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Summary

Consider using the right-preconditioned generalizedminimal residual (AB-GMRES)
method, which is an efficient method for solving underdetermined least squares
problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-
conditioned problems, the iterates of the AB-GMRES method may diverge. This
is mainly because the Hessenberg matrix in the GMRES method becomes very
ill-conditioned so that the backward substitution of the resulting triangular system
becomes numerically unstable. We propose a stabilized GMRES based on solving
the normal equations corresponding to the above triangular system using the standard
Cholesky decomposition. This has the effect of shifting upwards the tiny singular
values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the pro-
cess becomes numerically stable and the system becomes consistent, rendering better
convergence and a more accurate solution. Numerical experiments show that the
proposed method is robust and efficient for solving inconsistent and ill-conditioned
underdetermined least squares problems. The method can be considered as a way of
making the GMRES stable for highly ill-conditioned inconsistent problems.
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1 INTRODUCTION

Consider solving the inconsistent underdetermined least squares problem

min
x∈ℝn

‖b − Ax‖2, A ∈ ℝm×n, b ∈ ℝm, b ∉ (A), m < n, (1)

where A is ill-conditioned and may be rank-deficient. Here, (A) denotes the range space of A. Such problems may occur in
ill-posed problems where b is given by an observation which contains noise. The least squares problem (1) is equivalent to the
normal equations

ATAx = ATb. (2)
The standard direct method for solving the least squares problem (1) is to use the QR decomposition. However, when A is

large and sparse, iterative methods become necessary. The CGLS1 and LSQR2 are mathmetically equivalent to applying the
conjugate gradient (CG) method to (2). The convergence of these methods deteriorates for ill-conditioned problems and they
require reorthogonalization3 to improve the convergence. Here, we say (1) is ill-conditioned if the condition number �2(A) =
‖A‖2‖A†‖2 ≫ 1, where A† is the pseudoinverse of A. The LSMR4 applies MINRES5 to (2).
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Hayami et al.3 proposed preconditioning the m × n rectangular matrix A of the least squares problem by an n × m rect-
angular matrix B from the right and the left, and using the generalized minimal residual (GMRES) method6 for solving the
preconditioned least squares problems (AB-GMRES and BA-GMRES methods, respectively). For ill-conditioned problems,
the AB-GMRES and BA-GMRES were shown to be more robust compared to the preconditioned CGNE and CGLS, respec-
tively. Note here that the BA-GMRES works with Krylov subspaces in n-dimensional space, whereas the AB-GMRES works
with Krylov subspaces in m-dimensional space. Since m < n in the underdetermined case, the AB-GMRES works in a smaller
dimensional space than the BA-GMRES and should be more computationally efficient compared to the BA-GMRES for each
iteration. Moreover, the AB-GMRES has the advantage that the weight of the norm in (1) does not change for arbitrary B. Thus,
we mainly focus on using the AB-GMRES to solve the underdetermined least squares problem (1). Morikuni7 showed that the
AB-GMRES may fail to converge to a least squares solution in finite-precision arithmetic for inconsistent problems. We will
review this phenomenon. The GMRES applied to inconsistent problems was also studied in other papers8–12.
In this paper, we first analyze the deterioration of convergence of the AB-GMRES. To overcome the deterioration, we use

the normal equations of the upper triangular matrix arising in the AB-GMRES to change the inconsistent subproblem to a
consistent one. In finite precision arithmetic, forming the normal equations for the subproblem will not square its condition
number as would be predicted by theory. In the ill-conditioned case, the tiny singular values are shifted upwards due to rounding
errors. In finite precision arithmetic, applying the standard Cholesky decomposition to the normal equations will result in a well-
conditioned lower triangular matrix, which will ensure that the forward and backward substitutions work stably, and overcome
the problem. Numerical experiments on a series of ill-conditionedMaragal matrices13 show that the proposed method converges
to a more accurate approximation than the original AB-GMRES. The method can also be used to solve general inconsistent
singular systems.
The rest of the paper is organized as follows. In Section 2, we briefly review the AB-GMRES and a related theorem. In

Section 3, we demonstrate and analyze the deterioration of the convergence. In Section 4, we propose and present a stabilized
GMRES method and explain a regularization effect of the method based on the normal equations for ill-conditioned problems.
In Section 5, numerical results for the underdetermined case and the square case are presented. In Section 6, we conclude the
paper.
All the experiments in this paper were done using MATLAB R2017b in double precision, unless specified otherwise (where

we extended the arithmetic precision by using the Multiprecision Computing Toolbox for MATLAB14), and the computer uesd
was Alienware 15 CAAAW15404JP with CPU Inter(R) Core(TM) i7-7820HK (2.90GHz).

2 DETERIORATION OF CONVERGENCE OF AB-GMRES FOR INCONSISTENT
PROBLEMS

In this section, we review previous results. First, we introduce the right-preconditioned GMRES (AB-GMRES), which is
the basic algorithm in this paper. Then, we show the phenomenon that the convergence of the AB-GMRES deteriorates for
inconsistent problems. Finally, we cite a related theorem to analyze the deterioration.

