preconditioned GMRES (AB-GMRES), which is the basic algorithm in this paper. Then, we show that the proposed method converges to the basic algorithm in this paper. Finally, we cite a related theorem to analyze the deterioration.

2.1 AB-GMRES method

AB-GMRES for least squares problems applies GMRES to $\min_{x \in \mathbb{R}^n} \| b - ABu \|_2$ with $x = Bu$, where $B \in \mathbb{R}^{n \times m}$. Let x_0 be the initial solution (in all our numerical experiments, we set $x_0 = 0$), and $r_0 = b - Ax_0$. Then, AB-GMRES searches for u in the Krylov subspace $K_i(AB, r_0) = \text{span}(r_0, ABr_0, \ldots, (AB)^{i-1}r_0)$. The algorithm is given in Algorithm 1. Here, $H_{j+1,j} = (h_{pj}) \in \mathbb{R}^{(i+1) \times i}$ and $e_i = (1, 0, \ldots, 0)^T \in \mathbb{R}^{i+1}$.

To find $y_i \in \mathbb{R}^i$ that minimizes $\| r_i \|_2 = \| r_0 \|_2 e_i^T - H_{j+1,i}^T y_i \|_2$ in Algorithm 1, the standard approach computes the QR decomposition of $H_{i+1,j}$:

$$H_{j+1,j} = Q_{j+1}R_{j+1,j}, \quad Q_{j+1} \in \mathbb{R}^{(i+1) \times (i+1)}, \quad R_{j+1,j} = \begin{pmatrix} R_i & 0 \end{pmatrix} \in \mathbb{R}^{(i+1) \times i}, \quad R_i \in \mathbb{R}^{i \times i},$$

(3)
Algorithm 1 AB-GMRES

1: Choose $x_0 \in \mathbb{R}^n$, $r_0 = b - Ax_0$, $v_1 = r_0/\|r_0\|_2$
2: for $i = 1, 2, \ldots, k$ do
3: \hspace{1em} $w_i = ABv_i$
4: \hspace{1em} for $j = 1, 2, \ldots, i$ do
5: \hspace{2em} $h_{i,j} = w_i^T v_j$, \hspace{0.5em} $w_i = w_i - h_{i,j} v_j$
6: \hspace{1em} end for
7: \hspace{1em} $h_{i+1,i} = \|w_i\|_2$, \hspace{0.5em} $v_{i+1} = w_i/h_{i+1,i}$
8: \hspace{1em} Compute $y_i \in \mathbb{R}^i$ which minimizes $\|r_i\|_2 = \|r_0\|_2e_1 - H_{i+1,i}y_i$ \hspace{0.5em} $\|r_i\|_2$
9: \hspace{1em} $x_i = x_0 + B[v_1, v_2, \ldots, v_i]y_i$, \hspace{0.5em} $r_i = b - Ax_i$
10: \hspace{1em} if $\|A^T r_i\|_2 < \epsilon \|A^T r_0\|_2$ then
11: \hspace{2em} stop
12: \hspace{1em} end if
13: end for

where Q_{i+1} is an orthogonal matrix and R_i is an upper triangular matrix. Then, backward substitution is used to solve a system with the coefficient matrix R_i as follows

$$\|r_i\|_2 = \min_{y_i \in \mathbb{R}^i} \|Q_{i+1}^T \beta e_1 - R_{i+1,i} y_i\|_2,$$ \hspace{1em} (4)

where

$$\beta = \|r_0\|_2, \hspace{0.5em} Q_{i+1}^T \beta e_1 = \begin{pmatrix} t_i \\ \rho_{i+1} \end{pmatrix}, \hspace{0.5em} t_i \in \mathbb{R}^i, \hspace{0.5em} \rho_{i+1} \in \mathbb{R}, \hspace{0.5em} y_i = R_{i+1,i}^{-1} t_i, \hspace{1em} \hspace{0.5em} \hspace{0.5em} (5)$$

$$x_i = V_i y_i = V_i (R_i^{-1} t_i), \hspace{0.5em} V_i = [v_1, v_2, \ldots, v_i] \in \mathbb{R}^{n \times i}, \hspace{0.5em} V_i^T V_i = I,$$ \hspace{1em} (6)

where I is the identity matrix.

Note the following theorem.

Theorem 1. (Corollary 3.8 of Hayami et al) If $R(A) = R(B^T)$ and $R(A^T) = R(B)$, then AB-GMRES determines a least squares solution of $\min_{x \in \mathbb{R}^n} \|b - Ax\|_2$ for all $b \in \mathbb{R}^n$ and for all $x_0 \in \mathbb{R}^n$ without breakdown.

Here, breakdown means $h_{i+1,i} = 0$ in Algorithm[1]. See Appendix B of[1].

In fact, if $R(A^T) = R(B)$ and $x_0 \in R(A^T)$, the solution is a minimum-norm solution since $x = Bu \in R(A^T) = \mathcal{N}(A)^\perp$, where $\mathcal{N}(A)$ is the null space of A.

From now on, we use AB-GMRES to solve[1] with $B = A^T$ and $x = Bu$, which means using the Krylov subspace $\mathcal{K}_i(AA^T, r_0) = \langle r_0, AA^T r_0, \ldots, (AA^T)^{i-1} r_0 \rangle$ to approximate u. Hence, Theorem[1] guarantees the convergence in exact arithmetic even in the inconsistent case. However, in finite precision arithmetic, AB-GMRES may fail to converge to a least squares solution for inconsistent problems, as shown later.

2.2 AB-GMRES for inconsistent problems

In this section, we perform experiments to show that the convergence of AB-GMRES deteriorates for inconsistent problems. Experiments were done on the transpose of the matrix Maragal_3T[1] denoted by Maragal_3T etc.

Table[1] gives the information on the Maragal matrices, including the density of nonzero entries, rank and condition number. Here, the rank and condition number were determined by using the MATLAB functions sprank and svd, respectively.

Figure[1] shows the relative residual norm $\|A^T r_i\|_2/\|A^T b\|_2$ and $\kappa_2(R_i)$ versus the number of iterations for AB-GMRES with $B = A^T$ for Maragal_3T, where $r_i = b - Ax_i$, and the vector b was generated by the MATLAB function rand which returns a vector whose entries are uniformly distributed in the interval $(0, 1)$. Here $\kappa_2(R_i) = \kappa_2(H_{i+1,i})$ holds from[1]. The value of $\kappa_2(R_i)$ was computed by the MATLAB function cond. The relative residual norm $\|A^T r_i\|_2/\|A^T b\|_2$ decreased to 10^{-8} until the 525th iteration, and then increased sharply. The value of $\text{cond}(R_i)$ started to increase rapidly around iterations 450–550. This observation shows that R_i becomes ill-conditioned before convergence. Thus, AB-GMRES failed to converge to a least squares solution. This phenomenon was observed by Morikuni[2].
TABLE 1 Information on the Maragal matrices.

<table>
<thead>
<tr>
<th>matrix</th>
<th>m</th>
<th>n</th>
<th>density[%]</th>
<th>rank</th>
<th>$\kappa_2(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maragal_3T</td>
<td>858</td>
<td>1682</td>
<td>1.27</td>
<td>613</td>
<td>1.10×10^3</td>
</tr>
<tr>
<td>Maragal_4T</td>
<td>1027</td>
<td>1964</td>
<td>1.32</td>
<td>801</td>
<td>9.33×10^6</td>
</tr>
<tr>
<td>Maragal_5T</td>
<td>3296</td>
<td>4654</td>
<td>0.61</td>
<td>2147</td>
<td>1.19×10^5</td>
</tr>
<tr>
<td>Maragal_6T</td>
<td>10144</td>
<td>21251</td>
<td>0.25</td>
<td>8331</td>
<td>2.91×10^6</td>
</tr>
<tr>
<td>Maragal_7T</td>
<td>26525</td>
<td>46845</td>
<td>0.10</td>
<td>20843</td>
<td>8.91×10^6</td>
</tr>
</tbody>
</table>

FIGURE 1 $\kappa_2(R_i)$ and relative residual norm versus the number of iterations for Maragal_3T.

The reason why R_i becomes ill-conditioned before convergence in the inconsistent case will be explained by a theorem in the next subsection.

2.3 GMRES for inconsistent problems

Brown and Walker[8] introduced an effective condition number to explain why GMRES fails to converge for inconsistent least squares problems

$$\min_{x \in \mathbb{R}^m} \| b - \tilde{A}x \|_2,$$

where $\tilde{A} \in \mathbb{R}^{m \times m}$ is singular, in the following Theorem[2]

Let $b|_{R(\tilde{A})}$ denote the orthogonal projection of b onto $R(\tilde{A})$. Assume $\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T)$ and grade($\tilde{A}, b|_{R(\tilde{A})}$) = k. Here, grade(\tilde{A}, b) for $\tilde{A} \in \mathbb{R}^{m \times m}$, $b \in \mathbb{R}^m$ is defined as the minimum k such that $\mathcal{K}_{k+1}(\tilde{A}, \tilde{b}) = \mathcal{K}_k(\tilde{A}, \tilde{b})$. Then, dim($\mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})})$) = dim($\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})})$) = dim($\mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})})$) = dim($\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})})$) = k (See Appendix A). Since $\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T)$, we obtain $\tilde{A}b|_{R(\tilde{A})} = \tilde{A}b$ and dim($\mathcal{K}_{k+1}(\tilde{A}, b)$) = dim($\mathcal{K}_k(\tilde{A}, b)$) = k. If $b \notin R(\tilde{A})$ and dim($\mathcal{K}_k(\tilde{A}, b)$) = k, dim($\mathcal{K}_{k+1}(\tilde{A}, b)$) = $k + 1$ (See Appendix B).