2.1 AB-GMRES method
AB-GMRES for least squares problems applies GMRES to minu∈ℝm ‖b − ABu‖2 with x = Bu, where B ∈ ℝn×m. Let x0
be the initial solution (in all our numerical experiments, we set x0 = 0), and r0 = b − Ax0. Then, AB-GMRES searches
for u in the Krylov subspace i(AB, r0) = span{r0, ABr0,… , (AB)i−1r0}. The algorithm is given in Algorithm 13. Here,
Hi+1,i = (ℎpq) ∈ ℝ(i+1)×i and e1 = (1, 0,… , 0)T ∈ ℝi+1.
To find yi ∈ ℝi that minimizes ‖ri‖2 = ‖‖r0‖2ei − Hi+1,iyi‖2 in Algorithm 1, the standard approach computes the QR

decomposition ofHi+1,i

Hi+1,i = Qi+1Ri+1,i, Qi+1 ∈ ℝ(i+1)×(i+1), Ri+1,i =
(

Ri
0T

)

∈ ℝ(i+1)×i, Ri ∈ ℝi×i, (3)
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Algorithm 1 AB-GMRES
1: Choose x0 ∈ ℝn, r0 = b − Ax0, v1 = r0∕‖r0‖2
2: for i = 1, 2,… , k do
3: wi = ABvi
4: for j = 1, 2,… , i do
5: ℎi,j = wT

i vj , wi = wi − ℎj,ivj
6: end for
7: ℎi+1,i = ‖wi‖2, vi+1 = wi∕ℎi+1,i
8: Compute yi ∈ ℝi which minimizes ‖ri‖2 = ‖‖r0‖2e1 −Hi+1,iyi‖2
9: xi = x0 + B[v1, v2,… , vi]yi, ri = b − Axi
10: if ‖ATri‖2 < �‖ATr0‖2 then
11: stop
12: end if
13: end for

where Qi+1 is an orthogonal matrix and Ri is an upper triangular matrix. Then, backward substitution is used to solve a system
with the coefficient matrix Ri as follows

‖ri‖2 = min
yi∈ℝi

‖QT
i+1�e1 − Ri+1,iyi‖2, (4)

where
� = ‖r0‖2, QT

i+1�e1 =
(

ti
�i+1

)

, ti ∈ ℝi, �i+1 ∈ ℝ, yi = R−1i ti, (5)

xi = Viyi = Vi(R−1i ti), Vi = [v1, v2,… , vi] ∈ ℝn×i, V T
i Vi = I, (6)

where I is the identity matrix.
Note the following theorem.

Theorem 1. (Corollary 3.8 of Hayami et al.3) If (A) = (BT) and (AT) = (B), then AB-GMRES determines a least
squares solution of minx∈ℝn ‖b − Ax‖2 for all b ∈ ℝm and for all x0 ∈ ℝn without breakdown.

Here, breakdown means ℎi+1,i = 0 in Algorithm 1. See Appendix B of11.
In fact, if (AT) = (B) and x0 ∈ (AT), the solution is a minimum-norm solution since x = Bu ∈ (AT) =  (A)⊥,

where (A) is the null space of A.
From now on, we use AB-GMRES to solve (1) with B = AT and x = Bu, which means using the Krylov subspace

i(AAT, r0) = ⟨r0, AATr0,… , (AAT)i−1r0⟩ to approximate u. Hence, Theorem 1 guarantees the convergence in exact arith-
metic even in the inconsistent case. However, in finite precision arithmetic, AB-GMRES may fail to converge to a least squares
solution for inconsistent problems, as shown later.

2.2 AB-GMRES for inconsistent problems
In this section, we perform experiments to show that the convergence of AB-GMRES deteriorates for inconsistent problems.
Experiments were done on the transpose of the matrix Maragal_313, denoted by Maragal_3T etc. Table 1 gives the information
on the Maragal matrices, including the density of nonzero entries, rank and condition number. Here, the rank and condition
number were determined by using the MATLAB functions spnrank15 and svd, respectively.
Figure 1 shows the relative residual norm ‖ATri‖2∕‖ATb‖2 and �2(Ri) versus the number of iterations for AB-GMRES with

B = AT for Maragal_3T, where ri = b − Axi, and the vector b was generated by the MATLAB function rand which returns
a vector whose entries are uniformly distributed in the interval (0, 1). Here �2(Ri)=�2(Hi+1,i) holds from (3). The value of
�2(Ri) was computed by the MATLAB function cond. The relative residual norm ‖ATri‖2∕‖ATb‖2 decreased to 10−8 until the
525th iteration, and then increased sharply. The value of cond(Ri) started to increase rapidly around iterations 450–550. This
observation shows that Ri becomes ill-conditioned before convergence. Thus, AB-GMRES failed to converge to a least squares
solution. This phenomnenon was observed by Morikuni7.
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TABLE 1 Information on the Maragal matrices.

matrix m n density[%] rank �2(A)
Maragal_3T 858 1682 1.27 613 1.10×103
Maragal_4T 1027 1964 1.32 801 9.33×106
Maragal_5T 3296 4654 0.61 2147 1.19×105
Maragal_6T 10144 21251 0.25 8331 2.91×106
Maragal_7T 26525 46845 0.10 20843 8.91×106
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FIGURE 1 �2(Ri) and relative residual norm versus the number of iterations for Maragal_3T.

The reason why Ri becomes ill-conditioned before convergence in the inconsistent case will be explained by a theorem in the
next subsection.

2.3 GMRES for inconsistent problems
Brown and Walker8 introduced an effective condition number to explain why GMRES fails to converge for inconsistent least
squares problems

min
x∈ℝm

‖b − Ãx‖2, (7)

where Ã ∈ ℝm×m is singular, in the following Theorem 2.
Let b|(Ã) denote the orthogonal projection of b onto (Ã). Assume  (Ã) = (ÃT) and grade(Ã, b|(Ã)) = k. Here,

grade(Ã, b̃) for Ã ∈ ℝm×m, b̃ ∈ ℝm is defined as the minimum k such that k+1(Ã, b̃) = k(Ã, b̃). Then, dim(k(Ã, b|(Ã))) =
dim(k+1(Ã, b|(Ã))) =dim(Ãk(Ã, b|(Ã))) =dim(Ãk+1(Ã, b|(Ã))) = k (See Appendix A). Since  (Ã) = (ÃT), we
obtain Ãb|(Ã) = Ãb and dim(Ãk+1(Ã, b)) =dim(Ãk+1(Ã, b|(Ã))) = k. If b ∉ (Ã) and dim(Ãk(Ã, b)) = k,
dim(k+1(Ã, b)) = k + 1 (See Appendix B).
Let x0 be the initial solution and r0 = b − Ãx0. In the inconsistent case, a least squares solution is obtained at itera-

tion k, and at iteration k + 1 breakdown occurs because of dim(Ãk+1(Ã, r0)) < dim(k+1(Ã, r0)), i.e. rank deficiency of
minz∈k+1(Ã,r0))

‖b − Ã(x0 + z)‖2 = minz∈k+1(Ã,r0))
‖r0 − Ãz‖2 8. This case is also called the hard breakdown10.

However, even if  (Ã) = (ÃT), when (7) is inconsistent, the least squares problem minz∈i(Ã,r0))
‖r0 − Ãz‖2 may become

ill-conditioned as shown below.

Theorem 2. 8 Assume (Ã) = (ÃT), and denote the least squares residual of (7) by r∗, the residual at the (i−1)st iteration
by ri−1. If ri−1 ≠ r∗, then

�2(Ai) ≥
‖Ai‖2
‖Āi‖2

‖ri−1‖2
√

‖ri−1‖22 − ‖r∗‖22

, (8)
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FIGURE 2 Singular value distribution of R550 for Maragal_3T in double and quadruple precision arithmetic.

where Ai ≡ Ã|i(A,r0)and Āi ≡ Ã|i(A,r0)+span{r∗}. Here, Ã|S is the restriction of Ã to a subspace S ⊆ ℝm.

Theorem 2 implies that GMRES suffers ill-conditioning for b ∉ (Ã) as ‖ri‖ approaches ‖r∗‖. We can apply Theorem 2 to
AB-GMRES for least-squares problems by setting Ã ≡ AAT. Theorem 2 also implies that even if we choose B as AT, which
satisfies the conditions in Theorem 1, AB-GMRES still may not converge numerically because of the ill-conditioning of Ri,
losing accuracy in the solution computed in finite-precision arithmetic when ri−1 approaches r∗.

3 ANALYSIS OF THE DETERIORATION OF CONVERGENCE

In this section, we illustrate, the deterioration of convergence of GMRES through numerical experiments. There are two points
to note in this section. The first point is that the condition number of Ri tends to become very large as the iteration proceeds
for inconsistent problems. Due to Hi+1,i = Qi+1Ri+1,i, the condition number of Hi+1,i is the same as that of Ri, and will also
become very large. The second point is as follows. Since yi = R−1i ti, yi is obtained by applying backward substitution to the
triangular system Riyi = ti. When the triangular system becomes ill-conditioned, backward substitution becomes numerically
unstable, and fails to give an accurate solution yi.
Figure 1 shows that at step 550 the relative residual norm suddenly increases. To understand this increase, observe the singular

values of R550.
The left of Figure 2 shows the singular values of R550 which were computed in double precision arithmetic. The smallest

singular value of R550 is 3.21 × 10−14, which means that the triangular matrix R550 is very ill-conditioned and nearly singular
in double precision arithmetic.
The right of Figure 2 shows the singular values of R550 which were computed in quadruple precision arithmetic using the

Multiprecision Computing Toolbox for MATLAB14. The smallest singular value of R550 is 5.39 × 10−15. Since quadruple
precision is more accurate, from now on, we mainly show singular value distributions computed in quadruple precision.
Figure 3 shows �2(Ri), ‖yi‖2, and the relative residual norm ‖ti − Riyi‖2∕‖ti‖2 versus the number of iterations for AB-

GMRES. The relative residual norm increases only gradually when the condition number of Ri is less than 108. When the
condition number of Ri becomes larger than 1010, the relative residual norm starts to increase sharply. This observation shows
that when the condition number of Ri becomes very large, the backward substitution will fail to give an accurate yi. As a result,
we would not get an accurate xi, and the convergence of AB-GMRES would deteriorate.