Let x_0 be the initial solution and $r_0 = b - \tilde{A}x_0$. In the inconsistent case, a least squares solution is obtained at iteration k, and at iteration $k + 1$ breakdown occurs because of dim($\mathcal{K}_{k+1}(\tilde{A}, r_0)$) < dim($\mathcal{K}_k(\tilde{A}, r_0)$), i.e. rank deficiency of min$_{z \in \mathcal{K}_{k+1}(\tilde{A}, r_0)} \| (b - \tilde{A}x_0 + z) \|_2 = \min_{z \in \mathcal{K}_k(\tilde{A}, r_0)} \| r_0 - \tilde{A}z \|_2$. This case is also called the hard breakdown[10]

However, even if $\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T)$, when (7) is inconsistent, the least squares problem $\min_{z \in \mathcal{K}_i(\tilde{A}, r_0)} \| r_0 - \tilde{A}z \|_2$ may become ill-conditioned as shown below.

Theorem 2. Assume $\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T)$, and denote the least squares residual of (7) by r^*, the residual at the ($i - 1$)st iteration by r_{i-1}. If $r_{i-1} \neq r^*$, then

$$\kappa_2(A_i) \geq \frac{\| A_i \|_2}{\| A_i \|_2} \frac{\| r_{i-1} \|_2}{\sqrt{\| r_{i-1} \|_2^2 - \| r^* \|_2^2}}.$$
where \(A_i \equiv \tilde{A}|_{\mathcal{K}(A,r_0)} \) and \(\tilde{A}_i \equiv \tilde{A}|_{\mathcal{K}(A,r_0)+\text{span}\{r\}^*} \). Here, \(\tilde{A}|_S \) is the restriction of \(\tilde{A} \) to a subspace \(S \subseteq \mathbb{R}^m \).

Theorem 2 implies that GMRES suffers ill-conditioning for \(b \notin \mathcal{R}(\tilde{A}) \) as \(\|r\| \) approaches \(\|r^*\| \). We can apply Theorem 2 to AB-GMRES for least-squares problems by setting \(\tilde{A} \equiv AA^T \). Theorem 2 also implies that even if we choose \(B \) as \(A^T \), which satisfies the conditions in Theorem 1, AB-GMRES still may not converge numerically because of the ill-conditioning of \(R_i \), losing accuracy in the solution computed in finite-precision arithmetic when \(r_{i-1} \) approaches \(r^* \).

3 \ ANALYSIS OF THE DETERIORATION OF CONVERGENCE

In this section, we illustrate the deterioration of convergence of GMRES through numerical experiments. There are two points to note in this section. The first point is that the condition number of \(R_i \) tends to become very large as the iteration proceeds for inconsistent problems. Due to \(H_{i+1,j} = Q_{i+1} R_{i+1,j} \), the condition number of \(H_{i+1,j} \) is the same as that of \(R_j \), and will also become very large. The second point is as follows. Since \(y_i = R_i^{-1} t_i \), \(y_i \) is obtained by applying backward substitution to the triangular system \(R_i y_i = t_i \). When the triangular system becomes ill-conditioned, backward substitution becomes numerically unstable, and fails to give an accurate solution \(y_i \).

Figure 2 shows that at step 550 the relative residual norm suddenly increases. To understand this increase, observe the singular values of \(R_{550} \).

The left of Figure 2 shows the singular values of \(R_{550} \) which were computed in double precision arithmetic. The smallest singular value of \(R_{550} \) is \(3.21 \times 10^{-14} \), which means that the triangular matrix \(R_{550} \) is very ill-conditioned and nearly singular in double precision arithmetic.

The right of Figure 2 shows the singular values of \(R_{550} \) which were computed in quadruple precision arithmetic using the Multiprecision Computing Toolbox for MATLAB14. The smallest singular value of \(R_{550} \) is \(5.39 \times 10^{-15} \). Since quadruple precision is more accurate, from now on, we mainly show singular value distributions computed in quadruple precision.

Figure 3 shows \(\kappa_2(R_i), \|y_i\|_2 \), and the relative residual norm \(\|t_i - R_i y_i\|_2/\|t_i\|_2 \) versus the number of iterations for AB-GMRES. The relative residual norm increases only gradually when the condition number of \(R_i \) is less than \(10^8 \). When the condition number of \(R_i \) becomes larger than \(10^{10} \), the relative residual norm starts to increase sharply. This observation shows that when the condition number of \(R_i \) becomes very large, the backward substitution will fail to give an accurate \(y_i \). As a result, we would not get an accurate \(x_i \), and the convergence of AB-GMRES would deteriorate.

4 \ STABILIZED GMRES METHOD

In this section, we first propose and present a stabilized GMRES method. Then, we explain its regularization effect comparing it with other regularization techniques.
The stabilized GMRES

In order to overcome the deterioration of convergence of GMRES for inconsistent systems, we propose solving the normal equations

\[R_i^T R_i y_i = R_i^T t_i \] \hspace{1cm} (9)

instead of \(R_i y_i = t_i \), which we will call the stabilized GMRES. This makes the system consistent, and stabilizes the process, as will be shown in the following.

One may also consider using the normal equations of \(H_{i+1} \). However, before breakdown, we use AB-GMRES, which means we do not have to store \(H_{i+1} \). We only store \(R_i \) and update it in each iteration, which is cheaper.

Figure 4 shows the relative residual norm \(\| A^T r \|_2 / \| A^T r_0 \|_2 \) versus the number of iterations for the standard AB-GMRES and stabilized AB-GMRES with \(B = A^T \) for Maragal_3T. The stabilized method reaches the relative residual norm level of \(10^{-11} \) which improves a lot compared to the standard method. The method which we used for solving the normal equations (9) is the standard Cholesky decomposition. We replace line 8 of Algorithm 1 by Algorithm 2.

We first checked that the method works for the standard Cholesky decomposition coded by ourselves. Later we applied the backslash function of Matlab to (9) to speed up. We checked that in the backslash, the Cholesky decomposition method \(\text{chol} \) is used until the GMRES residual norm stagnates at a small level as seen in Figure 4. In order to continue with further GMRES iterations, the \(\text{chol} \) is automatically switched to the \(\text{ldl} \), which works even for singular systems.

In spite of the above mentioned merits of stabilization, solving the normal equations in AB-GMRES is expensive. Actually, we only need the stabilized AB-GMRES when \(R_i \) becomes ill-conditioned. Thus, we can speed up the process by switching AB-GMRES to stabilized AB-GMRES only when \(R_i \) becomes ill-conditioned. The condition number of an incrementaly enlarging
Algorithm 2 Normal equations stabilization approach

1. Compute the QR decomposition of $H_{i+1} = Q_{k+1} R_{i+1}$.
2. $R_{i+1} = \left(\begin{array}{c} R_i \\ 0 \end{array} \right)$.
3. $Q^T_{i+1} \beta e_i = \left(\begin{array}{c} t_i \\ \rho_{i+1} \end{array} \right)$.
4. $\tilde{R}_i = R_i^T R_i$.
5. $t_i = R_i^T t_i$.
6. Compute the Cholesky decomposition of $\tilde{R}_i = L L^T$.
7. Solve $Lz_i = t_i$ by forward substitution.
8. Solve $L^T y_i = z_i$ by backward substitution.

TABLE 2 Comparison regarding the smallest attainable relative residual norm $\|A^T r_i\|_2/\|A^T r_0\|_2$.

<table>
<thead>
<tr>
<th>matrix</th>
<th>Maragal_3T</th>
<th>Maragal_4T</th>
<th>Maragal_5T</th>
<th>Maragal_6T</th>
<th>Maragal_7T</th>
</tr>
</thead>
<tbody>
<tr>
<td>iter.</td>
<td>531</td>
<td>465</td>
<td>1110</td>
<td>2440</td>
<td>1864</td>
</tr>
<tr>
<td>standard AB-GMRES</td>
<td>1.05×10⁻⁸</td>
<td>2.09×10⁻⁷</td>
<td>5.35×10⁻⁶</td>
<td>8.26×10⁻⁶</td>
<td>4.53×10⁻⁶</td>
</tr>
<tr>
<td>iter.</td>
<td>552</td>
<td>598</td>
<td>1226</td>
<td>3002</td>
<td>2459</td>
</tr>
<tr>
<td>stabilized AB-GMRES</td>
<td>5.99×10⁻¹²</td>
<td>5.59×10⁻⁸</td>
<td>4.22×10⁻⁶</td>
<td>3.88×10⁻⁶</td>
<td>2.80×10⁻⁷</td>
</tr>
</tbody>
</table>

The triangular matrix can be estimated by techniques in [12]. In this paper, we adopt the switching strategy by monitoring the relative residual norm $\|A^T r_i\|_2/\|A^T r_0\|_2$. Let $\text{ATR}(i) = \|A^T r_i\|_2/\|A^T r_0\|_2$ for the ith iteration. When $\text{ATR}(i)/\min_{i=1,2,\ldots,n-1}\text{ATR}(i) > 10$, we judge that a jump in relative residual norm has occurred, and we switch AB-GMRES to stabilized AB-GMRES at the ith iteration.

Motivated by the stabilized AB-GMRES, we also applied the truncated singular value decomposition (TSVD) stabilization method and compared it with the stabilized AB-GMRES. The method modifies R_i by truncating singular values smaller than μ. More specifically, let $R_i = U \Sigma V^T$ be the SVD of R_i, where the columns of $U = [u_1, u_2, \ldots, u_j]$ and $V = [v_1, v_2, \ldots, v_k]$ are the left and right singular vectors, respectively, and the diagonal entries of $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_j)$ are the singular values of R_i in descending order $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_j$. Then, the TSVD approximates $R_i \approx \sum_{j=1}^k \sigma_j u_j v_j^T$ with k such that $\sigma_{k+1} \leq \mu \sigma_1 \leq \sigma_k$ and $y_i = R_i^{-1} t_i \approx \sum_{j=1}^k \frac{1}{\sigma_j} u_j v_j^T t_i$.

When $\mu = 10^{-13}, 10^{-12}, \ldots, 10^{-4}$, the method converges but when μ is smaller than 10^{-13} or larger than 10^{-4}, it diverges and is similar to the original AB-GMRES. Numerical experiments showed that $\mu = \sqrt{\epsilon} \approx 10^{-8}$, where ϵ is the machine epsilon (about 10^{-16} in double precision arithmetic), gave the best result among $\mu = 10^{-1}, 10^{-2}, \ldots, 10^{-16}$ in terms of the relative residual as shown in Figure 4 for the problem Maragal_3T. The convergence behaviour of the TSVD stabilization method is similar to the stabilized AB-GMRES method, which suggests that eliminating tiny singular values which are less than 10^{-8} is effective for solving problem (1). However, the TSVD method requires computing the truncated singular value decomposition of R_i, and requires choosing the value of the threshold parameter μ, whereas the stabilized AB-GMRES does not require either of them.

Table 2 gives more results for the Maragal matrices. The table shows that the stabilized AB-GMRES is more accurate than the standard AB-GMRES. This seems paradoxical, since forming the normal equations whose coefficient matrix $R_i^T R_i$ would square the condition number compared to R_i, which would make the ill-conditioned problem even worse. Why can the stabilized AB-GMRES give a more accurate solution? We will explain why the stabilized AB-GMRES works in the next subsection.

4.2 Why the stabilized GMRES method works

Consider solving $R_i y_i = t_i, R_i \in \mathbb{R}^{m \times i}, t_i \in \mathbb{R}^i$ by solving the normal equations [9], which, in theory, squares the condition number and makes the problem become harder to solve numerically. However, in finite precision arithmetic, the condition number of the normal equations is not necessarily squared. We will continue to illustrate the phenomenon by using the example in Section 3.

We used the MATLAB function svd in quadruple precision arithmetic [13] to calculate the singular values. The smallest singular value of R_{550} is 5.39×10^{-15}, so its square is 2.91×10^{-29}.

\[Zeyu LIAO ET AL\]
Let \(\text{fl}(\cdot) \) denote the evaluation of an expression in floating point arithmetic and \(\text{fl}_d(\cdot) \) and \(\text{fl}_q(\cdot) \) denote the result in double precision arithmetic and quadruple precision arithmetic, respectively. Figure 5 shows that, numerically, the smallest singular value of \(\text{fl}_d(R_{550}^T R_{550}) \) is \(7.21 \times 10^{-14} \), which is much larger than \(2.91 \times 10^{-29} \). Further, the Cholesky factor \(L \) of \(\text{fl}_d(R_{550}^T R_{550}) = LL^T \) computed in double precision arithmetic has the smallest singular value \(3.50 \times 10^{-7} \), which is also larger than \(\sqrt{2.91 \times 10^{-29}} = 5.39 \times 10^{-15} \). Thus, the triangular systems \(Lz_i = t_i \) and \(L^T y_i = z_i \) are better-conditioned than \(R_i y_i = t_i \), which will ensure the stability of the forward and backward substitutions and succeeds in obtaining a much more accurate solution than the standard approach.

The left of Figure 6 compares the singular values \(\sigma_i(\text{fl}_d(R_{550}^T R_{550})) \) and \(\sigma_i(R_{550})^2 \), \(i = 1, 2, \ldots, 550 \). The first to the 549th singular values of \(\text{fl}_d(R_{550}^T R_{550}) \) and the corresponding \(\sigma(R_{550})^2 \) are almost the same, while the last one is different. What will happen when \(R_i \) contains a cluster of small singular values?

The upper triangular matrix \(R_{610} \) contains a cluster of small singular values. The right of Figure 6 compares the singular values \(\sigma_i(\text{fl}_q(R_{610}^T R_{610})) \) and \(\sigma_i(R_{610})^2 \). The larger singular values are the same as the ‘exact’ values, while the smaller singular values become larger than the ‘exact’ ones.

Experiment results show that finite precision arithmetic has the effect of shifting the tiny singular value upwards. That is the reason why the normal equations help to reduce the condition number and makes the problem become better-conditioned.

Next, we computed the multiplication \(R_{550}^T R_{550} \) in quadruple precision arithmetic and observed that the smallest singular values of \(R_{550}^T R_{550} \) coincided with the squared singular values \(\sigma_i(R_{550})^2 \) (blue circle symbol) in the left of Figure 6, unlike in double precision computation. Since the maximum of the elements of \(\| \text{fl}_q(R_{550}^T R_{550}) - \text{fl}_d(R_{550}^T R_{550}) \| \) is approximately \(8.16 \times 10^{-12} \), double precision arithmetic contains error of the order of \(10^{-12} \). Thus, double precision arithmetic has an effect of regularizing the matrix \(R_{550}^T R_{550} \), since double precision matrix multiplication is not accurate enough to keep all the information.
4.3 Quadruple precision

In order to see the effect of the machine precision on the convergence of the AB-GMRES, we compared the stabilized AB-GMRES with the AB-GMRES in quadruple precision arithmetic for the problem Maragal_3T in Figure 7. For both methods, the relative residual norm reached a smaller level of 10^{-16} compared to 10^{-12} and 10^{-8}, respectively, for double precision arithmetic in Figure 4. The curve of the relative residual norm became smoother compared to double precision. As seen in Figure 7, the relative residual norm of the AB-GMRES method jumped to 10^{-1} after reaching 10^{-16}, whereas the relative residual norm of the stabilized GMRES stayed around 10^{-16}.

4.4 When the stabilized GMRES method works

Motivated by the Läuchli matrix, we consider solving the following EP (equal projection) problem $A_3x = (1, 0, 0)^T$, where A_3 is null space symmetric, that is $\mathcal{N}(A_3) = \mathcal{N}(A_3^T)$ with null space $\mathcal{N}(A_3) = \text{span}\{(1, -1, 1)^T\}$.

$$A_3x = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{pmatrix} x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad (10)$$

where ϵ is the machine epsilon.

Apply GMRES with $x_0 = 0$ to (10). Let $R_s \in \mathbb{R}^{s \times s}$ be the upper triangular matrix obtained at the sth iteration of GMRES. In the second iteration, after applying the Givens rotation to $H_{3,2}$, we obtain the following:

$$R_2 = \begin{pmatrix} 1 & 1 \\ 0 & \sqrt{\epsilon} \end{pmatrix}, \quad R_2^T R_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 + \epsilon \end{pmatrix} \approx \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}. \quad (11)$$

Thus, there is a risk that the stabilized GMRES will give a numerically singular matrix $R_2^T R_2$ in finite precision arithmetic for nonsingular R_2. We will analyze this phenomenon.

We define the following.

$O(\epsilon)$ denotes that there exists a constant c independent of ϵ, such that $-c\epsilon < O(\epsilon) < c\epsilon$. Also, let

$$O(\epsilon) = \begin{pmatrix} O(\epsilon) \\ O(\epsilon) \\ \vdots \\ O(\epsilon) \end{pmatrix} \in \mathbb{R}^n, \quad O(\epsilon) = [O(\epsilon), O(\epsilon), \cdots, O(\epsilon)] \in \mathbb{R}^{n \times n}. \quad (12)$$

We assume that the basic arithmetic operations op = $+$, $-$, $*$, $/$ satisfy $fl(x \text{ op } y) = (x \text{ op } y)(1 + O(\epsilon))$ as in [13].
Note also that the following hold from \[13\]. Let \(x, y \in \mathbb{R}^n \), \(A, B \in \mathbb{R}^{n \times n} \), and

\[
|x| = \begin{pmatrix}
|x_1| \\
|x_2| \\
\vdots \\
|x_n|
\end{pmatrix} \quad \text{for} \quad x = \begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix},
\]

\[
|A| = \begin{pmatrix}
|a_{11}| & |a_{12}| & \cdots & |a_{1n}| \\
|a_{21}| & |a_{22}| & \cdots & |a_{2n}| \\
\vdots & \vdots & \ddots & \vdots \\
|a_{n1}| & |a_{n2}| & \cdots & |a_{nn}|
\end{pmatrix}
\]

for \(A = (a_{pq}) \). Then

\[
\|x^T y\| = x^T y + O(ne)|x|^T y | = x^T y + O(ne),
\]

\[
\|Ax\| = Ax + O(ne)|A||x| = Ax + O(ne),
\]

\[
\|AB\| = AB + O(ne)|A||B| = AB + O(ne).
\]

Note also that the following theorem holds from Theorem 8.10 of \[13\].