4 STABILIZED GMRES METHOD

In this section, we first propose and present a stabilized GMRES method. Then, we explain its regularization effect comparing
it with other regularization techniques.
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FIGURE 3 �2(Ri), ‖yi‖2, and ‖ti − Riyi‖2∕‖ti‖2 versus the number of iterations for Maragal_3T.

FIGURE 4 Comparison of the standard AB-GMRES with stabilized and TSVD stabilized AB-GMRES with � = 10−8 AB-
GMRES for Maragal_3T.

4.1 The stabilized GMRES
In order to overcome the deterioration of convergence of GMRES for inconsistent systems, we propose solving the normal
equations

RT
i Riyi = R

T
i ti (9)

instead of Riyi = ti, which we will call the stabilized GMRES. This makes the system consistent, and stabilizes the process, as
will be shown in the following.
One may also consider using the normal equations ofHi+1,i. However, before breakdown, we use AB-GMRES, which means

we do not have to storeHi+1,i. We only store Ri and update it in each iteration, which is cheaper.
Figure 4 shows the relative residual norm ‖ATr‖2∕‖ATr0‖2 versus the number of iterations for the standard AB-GMRES and

stabilized AB-GMRES with B = AT for Maragal_3T. The stabilized method reaches the relative residual norm level of 10−11
which improves a lot compared to the standard method. The method which we used for solving the normal equations (9) is the
standard Cholesky decomposition. We replace line 8 of Algorithm 1 by Algorithm 2.
We first checked that the method works for the standard Cholesky decomposition coded by ourselves. Later we applied the

backslash function of Matlab to (9) to speed up. We checked that in the backslash, the Cholesky decomposition method chol
is used until the GMRES residual norm stagnates at a small level as seen in Figure 4. In order to continue with further GMRES
iterations, the chol is automatically switched to the ldl, which works even for singular systems.
In spite of the above mentioned merits of stabilization, solving the normal equations in AB-GMRES is expensive. Actually,

we only need the stabilized AB-GMRES whenRi becomes ill-conditioned. Thus, we can speed up the process by switching AB-
GMRES to stabilized AB-GMRES only when Ri becomes ill-conditioned. The condition number of an incrementaly enlarging



Zeyu LIAO ET AL 7

Algorithm 2 Normal equations stabilization approach
1: Compute the QR decomposition ofHi+1,i = Qk+1Ri+1,i.

2: Ri+1,i =
(

Ri
0T

)

, QT
i+1�e1 =

(

ti
�i+1

)

, R̃i = RT
i Ri, t̃i = RT

i ti.

3: Compute the Cholesky decomposition of R̃i = LLT.
4: Solve Lzi = t̃i by forward substitution.
5: Solve LTyi = zi by backward substitution.

TABLE 2 Comparison regarding the smallest attainable relative residual norm ‖ATri‖2∕‖ATr0‖2.

matrix Maragal_3T Maragal_4T Maragal_5T Maragal_6T Maragal_7T
iter. 531 465 1110 2440 1864

standard AB-GMRES 1.05×10−8 2.09×10−7 5.35×10−6 8.26×10−6 4.53×10−6

iter. 552 598 1226 3002 2459
stabilized AB-GMRES 5.99×10−12 5.59×10−8 4.22×10−6 3.88×10−6 2.80×10−7

triangular matrix can be estimated by techniques in16. In this paper, we adopt the switching strategy by monitoring the relative
residual norm ‖ATri‖2∕‖ATr0‖2. Let ATR(i)=‖ATri‖2∕‖ATr0‖2 for the ith iteration. When ATR(v)/mini=1,2,…,v−1ATR(i)>10,
we judge that a jump in relative residual norm has occured, and we switch AB-GMRES to stabilized AB-GMRES at the vth
iteration.
Motivated by the stabilized AB-GMRES, we also applied the truncated singular value decomposition (TSVD) stabilization

method and compared it with the stabilized AB-GMRES. The method modifiesRi by truncating singular values smaller than �.
More specifically, let Ri = UΣV T be the SVD of Ri, where the columns of U = [u1, u2,… , ui] and V = [v1, v2,… , vi] are the
left and right singular vectors, respectively, and the diagonal entries of Σ = diag(�1, �2,… , �i) are the singular values of Ri in
discending order �1 ≥ �2 ≥ ⋯ ≥ �i. Then, the TSVD approximates Ri ≃

∑k
j=1 �jujv

T
j with k such that �k+1 ≤ ��1 ≤ �k and

yi = R−1i ti ≃
∑k
j=1

1
�j
vjuTj ti.