Theorem 3. Let \(T = (t_{pq}) \in \mathbb{R}^{n \times n} \) be a triangular matrix and \(b \in \mathbb{R}^n \). Then, the computed solution \(\hat{x} \) obtained from substitution applied to \(Tx = b \) satisfies

\[
\hat{x} = x + O(n^2 \epsilon)M(T)^{-1}|b|.
\]

Here, \(M(T) = (m_{ij}) \) is the comparison matrix such that

\[
m_{ij} = \begin{cases}
|t_{ij}|, & i = j, \\
-|t_{ij}|, & i \neq j.
\end{cases}
\]

Further, we define the following.

Assume \(\|A\|_2 = O(1) \). We say \(A \in \mathbb{R}^{n \times n} \) is numerically nonsingular if and only if

\[
\|Ax\| = O(\epsilon) \quad \Rightarrow \quad x = O(\epsilon).
\]

Note that this definition of numerical nonsingularity agrees with that of numerical rank due to the following.

Let the SVD of \(A = U\Sigma V^T \) where \(U, V \) are orthogonal matrices and \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n) \). Here, \(\|A\|_2 = \sigma_1 = O(1) \).

If the numerical rank of \(A \) is \(r < n \), there is a \(\sigma_i = O(\epsilon) \), \(r + 1 \leq i \leq n \). Then, \(Ax = U\Sigma V^T x = O(\epsilon) \) admits \(x' = V^TX = (x'_1, x'_2, \ldots, x'_n)^T \) such that \(x'_r = O(1) \), and hence \(x = O(1) \). Thus, \(A \) is numerical singular. Then, the following theorem holds.

Theorem 4. Let \(R_s = (r_{pq}) \in \mathbb{R}^{n \times n} \) be an upper-triangular matrix and

\[
R_{s+1} = \begin{pmatrix}
R_s \\
0^T
\end{pmatrix} \in \mathbb{R}^{(s+1) \times (s+1)}.
\]

Assume \(R_s \) is numerically nonsingular, and \(R_s = O(1), R_s^{-1} = O(1), M(R_s)^{-1} = O(1), d = O(1) \) and \(O(s) = O(s^2) = O(1) \). Then, the following holds:

\[
\|d^T d\Omega(\epsilon)\| \quad \Leftrightarrow \quad \|d^T d\Omega(\epsilon)\| > \|d^T d\Omega(\epsilon)\|.
\]

Proof. See Appendix [C].

Theorem 4 gives the necessary and sufficient condition so that the stabilized GMRES works at the \((s+1)\)st iteration, i.e. \(R_{s+1}^{T} R_{s+1} \) is numerically nonsingular.

The difficulty in solving \(R_s y = t \) by backward substitution is not because the diagonals of \(R_s \) are tiny. The reason is that \(R_s \) has tiny singular values. However, the exceptional example \([14]\) exists where the stabilized AB-GMRES does not work. The condition \(\|d^T d\Omega(\epsilon)\| \times d^T d \) in Theorem 4 excludes such exceptions.

Figure [4] shows \(s_{\text{res}}^2 \) and \(d^T d \) together with the convergence of the AB-GMRES and that of the stabilized AB-GMRE for Maragai_31. The figure shows that up to 613 iterations, the conditions in Theorem 4 are satisfied, and \(R_{s+1}^{T} R_{s+1} \) is numerically nonsingular, so that the stabilized AB-GMRES works.
4.5 Comparison with Tikhonov regularization method

Another approach to stabilize the AB-GMRES would be to apply Tikhonov regularization. There are two methods to implement it. The first method is to solve the following square system:

\[(R_i^T R_i + \lambda I)y_i = R_i^T t_i, \quad \lambda \geq 0\]

using the Cholesky decomposition.

The second method is to solve the regularized least squares problem

\[
\min_{y_i \in \mathbb{R}^i} \left\| \begin{pmatrix} t_i \\ 0 \end{pmatrix} - \begin{pmatrix} R_i \\ \sqrt{\lambda} I \end{pmatrix} y_i \right\|_2
\]

using the QR decomposition.

These two methods are equivalent mathematically. However, they are not equivalent numerically. The behavior of the first method is similar to the stabilized AB-GMRES. Table 3 shows that AB-GMRES combined with the first method converges better when \(\lambda = 10^{-16}\) than when \(\lambda = 10^{-14}\). This method can be used to shift upwards the small singular values, but is less accurate compared to the stabilized AB-GMRES (cf. Table 2).

Table 3 also shows that the second method is even more accurate compared with the stabilized AB-GMRES method. There is no need to form the normal equations, so that less information is lost due to rounding error. However, one needs to choose
TABLE 3 Attainable smallest relative residual norm $\|A^T r_i\|_2/\|A^T r_0\|_2$ for AB-GMRES with Tikhonov regularization using (19) and (20).

<table>
<thead>
<tr>
<th>matrix</th>
<th>Maragal_3T</th>
<th>Maragal_4T</th>
<th>Maragal_5T</th>
<th>Maragal_6T</th>
<th>Maragal_7T</th>
</tr>
</thead>
<tbody>
<tr>
<td>iter. method (19) $\lambda = 10^{-14}$</td>
<td>552</td>
<td>597</td>
<td>1304</td>
<td>2440</td>
<td>1864</td>
</tr>
<tr>
<td></td>
<td>5.08×10^{-11}</td>
<td>5.57×10^{-8}</td>
<td>1.05×10^{-5}</td>
<td>8.26×10^{-6}</td>
<td>4.53×10^{-6}</td>
</tr>
<tr>
<td>iter. method (19) $\lambda = 10^{-16}$</td>
<td>570</td>
<td>598</td>
<td>1226</td>
<td>2440</td>
<td>1864</td>
</tr>
<tr>
<td></td>
<td>5.80×10^{-12}</td>
<td>5.59×10^{-8}</td>
<td>4.22×10^{-6}</td>
<td>8.26×10^{-6}</td>
<td>4.53×10^{-6}</td>
</tr>
<tr>
<td>iter. method (20) $\lambda = 1.6 \times 10^{-14}$</td>
<td>553</td>
<td>547</td>
<td>1261</td>
<td>2937</td>
<td>2475</td>
</tr>
<tr>
<td></td>
<td>7.54×10^{-11}</td>
<td>5.59×10^{-8}</td>
<td>1.15×10^{-5}</td>
<td>9.12×10^{-6}</td>
<td>2.78×10^{-7}</td>
</tr>
<tr>
<td>iter. method (20) $\lambda = 10^{-16}$</td>
<td>551</td>
<td>547</td>
<td>1262</td>
<td>3037</td>
<td>2475</td>
</tr>
<tr>
<td></td>
<td>3.37×10^{-12}</td>
<td>5.59×10^{-8}</td>
<td>5.64×10^{-7}</td>
<td>1.91×10^{-6}</td>
<td>2.78×10^{-7}</td>
</tr>
</tbody>
</table>

Figure 9 shows the relative residual norm $\|A^T r_i\|_2/\|A^T r_0\|_2$ versus the number of iterations for different values of λ for Maragal_3T. According to Figure 9, $\lambda = 10^{-16}$ was optimal among 10^{-12}, 10^{-14}, 10^{-16}, 10^{-18}, so we recommend this value in practice.

We note the following.

Theorem 5. Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_l$ be the singular values of R_j. Then, the singular values of R_j are given by

$$R_j' = \left(\frac{R_j}{\sqrt{\lambda} I} \right)$$

are given by $\sqrt{\sigma_1^2 + \lambda} \geq \sqrt{\sigma_2^2 + \lambda} \geq \cdots \geq \sqrt{\sigma_l^2 + \lambda}$.

Proof. See Appendix D.

Then, let

$$\kappa \equiv \kappa_2(R_j) = \frac{\sigma_1}{\sigma_l}, \quad \kappa'^2 \equiv \kappa_2(R_j')^2 = \frac{\sigma_1^2 + \lambda}{\sigma_l^2/k^2 + \lambda} = 1 + \frac{\sigma_1^2(1 - 1/k^2)}{\sigma_l^2/k^2 + \lambda}.$$ \hspace{1cm} (22)

Since $\kappa \geq 1$, $d\kappa'/d\lambda \leq 0$ for $\lambda \geq 0$, and $\kappa'(\lambda = 0) = \kappa$, $\kappa'(\lambda = +\infty) = 1$. Note also that

$$\lambda = \frac{\sigma_1^2[1 + (\kappa'/\kappa)^2]}{\kappa'^2 - 1}.$$ \hspace{1cm} (23)

Therefore, for instance, if $\kappa \gg 1$ and we want $\kappa' = \sqrt{\kappa}$,

$$\lambda = \frac{\sigma_1^2(1 + 1/\kappa)}{\kappa - 1} \approx \frac{\sigma_1^2}{\kappa'}.$$ \hspace{1cm} (24)

For example, if $\kappa = 10^{16}$ and we want $\kappa' = 10^8$, we should choose $\lambda \approx \sigma_1^2 \times 10^{-16}$. For Maragal_3T, the largest singular value σ_1 is about 12.64, so that we can estimate a reasonable value of $\lambda \approx 1.60 \times 10^{-14}$. However, this estimation assumes $\kappa' = \sqrt{\kappa}$, and needs an extra cost for computing σ_1. See Appendix D for other estimation techniques for the regularization parameter.

5 COMPARISONS WITH OTHER METHODS

5.1 Underdetermined inconsistent least squares problems

First, we compared the stabilized AB-GMRES with the range restricted AB-GMRES (RR-AB-GMRES)\(^\text{[20]}\), where the Krylov subspace for the RR-AB-GMRES with $B = A^T$ is $K_m(AA^T, AA^T r_0)$. AB-GMRES with $B = A^T$, BA-GMRES with $B = A^T$, LSQR\(^\text{[2]}\) and LSMR\(^\text{[3]}\). All programs for iterative methods were coded according to the algorithms in Appendix D. Each method was terminated at the iteration step which gives the minimum relative residual norm within m iterations, where m is the number of
the rows of the matrix. No restarts were used for GMRES. Experiments were done for rank-deficient matrices whose information is given in Table 1. Here, we have deleted the zero rows and columns of the test matrices beforehand. The elements of b were randomly generated using the MATLAB function rand. Each experiment was done 10 times for the same right hand side b and the average of the CPU times are shown. Symbol - denotes that \(\| A^T r_i \|_2 / \| A^T r_0 \|_2 \) did not reach \(10^{-8} \) within 20\(n \) iterations.

Table 4 shows that the stabilized AB-GMRES is generally more accurate than the RR-AB-GMRES. The stabilized AB-GMRES took more iterations to attain the same order of the smallest residual norm than the RR-AB-GMRES. Table 4 also shows that for the same underdetermined least squares problems, the BA-GMRES was the best in terms of the attainable smallest relative residual norm and that the LSQR and LSMR are comparable to the BA-GMRES, but require less CPU time according to Table 5.

Table 4 Comparison of the attainable smallest relative residual norm \(\| A^T r_i \|_2 / \| A^T r_0 \|_2 \).

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Maragal_3T</th>
<th>Maragal_4T</th>
<th>Maragal_5T</th>
<th>Maragal_6T</th>
<th>Maragal_7T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iter. standard AB-GMRES</td>
<td>531</td>
<td>465</td>
<td>1110</td>
<td>2440</td>
<td>1864</td>
</tr>
<tr>
<td></td>
<td>1.05×10^{-8}</td>
<td>2.09×10^{-7}</td>
<td>5.35×10^{-6}</td>
<td>8.26×10^{-6}</td>
<td>4.53×10^{-6}</td>
</tr>
<tr>
<td>Iter. stabilized AB-GMRES</td>
<td>552</td>
<td>598</td>
<td>1226</td>
<td>3002</td>
<td>2459</td>
</tr>
<tr>
<td></td>
<td>5.99×10^{-12}</td>
<td>5.59×10^{-8}</td>
<td>4.22×10^{-6}</td>
<td>3.88×10^{-6}</td>
<td>2.80×10^{-7}</td>
</tr>
<tr>
<td>Iter. RR-AB-GMRES</td>
<td>553</td>
<td>565</td>
<td>1223</td>
<td>2374</td>
<td>2474</td>
</tr>
<tr>
<td></td>
<td>2.57×10^{-11}</td>
<td>5.59×10^{-8}</td>
<td>3.62×10^{-6}</td>
<td>3.88×10^{-6}</td>
<td>2.78×10^{-7}</td>
</tr>
<tr>
<td>Iter. BA-GMRES</td>
<td>562</td>
<td>626</td>
<td>1263</td>
<td>4373</td>
<td>5658</td>
</tr>
<tr>
<td></td>
<td>2.88×10^{-14}</td>
<td>7.92×10^{-11}</td>
<td>2.29×10^{-12}</td>
<td>5.12×10^{-11}</td>
<td>2.03×10^{-10}</td>
</tr>
<tr>
<td>Iter. LSQR</td>
<td>1654</td>
<td>2308</td>
<td>4273</td>
<td>127450</td>
<td>70242</td>
</tr>
<tr>
<td></td>
<td>5.51×10^{-14}</td>
<td>3.00×10^{-10}</td>
<td>3.25×10^{-11}</td>
<td>4.16×10^{-10}</td>
<td>9.95×10^{-10}</td>
</tr>
</tbody>
</table>

Table 5 Comparison of the CPU time (seconds) to obtain relative residual norm \(\| A^T r_i \|_2 / \| A^T r_0 \|_2 < 10^{-8} \).

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Maragal_3T</th>
<th>Maragal_4T</th>
<th>Maragal_5T</th>
<th>Maragal_6T</th>
<th>Maragal_7T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iter. standard AB-GMRES</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iter. stabilized AB-GMRES</td>
<td>546 (526)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iter. RR-AB-GMRES</td>
<td>545</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iter. BA-GMRES</td>
<td>530</td>
<td>608</td>
<td>1232</td>
<td>3623</td>
<td>5001</td>
</tr>
<tr>
<td></td>
<td>2.10</td>
<td>3.19</td>
<td>4.25×10^1</td>
<td>1.81×10^1</td>
<td>9.20×10^3</td>
</tr>
<tr>
<td>Iter. LSQR</td>
<td>1465</td>
<td>210</td>
<td>4032</td>
<td>101893</td>
<td>54444</td>
</tr>
<tr>
<td></td>
<td>1.27×10^{-1}</td>
<td>2.56×10^{-1}</td>
<td>1.49</td>
<td>2.93×10^2</td>
<td>4.33×10^2</td>
</tr>
<tr>
<td>Iter. LSMR</td>
<td>1456</td>
<td>1989</td>
<td>4013</td>
<td>54017</td>
<td>31206</td>
</tr>
<tr>
<td></td>
<td>1.25×10^{-1}</td>
<td>2.37×10^{-1}</td>
<td>1.49</td>
<td>1.50×10^2</td>
<td>2.23×10^2</td>
</tr>
</tbody>
</table>
TABLE 6 Information of the singular square matrices.

<table>
<thead>
<tr>
<th>matrix</th>
<th>size</th>
<th>density[%]</th>
<th>rank</th>
<th>$\kappa_2(A)$</th>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard500</td>
<td>500</td>
<td>1.05</td>
<td>170</td>
<td>1.30x10^2</td>
<td>web connectivity</td>
</tr>
<tr>
<td>netz4504</td>
<td>1961</td>
<td>0.13</td>
<td>1342</td>
<td>3.41x10^1</td>
<td>2D/3D finite element problem</td>
</tr>
<tr>
<td>TS</td>
<td>2142</td>
<td>0.99</td>
<td>2140</td>
<td>3.52x10^3</td>
<td>counter example problem</td>
</tr>
<tr>
<td>grid2_dual</td>
<td>3136</td>
<td>0.12</td>
<td>3134</td>
<td>8.58x10^3</td>
<td>2D/3D finite element problem</td>
</tr>
<tr>
<td>uk</td>
<td>4828</td>
<td>0.06</td>
<td>4814</td>
<td>6.62x10^3</td>
<td>undirected graph</td>
</tr>
<tr>
<td>bw42</td>
<td>10000</td>
<td>0.05</td>
<td>9999</td>
<td>2.03x10^3</td>
<td>partial differential equation</td>
</tr>
</tbody>
</table>

TABLE 7 Comparison of the attainable smallest relative residual norm $\|A^{T}r_i\|_2/\|A^{T}r_0\|_2$ for inconsistent square linear systems.