When � = 10−13, 10−12,… , 10−4, the method converges but when � is smaller than 10−13 or larger than 10−4, it diverges and
is similar to the original AB-GMRES. Numerical experiments showed that � =

√

� ≃ 10−8, where � is the machine epsilon
(about 10−16 in double presion arithmetic), gave the best result among � = 10−1, 10−2,… , 10−16 in terms of the relavtive residual
as shown in Figure 4 for the problem Maragal_3T. The convergence behaviour of the TSVD stabilization method is similar to
the stabilized AB-GMRES method, which suggests that eliminating tiny singular values which are less than 10−8 is effctive for
sovling problem (1). However, the TSVD method requires computing the truncated singular value decomposition of Ri, and
requires choosing the value of the threshold parameter �, whereas the stabilized AB-GMRES does not require either of them.
Table 2 gives more results for the Maragal matrices. The table shows that the stabilized AB-GMRES is more accurate than

the standard AB-GMRES. This seems paradoxical, since forming the normal equations whose coefficient matrix RT
i Ri would

square the condition number compared toRi, which would make the ill-conditioned problem even worse. Why can the stabilized
AB-GMRES give a more accurate solution? We will explain why the stabilized AB-GMRES works in the next subsection.

4.2 Why the stabilized GMRES method works
Consider solving Riyi = ti, Ri ∈ ℝi×i, ti ∈ ℝi by solving the normal equations (9), which, in theory, squares the condition
number and makes the problem become harder to solve numerically. However, in finite precision arithmetic, the condition
number of the normal equations is not neccessarily squared. We will continue to illustrate the phenomenon by using the example
in Section 3.
We used theMATLAB function svd in quadruple precision arithmetic14 to calculate the singular values. The smallest singular

value of R550 is 5.39 × 10−15, so its square is 2.91 × 10−29.
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FIGURE 5 Singular values �i(fld(RT
550R550)), i = 1, 2,… , 550 in quadruple precision arithmetic.
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FIGURE 6 Singular values �i(fld(RT
550R550)), �i(R550)

2, �i(fld(RT
610R610)), and �i(R610)

2 in quadruple precision arithmetic.

Let fl(⋅) denote the evaluation of an expression in floating point arithmetic and fld(⋅) and flq(⋅) denote the result in double pre-
cision arithmetic and quadruple precision arithimetic, respectively. Figure 5 shows that, numerically, the smallest singular value
of fld(RT

550R550) is 7.21×10
−14, which is much larger than 2.91×10−29. Further, the Cholesky factorL of fld(RT

550R550) = LLT

computed in double precision precision arithmetic has the smallest singular value 3.50 × 10−7, which is also larger than
√

2.91 × 10−29 = 5.39×10−15. Thus, the triangular systemsLzi = t̃i andLTyi = zi are better-conditioned thanRiyi = ti, which
will ensure the stability of the forward and backward substitutions and succeeds in obtaining a much more accurate solution
than the standard approach.
The left of Figure 6 compares the singular values �i(fld(RT

550R550)) and �i(R550)
2, i = 1, 2,… , 550. The first to the 549th

singular values of fld(RT
550R550) and the corresponding �(R550)2 are almost the same, while the last one is different. What will

happen when Ri contains a cluster of small singular values?
The upper triangular matrix R610 contains a cluster of small singular values. The right of Figure 6 compares the singular

values �i(fl q(RT
610R610)) and �i(R610)

2. The larger singular values are the same as the ‘exact’ values, while the smaller singular
values become larger than the ‘exact’ ones.
Experiment results show that finite precision arithmetic has the effect of shifting the tiny singular value upwards. That is the

reason why the normal equations (9) help to reduce the condition number and makes the problem become better-conditioned.
Next, we computed the multiplication RT

550R550 in quadruple precision arithmetic and observed that the smallest singular
values of RT

550R550 conincided with the squared singular values �i(R550)2 (blue circle symbol) in the left of Figure 6, unlike
in double precision computation. Since the maximum of the elements of | flq(RT

550R550) − fld(RT
550R550) | is approximately

8.16×10−12 , double precision arithmetic contains error of the order of 10−12. Thus, double precision arithmetic has an effect of
regularizing the matrixRT

550R550, since double precision matrix multiplication is not accurate enough to keep all the information.
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FIGURE 7 Effect of the stabilized method in quadruple precision arithmetic for Maragal_3T.

4.3 Quadruple precision
In order to see the effect of the machine precision � on the convergence of the AB-GMRES, we compared the stabilized AB-
GMRES with the AB-GMRES in quadruple precision arithmetic for the problemMaragal_3T in Figure 7. For both methods, the
relative residual norm reached a smaller level of 10−16 compared to 10−12 and 10−8, respectively, for double precision arithmetic
in Figure 4. The curve of the relative residual norm became smoother compared to double precision. As seen in Figure 7, the
relative residual norm of the AB-GMRES method jumped to 10−1 after reaching 10−16, whereas the relative residual norm of
the stabilized GMRES stayed around 10−16.

4.4 When the stabilized GMRES method works
Motivated by the Läuchli matrix17, we consider solving the following EP (equal projection) problem A3x = (1, 0, 0)T, where
A3 is null space symmetric, that is (A3) = (AT

3 ) with null space (A3) = span{(1,−1, 1)T}.