<table>
<thead>
<tr>
<th>matrix</th>
<th>Harvard500</th>
<th>netz4504</th>
<th>TS</th>
<th>grid2_dual</th>
<th>uk</th>
<th>bw42</th>
</tr>
</thead>
<tbody>
<tr>
<td>iter.</td>
<td>104</td>
<td>144</td>
<td>1487</td>
<td>3134</td>
<td>4620</td>
<td>715</td>
</tr>
<tr>
<td>standard AB-GMRES</td>
<td>9.38x10^{-9}</td>
<td>4.51x10^{-10}</td>
<td>1.56x10^{-9}</td>
<td>5.98x10^{-10}</td>
<td>1.35x10^{-9}</td>
<td>8.06x10^{-8}</td>
</tr>
<tr>
<td>iter.</td>
<td>175</td>
<td>201</td>
<td>1617</td>
<td>3135</td>
<td>4779</td>
<td>788</td>
</tr>
<tr>
<td>stabilized AB-GMRES</td>
<td>4.53x10^{-14}</td>
<td>1.51x10^{-14}</td>
<td>1.54x10^{-9}</td>
<td>1.14x10^{-9}</td>
<td>6.81x10^{-10}</td>
<td>1.66x10^{-7}</td>
</tr>
<tr>
<td>iter.</td>
<td>135</td>
<td>200</td>
<td>1652</td>
<td>3134</td>
<td>4706</td>
<td>1163</td>
</tr>
<tr>
<td>RR-AB-GMRES</td>
<td>7.78x10^{-14}</td>
<td>3.36x10^{-14}</td>
<td>4.56x10^{-9}</td>
<td>6.52x10^{-8}</td>
<td>8.33x10^{-8}</td>
<td>1.56x10^{-5}</td>
</tr>
<tr>
<td>iter.</td>
<td>139</td>
<td>194</td>
<td>1628</td>
<td>3134</td>
<td>4724</td>
<td>1520</td>
</tr>
<tr>
<td>BA-GMRES</td>
<td>1.91x10^{-15}</td>
<td>7.27x10^{-16}</td>
<td>8.43x10^{-13}</td>
<td>1.23x10^{-13}</td>
<td>6.94x10^{-14}</td>
<td>1.97x10^{-11}</td>
</tr>
<tr>
<td>iter.</td>
<td>391</td>
<td>198</td>
<td>6047</td>
<td>12549</td>
<td>6249</td>
<td>1256</td>
</tr>
<tr>
<td>LSQR</td>
<td>3.59x10^{-15}</td>
<td>5.86x10^{-16}</td>
<td>1.96x10^{-12}</td>
<td>2.51x10^{-13}</td>
<td>6.56x10^{-14}</td>
<td>1.59x10^{-11}</td>
</tr>
<tr>
<td>iter.</td>
<td>338</td>
<td>195</td>
<td>6219</td>
<td>12497</td>
<td>6199</td>
<td>1212</td>
</tr>
<tr>
<td>LSMR</td>
<td>2.01x10^{-15}</td>
<td>5.97x10^{-16}</td>
<td>1.25x10^{-12}</td>
<td>2.34x10^{-13}</td>
<td>7.35x10^{-14}</td>
<td>1.60x10^{-11}</td>
</tr>
</tbody>
</table>

5.2 | Inconsistent systems with highly ill-conditioned square coefficient matrices

The stabilized AB-GMRES is not restricted to solving underdetermined problems but can also be applied to solving the least squares problem $\min_{x \in \mathbb{R}^n} \| b - Ax \|_2$, where $A \in \mathbb{R}^{n \times n}$ is a highly ill-conditioned square matrix. Thus, we also test on square matrices of different kinds. Table 6 gives the information of the matrices.

These matrices are all numerically singular. We generated the right-hand side b by the MATLAB function `rand`, so that the systems are generically inconsistent. We compared the stabilized AB-GMRES with the standard AB-GMRES, RR-AB-GMRES, BA-GMRES with $B = A^T$, LSQR and LSQR. Table 7 gives the smallest relative residual norm and the number of iterations. Table 9 gives the CPU times in seconds required to obtain relative residual norm $\|A^{T}r_i\|_2/\|A^{T}r_0\|_2 < 10^{-8}$. The switching strategy which was introduced in Section 4.1 was used for the stabilized AB-GMRES when measuring CPU times. The number of iterations when switching occurred is in brackets.

Table 7 shows that for most problems the BA-GMRES was the best in terms of accuracy of relative residual norm. The LSQR and LSMR are similar and are comparable to the BA-GMRES, because they all change the inconsistent problem into a consistent problem. The LSQR and LSMR are more suitable for large and sparse problems compared to the BA-GMRES because they require less CPU time and memory.

For Harvard500 and bw42, the AB-GMRES could only converge to the level of 10^{-9} regarding the relative residual norm, while the stabilized AB-GMRES converged to the level of 10^{-14}. The stabilized AB-GMRES was robust in the sense that it could continue to compute even when the upper triangular matrix R_i became seriously ill-conditioned, and the relative residual norm did not increase sharply towards the end, but just stagnated at a low level, just like for consistent problems. Comparing the CPU time in Table 9, LSMR was the fastest. The stabilized AB-GMRES was usually faster than BA-GMRES.
TABLE 8 Attainable smallest relative residual norm \(\| A^T r_i \|_2 / \| A^T r_0 \|_2 \) for bw42.

<table>
<thead>
<tr>
<th>method</th>
<th>iter.</th>
<th>min, (| A^T r_i |_2 / | A^T r_0 |_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard GMRES</td>
<td>147</td>
<td>8.08×10^{-9}</td>
</tr>
<tr>
<td>stabilized GMRES</td>
<td>219</td>
<td>1.94×10^{-11}</td>
</tr>
<tr>
<td>RR-GMRES</td>
<td>220</td>
<td>3.13×10^{-11}</td>
</tr>
</tbody>
</table>

TABLE 9 Comparison of the CPU time (seconds) to obtain relative residual norm \(\| A^T r_i \|_2 / \| A^T r_0 \|_2 < 10^{-8} \) for inconsistent square linear systems.

<table>
<thead>
<tr>
<th>matrix</th>
<th>Harvard500</th>
<th>netz4504</th>
<th>TS</th>
<th>grid2_dual</th>
<th>uk</th>
<th>bw42</th>
</tr>
</thead>
<tbody>
<tr>
<td>iter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard AB-GMRES</td>
<td>104</td>
<td>134</td>
<td>1411</td>
<td>3134</td>
<td>4583</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.72×10^{-2}</td>
<td>1.87×10^{-1}</td>
<td>2.14×10^{-1}</td>
<td>2.16×10^{2}</td>
<td>6.93×10^{2}</td>
<td>-</td>
</tr>
<tr>
<td>iter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stabilized AB-GMRES</td>
<td>104</td>
<td>134</td>
<td>1531 (182)</td>
<td>3134</td>
<td>4679 (4199)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.78×10^{-2}</td>
<td>1.89×10^{-1}</td>
<td>8.19×10^{-1}</td>
<td>2.21×10^{2}</td>
<td>1.93×10^{1}</td>
<td>-</td>
</tr>
<tr>
<td>iter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-AB-GMRES</td>
<td>114</td>
<td>153</td>
<td>1530</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6.42×10^{-2}</td>
<td>2.62×10^{-1}</td>
<td>2.68×10^{-1}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>iter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA-GMRES</td>
<td>103</td>
<td>131</td>
<td>1379</td>
<td>3134</td>
<td>4562</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td>5.48×10^{-2}</td>
<td>1.72×10^{-1}</td>
<td>2.06×10^{-1}</td>
<td>2.44×10^{2}</td>
<td>7.55×10^{2}</td>
<td>2.33×10^{1}</td>
</tr>
<tr>
<td>iter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSQR</td>
<td>222</td>
<td>134</td>
<td>4239</td>
<td>11802</td>
<td>5948</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td>5.63×10^{-3}</td>
<td>6.61×10^{-3}</td>
<td>7.86×10^{-1}</td>
<td>1.15</td>
<td>8.65×10^{-1}</td>
<td>3.12×10^{-1}</td>
</tr>
<tr>
<td>iter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSMR</td>
<td>215</td>
<td>132</td>
<td>3913</td>
<td>11746</td>
<td>5898</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>5.34×10^{-3}</td>
<td>6.42×10^{-3}</td>
<td>7.04×10^{-1}</td>
<td>1.15</td>
<td>8.42×10^{-1}</td>
<td>2.32×10^{-1}</td>
</tr>
</tbody>
</table>

Thus, our stabilization method also makes AB-GMRES stable for highly ill-conditioned inconsistent systems with square coefficient matrices.

The coefficient matrix \(A \) of bw42 is singular and satisfies \(\mathcal{N}(A) = \mathcal{N}(A^T) \). The problem comes from a finite-difference discretization of a PDE with periodic boundary condition (Experiment 4.2 in Brown and Walker\(^8\) with the original \(b \)). Since the matrix is range symmetric, the GMRES, RR-GMRES, and stabilized GMRES can be directly applied to \(Ax = b \) (See\(^8\) Theorem 2.4\(^21\), Theorem 2.7, and\(^22\) Theorem 3.2) as shown in Table 8. The stabilized GMRES gave the relative residual norm 1.94×10^{-11} for bw42 at the 219th iteration, similar to the BA-GMRES.

6 | CONCLUDING REMARKS

We proposed a stabilized AB-GMRES method for ill-conditioned underdetermined and inconsistent least squares problems. It shifts upwards the tiny singular values of the upper triangular matrix appearing in AB-GMRES, making the process more stable, giving better convergence, and more accurate solutions compared to AB-GMRES. The method is also effective for making AB-GMRES stable for inconsistent least squares problems with highly ill-conditioned square coefficient matrices.

ACKNOWLEDGMENTS

Ken Hayami was supported by JSPS KAKENHI Grant Number 15K04768.