A3x =

⎛

⎜

⎜

⎜

⎜

⎝

√

2
2

√

2
2
−

√

6�
6

−
√

6�
6

√

2
2

√

2
2
+

√

6�
6

√

6�
6

0
√

6�
3

√

6�
3

⎞

⎟

⎟

⎟

⎟

⎠

x =
⎛

⎜

⎜

⎝

1
0
0

⎞

⎟

⎟

⎠

, (10)

where � is the machine epsilon.
Apply GMRES with x0 = 0 to (10). Let Rs ∈ ℝs×s be the upper triangular matrix obtained at the sth iteration of GMRES. In

the second iteration, after applying the Givens rotation toH3,2, we obtain the following:

R2 =
(

1 1
0
√

�

)

, RT
2R2 =

(

1 1
1 1 + �

)

≃
(

1 1
1 1

)

. (11)

Thus, there is a risk that the stabilized GMRES will give a numerically singular matrix RT
2R2 in finite precision arithmetic for

nonsingular R2. We will analyze this phenominon.
We define the following.
O(�) denotes that there exists a constant c independent of �, such that −c� < O(�) < c�. Also, let

O(�) =

⎛

⎜

⎜

⎜

⎜

⎝

O(�)
O(�)
⋮

O(�)

⎞

⎟

⎟

⎟

⎟

⎠

∈ ℝn, (�) = [O(�),O(�),⋯ ,O(�)] ∈ ℝn×n. (12)

We assume that the basic arithmetic operations op = +,−, ∗, ∕ satisfy fl(x op y) = (x op y)(1 + O(�)) as in18.
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Note also that the following hold from18. Let x, y ∈ ℝn, A, B ∈ ℝn×n, and

|x| =

⎛

⎜

⎜

⎜

⎜

⎝

|x1|
|x2|
⋮

|xn|

⎞

⎟

⎟

⎟

⎟

⎠

for x =

⎛

⎜

⎜

⎜

⎜

⎝

x1
x2
⋮
xn

⎞

⎟

⎟

⎟

⎟

⎠

, (13)

|A| =

⎛

⎜

⎜

⎜

⎜

⎝

|a11| |a12| ⋯ |a1n|
|a21| |a22| ⋯ |a2n|
⋮ ⋮ ⋱ ⋮

|an1| |an2| ⋯ |ann|

⎞

⎟

⎟

⎟

⎟

⎠

(14)

for A = (apq). Then

fl(xTy) = xTy + O(n�)|x|T|y| = xTy + O(n�),
fl(Ax) = Ax +O(n�)|A||x| = Ax +O(n�),
fl(AB) = AB + O(n�)|A||B| = AB + (n�).

Note also that the following theorem holds from Theorem 8.10 of18.

Theorem 3. Let T = (tpq) ∈ ℝn×n be a triangular matrix and b ∈ ℝn. Then, the computed solution x̂ obtained from substitution
applied to Tx = b satisfies

x̂ = x + O(n2�)M(T )−1|b|. (15)
Here,M(T ) = (mij) is the comparison matrix such that

mij =
{

|tij|, i = j,
−|tij|, i ≠ j.

(16)

Further, we define the following.
Assume ‖A‖2 = O(1).We say A ∈ ℝn×n is numerically nonsingular if and only if

fl(Ax) = O(�) ⇒ x = O(�). (17)

Note that this definition of numerical nonsingularity agrees with that of numerical rank due to the following.
Let the SVD of A = UΣV T where U, V are orthogonal matrices and Σ = diag(�1, �2,… , �n). Here, ‖A‖2 = �1 = O(1).

If the numerical rank of A is r < n, there is a �i = O(�), r + 1 ≤ i ≤ n. Then, Ax = UΣV Tx = O(�) admits x′ = V Tx =
(x′1, x

′
2,… , x′n)

T such that x′i = O(1), and hence x = O(1). Thus, A is numerical singular. Then, the following theorem holds.

Theorem 4. Let Rs = (rpq) ∈ ℝs×s be an upper-triangular matrix and

Rs+1 =
(

Rs d
0T rs+1,s+1

)

∈ ℝ(s+1)×(s+1). (18)

Assume Rs is numerically nonsingular, and Rs = (1), R−1s = (1),M(Rs)−1 = (1), d = O(1) and O(s) = O(s2) = O(1).
Then, the following holds:

fl(RT
s+1Rs+1) is numerically nonsingular ⇐⇒ fl(r2s+1,s+1) > fl(d

Td)O(�).

Proof. See Appendix C.

Theorem 4 gives the necessary and sufficient condition so that the stabilized GMRES works at the (s + 1)st iteration, i.e.
RT
s+1Rs+1 is numerically nonsingular.
The difficulty in solving Riyi = ti by backward substitution is not because the diagonals of Ri are tiny. The reason is that Ri

has tiny singular values. However, the exceptional example (11) exists where the stabilized AB-GMRES does not work. The
condition fl(r2s+1,s+1) > fl(dTd)O(�) in Theorem 4 excludes such exceptions.
Figure 8 shows r2s+1,s+1 and d

Td together with the convergence of the AB-GMRES and that of the stabilized AB-GMRE for
Maragal_3T. The figure shows that upto 613 iterations, the conditions in Theorem 4 are satisfied, and RT

s+1Rs+1 is numerically
nonsingular, so that the stabilized AB-GMRES works.
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FIGURE 8 r2i,i (i = s + 1) and d
Td in stabilized AB-GMRES for Maragal_3T.

4.5 Comparison with Tikhonov regularization method
Another approach to stabilize the AB-GMRES would be to apply Tikhonov regularization. There are two methods to implement
it. The first method is to solve the following square system:

(RT
i Ri + �I)yi = R

T
i ti, � ≥ 0 (19)

using the Cholesky decomposition.
The second method is to solve the regularized least suqares problem

min
yi∈ℝi

|

|

|

|

|

|

|

|

|

|

|

|

(

ti
0

)

−

(

Ri
√

�I

)

yi
|

|

|

|

|

|

|

|

|

|

|

|2

(20)

using the QR decomposition.
These two methods are equivalent mathematically. However, they are not equivalent numerically. The behavior of the first

method is similar to the stabilized AB-GMRES. Table 3 shows that AB-GMRES combined with the first method converges
better when � = 10−16 than when � = 10−14. This method can be used to shift upwards the small singular values, but is less
acurrate compared to the stabilized AB-GMRES (cf. Table 2).

FIGURE 9 Relative residual norm for the regularized AB-GMRES using (20) versus number of iterations for different � for
Maragal_3T.

Table 3 also shows that the second method is even more accurate compared with the stabilized AB-GMRES method. There
is no need to form the normal equations, so that less information is lost due to rounding error. However, one needs to choose
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TABLE 3 Attainable smallest relative residual norm ‖ATri‖2∕‖ATr0‖2 for AB-GMRES with Tikhonov regularization using
(19) and (20).

matrix Maragal_3T Maragal_4T Maragal_5T Maragal_6T Maragal_7T
iter. 552 597 1304 2440 1864

method (19) � = 10−14 5.08×10−11 5.57×10−8 1.05×10−5 8.26×10−6 4.53×10−6

iter. 570 598 1226 2440 1864
method (19) � = 10−16 5.80×10−12 5.59×10−8 4.22×10−6 8.26×10−6 4.53×10−6

iter. 553 547 1261 2937 2475
method (20) � = 1.6 × 10−14 7.54×10−11 5.59×10−8 1.15×10−5 9.12×10−6 2.78×10−7

iter. 551 547 1262 3037 2475
method (20) � = 10−16 3.37×10−12 5.59×10−8 5.64×10−7 1.91×10−6 2.78×10−7

an appropriate value for the regularization parameter �. Figure 9 shows the relative residual norm ‖ATri‖2∕‖ATr0‖2 for the
regularized AB-GMRES using (20) versus the number of iterations for different values of � for Maragal_3T. According to
Figure 9, � = 10−16 was optimal among 10−12, 10−14, 10−16, 10−18, so we recommend this value in practice.
We here note the following.

Theorem 5. Let �1 ≥ �2 ≥⋯ ≥ �i be the the singular values of Ri. Then, the singular values of

R′i =

(

Ri
√

�I

)

(21)

are given by
√

�21 + � ≥
√

�22 + � ≥⋯ ≥
√

�2i + �.

Proof. See Appendix D.

Then, let

� ≡ �2(Ri) =
�1
�i
, �′2 ≡ �2(R′i)

2 =
�21 + �

�21∕�
2 + �

= 1 +
�21(1 − 1∕�

2)

�21∕�
2 + �

. (22)

Since � ≥ 1, d�′∕d� ≤ 0 for � ≥ 0 and �′(� = 0) = �, �′(� = +∞) = 1. Note also that

� =
�21[1 + (�

′∕�)2]
�′2 − 1

(23)

Therefore, for instance, if � ≫ 1 and we want �′ =
√

�,

� =
�21(1 + 1∕�)

� − 1
≃
�21
�
. (24)

For example, if � = 1016 and we want �′ = 108, we should choose � ≃ �21 ×10
−16. For Maragal_3T, the largest singular value �1

is about 12.64, so that we can estimate a reasonable value of � ≃ 1.60× 10−14. However, this estimation assumes �′ =
√

�, and
needs an extra cost for computing �1. See19 for other estimation techniques for the regularization parameter.

5 COMPARISONS WITH OTHER METHODS

5.1 Underdetermined inconsistent least squares problems
First, we compared the stabilized AB-GMRES with the range restricted AB-GMRES (RR-AB-GMRES)20, where the Krylov
subspace for the RR-AB-GMRES with B = AT is Ki(AAT, AATr0), AB-GMRES with B = AT, BA-GMRES with B = AT,
LSQR2 and LSMR4. All programs for iterative methods were coded according to the algorithms in2–4, 20. Each method was
terminated at the iteration step which gives the minimum relative residual norm within m iterations, where m is the number of
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TABLE 4 Comparison of the attainable smallest relative residual norm ‖ATri‖2∕‖ATr0‖2.