Keiichi Morikuni was supported by JSPS KAKENHI Grant Number 16K17639 and Hattori Hokokai Foundation.

Jun-Feng Yin was supported by the National Natural Science Foundation of China (No. 11971354).
APPENDIX

A PROOF OF STATEMENT IN SECTION 2.3

Lemma 1. Assume $\mathcal{N}(\tilde{A}) \cap R(\tilde{A}) = \{0\}$, and grade($\tilde{A}, b|_{R(\tilde{A})}$) = k. Then, $\mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})}) = \tilde{A}\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})})$ holds.

Proof. Note that

\[\tilde{A}\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})}) = \text{span}\{ \tilde{A}b|_{R(\tilde{A})}, \tilde{A}^2b|_{R(\tilde{A})}, \ldots, \tilde{A}^k b|_{R(\tilde{A})} \} \subseteq \text{span}\{ b|_{R(\tilde{A})}, \tilde{A}b|_{R(\tilde{A})}, \ldots, \tilde{A}^k b|_{R(\tilde{A})} \} = \mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})}). \]

grade($\tilde{A}, b|_{R(\tilde{A})}$) = k implies that

\[\mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})}) = \mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})}) = \text{span}\{ b|_{R(\tilde{A})}, \tilde{A}b|_{R(\tilde{A})}, \ldots, \tilde{A}^{k-1} b|_{R(\tilde{A})} \}. \]

Hence,

\[\tilde{A}^k b|_{R(\tilde{A})} = c_0 b|_{R(\tilde{A})} + c_1 \tilde{A}b|_{R(\tilde{A})} + \ldots + c_{k-1} \tilde{A}^{k-1} b|_{R(\tilde{A})}, \quad c_i \in \mathbb{R}, i = 0, 1, 2, \ldots, k - 1. \]

If $c_0 = 0$,

\[\tilde{A}^k b|_{R(\tilde{A})} = c_1 \tilde{A}b|_{R(\tilde{A})} + c_2 \tilde{A}^2 b|_{R(\tilde{A})} + \ldots + c_{k-1} \tilde{A}^{k-1} b|_{R(\tilde{A})}. \]

Hence,

\[c_1 \tilde{A}b|_{R(\tilde{A})} + c_2 \tilde{A}^2 b|_{R(\tilde{A})} + \ldots + c_{k-1} \tilde{A}^{k-1} b|_{R(\tilde{A})} = \tilde{A}(c_1 b|_{R(\tilde{A})} + \ldots + c_{k-1} \tilde{A}^{k-2} b|_{R(\tilde{A})} - \tilde{A}^{k-1} b|_{R(\tilde{A})} = 0. \]

Hence,

\[c_1 b|_{R(\tilde{A})} + c_2 \tilde{A}^2 b|_{R(\tilde{A})} + \ldots + c_{k-1} \tilde{A}^{k-1} b|_{R(\tilde{A})} \in \mathcal{N}(\tilde{A}) \cap R(\tilde{A}) = \{0\}. \]

which implies

\[\tilde{A}^{k-1} b|_{R(\tilde{A})} = c_1 b|_{R(\tilde{A})} + c_2 \tilde{A}b|_{R(\tilde{A})} + \ldots + c_{k-1} \tilde{A}^{k-2} b|_{R(\tilde{A})}. \]

Thus,

\[\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})}) = \mathcal{K}_{k-1}(\tilde{A}, b|_{R(\tilde{A})}), \]

which contradicts with grade($\tilde{A}, b|_{R(\tilde{A})}$) = k. Hence, $c_0 \neq 0$, and

\[b|_{R(\tilde{A})} = d_1 \tilde{A}b|_{R(\tilde{A})} + d_2 \tilde{A}^2 b|_{R(\tilde{A})} + \ldots + d_{k-1} \tilde{A}^{k-1} b|_{R(\tilde{A})} + d_k \tilde{A}^k b|_{R(\tilde{A})}. \]

Hence,

\[\mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})}) = \text{span}\{ b|_{R(\tilde{A})}, \tilde{A}b|_{R(\tilde{A})}, \ldots, \tilde{A}^k b|_{R(\tilde{A})} \} \subseteq \text{span}\{ \tilde{A}b|_{R(\tilde{A})}, \tilde{A}^2 b|_{R(\tilde{A})}, \ldots, \tilde{A}^k b|_{R(\tilde{A})} \} = \tilde{A}\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})}). \]

Thus,

\[\mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})}) = \tilde{A}\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})}). \]

\[\square \]

Corollary 1. Assume $\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T)$, and grade($\tilde{A}, b|_{R(\tilde{A})}$) = k. Then, $\mathcal{K}_{k+1}(\tilde{A}, b|_{R(\tilde{A})}) = \tilde{A}\mathcal{K}_k(\tilde{A}, b|_{R(\tilde{A})})$ holds.

Proof. $\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T)$ implies that

\[\mathcal{N}(\tilde{A}) \cap R(\tilde{A}) = \mathcal{N}(\tilde{A}^T) \cap R(\tilde{A}) = R(\tilde{A})^+ \cap R(\tilde{A}) = \{0\}. \]

Hence, from Lemma 1, Corollary 1 holds. \[\square \]
B PROOF OF STATEMENT IN SECTION 2.3

Lemma 2. Assume \(\mathcal{N}(\tilde{A}) \cap \mathcal{R}(\tilde{A}) = \{0\} \), grade(\(\tilde{A}, b|_{\mathcal{R}(\tilde{A})}\)) = \(k\), and \(b \not\in \mathcal{R}(\tilde{A}) \). Then, \(\text{dim}(\mathcal{K}_{k+1}(\tilde{A}, b)) = k + 1 \) holds.

Proof. Let \(c_0, c_1, \ldots, c_k \in \mathbb{R} \) satisfy
\[
c_0 b + c_1 \tilde{A} b + \cdots + c_k \tilde{A}^k b = 0.
\]
Since \(\mathcal{N}(\tilde{A}) \cap \mathcal{R}(\tilde{A}) = \{0\} \),
\[
b = b|_{\mathcal{R}(\tilde{A})} \oplus b|_{\mathcal{N}(\tilde{A})},
\]
where \(b|_{\mathcal{N}(\tilde{A})} \) denotes the orthogonal projection of \(b \) onto \(\mathcal{N}(\tilde{A}) \). Hence,
\[
c_0 b|_{\mathcal{N}(\tilde{A})} + c_0 b|_{\mathcal{R}(\tilde{A})} + c_1 \tilde{A} b|_{\mathcal{R}(\tilde{A})} + \cdots + c_k \tilde{A}^k b|_{\mathcal{R}(\tilde{A})} = 0.
\]
If \(c_0 \neq 0 \)
\[
b|_{\mathcal{N}(\tilde{A})} = -\frac{c_1}{c_0} \tilde{A} b|_{\mathcal{R}(\tilde{A})} - \cdots - \frac{c_k}{c_0} \tilde{A}^k b|_{\mathcal{R}(\tilde{A})} \in \mathcal{R}(\tilde{A}).
\]
Hence,
\[
b|_{\mathcal{N}(\tilde{A})} \in \mathcal{N}(\tilde{A}) \cap \mathcal{R}(\tilde{A}) = \{0\}.
\]
Thus, \(b|_{\mathcal{N}(\tilde{A})} = 0 \), which contradicts \(b \not\in \mathcal{R}(\tilde{A}) \). Hence, we have \(c_0 = 0 \), and
\[
c_1 \tilde{A} b + c_2 \tilde{A}^2 b + \cdots + c_k \tilde{A}^k b = c_1 \tilde{A} b|_{\mathcal{R}(\tilde{A})} + c_2 \tilde{A}^2 b|_{\mathcal{R}(\tilde{A})} + \cdots + c_k \tilde{A}^k b|_{\mathcal{R}(\tilde{A})} = 0.
\]
But, since
\[
\text{dim}(\text{span}\{ \tilde{A} b|_{\mathcal{R}(\tilde{A})}, \tilde{A}^2 b|_{\mathcal{R}(\tilde{A})}, \ldots, \tilde{A}^k b|_{\mathcal{R}(\tilde{A})}\}) = \text{dim}(\text{span}\{ \tilde{A} b|_{\mathcal{R}(\tilde{A})}, \tilde{A}^2 b|_{\mathcal{R}(\tilde{A})}, \ldots, \tilde{A}^k b|_{\mathcal{R}(\tilde{A})}\}) = \text{dim}(\mathcal{K}_{k+1}(\tilde{A}, b|_{\mathcal{R}(\tilde{A})})) = k
\]
holds from Lemma 1, we have \(c_1 = c_2 = \cdots = c_k = 0 \), which implies \(\text{dim}(\mathcal{K}_{k+1}(\tilde{A}, b)) = k + 1 \).

Corollary 2. Assume \(\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T) \), grade(\(\tilde{A}, b|_{\mathcal{R}(\tilde{A})}\)) = \(k\), and \(b \not\in \mathcal{R}(\tilde{A}) \). Then, \(\text{dim}(\mathcal{K}_{k+1}(\tilde{A}, b)) = k + 1 \) holds.

Proof. \(\mathcal{N}(\tilde{A}) = \mathcal{N}(\tilde{A}^T) \) implies \(\mathcal{N}(\tilde{A}) \cap \mathcal{R}(\tilde{A}) = \{0\} \). Hence, the corollary follows from Lemma 2.

C PROOF OF THEOREM 4

Note that
\[
R_{s+1}^T R_{s+1} = \begin{pmatrix} R_s & 0 \\ d^T r_{s+1,s+1} & r_{s+1,s+1} \end{pmatrix} \begin{pmatrix} R_s & d \\ 0 & r_{s+1,s+1} \end{pmatrix} = \begin{pmatrix} R_s^T d & R_s^T R_{s+1} \\ d^T R_s & d^T d + r_{s+1,s+1} \end{pmatrix}.
\]

Proof of (\(\Rightarrow\)). Assume \(\text{fl}(r_{s+1,s+1}^2) \leq \text{fl}(d^T d)\text{O}(e) \). Then, since
\[
\text{fl}(d^T d) = d^T d + O(se) = d^T (1 + O(se)) + O(1),
\]
we have
\[
\text{fl}(k) = \text{fl}(R_{s+1}^T R_{s+1}) = \begin{pmatrix} R_s^T R_s + O(se)|R_s|^T R_s & R_s^T d + O(se)|R_s|^T d \\ d^T R_s + O(se)|d|^T R_s & d^T d + O(se)d^T d \end{pmatrix} = \begin{pmatrix} R_s^T d \\ d^T d + O(se)d^T d \end{pmatrix}.
\]
since \(R_s = O(1) \) and \(d = O(1) \). Note
\[
\begin{pmatrix} R_s \\ d \end{pmatrix} \begin{pmatrix} -R_s^T d \\ 1 \end{pmatrix} = -R_s R_s^{-1} d + d = 0,
\]
since \(R_s \) is nonsingular.

Hence,
\[
\text{fl}(\begin{pmatrix} R_s \\ d \end{pmatrix}) = \text{fl}(\begin{pmatrix} -R_s^{-1} d \\ 1 \end{pmatrix}) = \text{fl}(\begin{pmatrix} R_s \text{fl}(-R_s^{-1} d) + d \end{pmatrix}) = [\text{fl}(\begin{pmatrix} R_s \text{fl}(-R_s^{-1} d) + d \end{pmatrix}) + O(1)\).
Note here that
\[\text{fl}(R_z \text{fl}(-R_z^{-1}d)) = R_z \text{fl}(-R_z^{-1}d) + O(se)R_z ||R_z^{-1}d|, \]
and
\[\text{fl}(-R_z^{-1}d) = -R_z^{-1}d + O(s^2e)M(R_z)^{-1}|d| \]
from Theorem 3. Hence,
\[\text{fl}(\begin{pmatrix} R_z \ d \end{pmatrix}) \left(\begin{pmatrix} -R_z^{-1}d \\ 1 \end{pmatrix} \right) = O(s^2e)R_zM(R_z)^{-1}|d| + O(se)R_z ||R_z^{-1}d| = O(s^2e), \]
since \(R_z^{-1} = O(1) \) and \(M(R_z)^{-1} = O(1) \).

Then,
\[\text{fl}(R_{s+1}^{T}R_{s+1} \left(\begin{pmatrix} -R_z^{-1}d \\ 1 \end{pmatrix} \right)) = \text{fl}(\begin{pmatrix} R_{s+1}^{T} \ d \end{pmatrix} + O(se)) \left(\begin{pmatrix} -R_z^{-1}d + O(s^2e)M(R_z)^{-1}|d| \\ 1 \end{pmatrix} \right) = O(s^2e) = O(e), \]
since (C1), (C2), and \(O(s^2) = O(1) \). Since \(\left(\begin{pmatrix} -R_z^{-1}d \\ 1 \end{pmatrix} \right) = O(1) \), \(R_{s+1}^{T}R_{s+1} \) is numerically singular. By contraposition, \(\Leftarrow \) holds.

Proof of \(\Leftarrow \). Assume \(R_{s+1}^{T}R_{s+1} \) is not numerically singular. Then, there exists a vector \(\begin{pmatrix} z \\ w \end{pmatrix} \in \mathbb{R}^{s+1} \) such that \(\left| \begin{pmatrix} z \\ w \end{pmatrix} \right| > O(e) \), and
\[
\text{fl}(R_{s+1}^{T}R_{s+1} \left(\begin{pmatrix} z \\ w \end{pmatrix} \right)) = R_{s+1}^{T} \begin{pmatrix} z \\ w \end{pmatrix} + |R_{s+1}| \left| \begin{pmatrix} z \\ w \end{pmatrix} \right| O((s+1)e) + \left| R_{s+1}^{T} \right| R_{s+1} \left| \begin{pmatrix} z \\ w \end{pmatrix} \right| O((s+1)e) O((s+1)e) = O(e),
\]
assuming \(O(s+1) = O(1) \).

Hence,
\[\text{fl}(R_{s+1}^{T}R_{s+1} \left(\begin{pmatrix} z \\ w \end{pmatrix} \right)) = \begin{pmatrix} R_{s+1}^{T}R_z \\ d^{T}R_z + r_{s+1,s+1}^{2} \end{pmatrix} \left(\begin{pmatrix} z \\ w \end{pmatrix} \right) + O(e) = O(e). \]
Thus,
\[R_{s+1}^{T}R_zz + wR_{s+1}^{T}d = O(e), \]
\[(C3) \]
\[d^{T}R_zz + (d^{T}d + r_{s+1,s+1}^{2})w = O(e). \]
\[(C4) \]
\((C3) \) can be expressed as \(R_{s+1}^{T}(R_zz + wd) = O(e) \). From Lemma 3, \(R_{s+1}^{T} \) is numerically nonsingular, so that
\[R_zz + wd = O(e). \]
\[(C5) \]

Hence, from \((C4) \), \(d^{T}R_zz + w(d^{T}d + r_{s+1,s+1}^{2}) = d^{T}(R_zz + wd) + r_{s+1,s+1}^{2} = O(e) \). Thus, \(wr_{s+1,s+1}^{2} = O(e) \). If \(w = O(e), \)
\(R_zz = O(e) \) from \((C5) \). Since \(R_z \) is numerically nonsingular, \(z = O(e) \), which contradicts with the assumption.

Hence, \(|w| > O(e) \), so that \(r_{s+1,s+1}^{2} = O(e) \), which gives
\[\text{fl}(r_{s+1,s+1}^{2}) = O(e) \leq \text{fl}(d^{T}d)O(e). \]

Lemma 3. Let \(n = O(1) \). If \(A \in \mathbb{R}^{n \times n} \) is numerically nonsingular, and \(A^{-1} = O(1) \), then \(A^{T} \) is numerically nonsingular.

Proof. If
\[\text{fl}(A^{T}x) = A^{T}x + O(ne)|A^{T}||x| = O(ne), \]
then
\[\text{fl}(x^{T}A) = x^{T}A + O^{T}(ne) = O^{T}(ne). \]
Thus,
\[\text{fl}(x^{T}Ay) = \text{fl}(x^{T}A)y + O(ne)|\text{fl}(x^{T}A)||y| = O(ne) \]
holds for all \(y = O(1) \).
For arbitrary $z = O(1) \in \mathbb{R}^n$, let

$$y = A^{-1}z = O(1).$$

Then,

$$\text{fl}(Ay) = Ay + O(ne)|A||y| = z + O(ne)|A||y|.$$

Hence,

$$z = \text{fl}(Ay) + O(ne) = \text{fl}(Ay) + O(ne).$$

Thus, we have

$$\text{fl}(x^Tz) = x^Tz + O(ne)|x||z| = \text{fl}(x^T Ay) + O(ne) = O(ne)$$

for arbitrary $z = O(1) \in \mathbb{R}^n$. Hence, $x = O(e)$, so that A^T is numerically nonsingular.

\[\Box\]

D PROOF OF THEOREM 5 IN SECTION 4.5

Proof. Let the singular value decomposition of R_i be given by $R_i = U \Sigma V^T \in \mathbb{R}^{i \times i}$, where U, V are orthogonal matrices and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_i)$. Let $I_i \in \mathbb{R}^{i \times i}$ be the identity matrix. Then, we have $R_i' = \left(\frac{R_i}{\sqrt{\lambda I_i}} \right) = U' \Sigma' V^T$, where $U' = \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}$ and $\Sigma' = \begin{pmatrix} \Sigma \\ \sqrt{\lambda I_i} \end{pmatrix}$. Since $\Sigma'^T \Sigma' = \Sigma^2 + \lambda I_i = \text{diag}(\sigma_1^2 + \lambda, \sigma_2^2 + \lambda, \ldots, \sigma_i^2 + \lambda)$, the singular values of $\left(\frac{R_i}{\sqrt{\lambda I_i}} \right)$ are $\sqrt{\sigma_1^2 + \lambda} \geq \sqrt{\sigma_2^2 + \lambda} \geq \cdots \geq \sqrt{\sigma_i^2 + \lambda}$.

\[\Box\]

References