matrix Maragal_3T Maragal_4T Maragal_5T Maragal_6T Maragal_7T
iter. 531 465 1110 2440 1864

standard AB-GMRES 1.05×10−8 2.09×10−7 5.35×10−6 8.26×10−6 4.53×10−6

iter. 552 598 1226 3002 2459
stabilized AB-GMRES 5.99×10−12 5.59×10−8 4.22×10−6 3.88×10−6 2.80×10−7

iter. 553 565 1223 2374 2474
RR-AB-GMRES 2.57×10−11 5.59×10−8 3.62×10−6 1.63×10−5 2.78×10−7

iter. 562 626 1263 4373 5658
BA-GMRES 2.88×10−14 7.92×10−11 2.29×10−12 5.12×10−11 2.03×10−10

iter. 1682 2375 4576 151013 97348
LSQR 5.64×10−14 2.77×10−10 1.11×10−11 5.87×10−10 1.33×10−9

iter. 1654 2308 4273 127450 70242
LSMR 5.51×10−14 3.00×10−10 3.25×10−11 4.16×10−10 9.95×10−10

TABLE 5 Comparison of the CPU time (seconds) to obtain relative residual norm ‖ATri‖2∕‖ATr0‖2 < 10−8.

matrix Maragal_3T Maragal_4T Maragal_5T Maragal_6T Maragal_7T
iter. - - - - -

standard AB-GMRES - - - - -
iter. 546 (526) - - - -

stabilized AB-GMRES 2.01 - - - -
iter. 545 - - - -

RR-AB-GMRES 1.84 - - - -
iter. 530 608 1232 3623 5001

BA-GMRES 2.10 3.19 4.25×101 1.81×103 9.20×103

iter. 1465 2120 4032 101893 54444
LSQR 1.27×10−1 2.56×10−1 1.49 2.93×102 4.33×102

iter. 1456 1989 4013 54017 31206
LSMR 1.25×10−1 2.37×10−1 1.49 1.50×102 2.23×102

the rows of the matrix. No restarts were used for GMRES. Experiments were done for rank-deficient matrices whose information
is given in Table 1. Here, we have deleted the zero rows and columns of the test matrices beforehand. The elements of b were
randomly generated using the MATLAB function rand. Each experiment was done 10 times for the same right hand side b and
the average of the CPU times are shown. Symbol - denotes that ‖ATri‖2∕‖ATr0‖2 did not reach 10−8 within 20n iterations.
Table 4 shows that the stabilized AB-GMRES is generally more accurate than the RR-AB-GMRES. The stabilized AB-

GMRES took more iterations to attain the same order of the smallest residual norm than the RR-AB-GMRES. Table 4 also
shows that for the same underdetermined least squares problems, the BA-GMRESwas the best in terms of the attainable smallest
relative residual norm and that the LSQR and LSMR are comparable to the BA-GMRES, but require less CPU time according
to Tabel 5.
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TABLE 6 Information of the singular square matrices.

matrix size density[%] rank �2(A) application
Harvard500 500 1.05 170 1.30×102 web connectivity

netz4504 1961 0.13 1342 3.41×101 2D/3D finite element problem
TS 2142 0.99 2140 3.52×103 counter example problem

grid2_dual 3136 0.12 3134 8.58×103 2D/3D finite element problem
uk 4828 0.06 4814 6.62×103 undirected graph

bw42 10000 0.05 9999 2.03×103 partial differential equation8

TABLE 7Comparison of the attainable smallest relative residual norm ‖ATri‖2∕‖ATr0‖2 for inconsistent square linear systems.

matrix Harvard500 netz4504 TS grid2_dual uk bw42
iter. 104 144 1487 3134 4620 715

standard AB-GMRES 9.38×10−9 4.51×10−10 1.56×10−9 5.98×10−10 1.35×10−9 8.06×10−8

iter. 175 201 1617 3135 4779 788
stabilized AB-GMRES 4.53×10−14 1.51×10−14 1.54×10−9 1.14×10−9 6.81×10−10 1.66×10−7

iter. 135 200 1652 3134 4706 1163
RR-AB-GMRES 7.78×10−14 3.36×10−14 4.56×10−9 6.52×10−8 8.33×10−8 1.56×10−5

iter. 139 194 1628 3134 4724 1520
BA-GMRES 1.91×10−15 7.27×10−16 8.43×10−13 1.23×10−13 6.94×10−14 1.97×10−11

iter. 391 198 6047 12549 6249 1256
LSQR 3.59×10−15 5.86×10−16 1.96×10−12 2.51×10−13 6.56×10−14 1.59×10−11

iter. 338 195 6219 12497 6199 1212
LSMR 2.01×10−15 5.97×10−16 1.25×10−12 2.34×10−13 7.35×10−14 1.60×10−11

5.2 Inconsistent systems with highly ill-conditioned square coefficient matrices
The stabilized AB-GMRES is not restricted to solving underdetermined problems but can also be applied to solving the least
squares problem minx∈ℝn ‖b − Ax‖2, where A ∈ ℝn×n is a highly ill-conditioned square matrix. Thus, we also test on square
matrices of different kinds. Table 6 gives the information of the matrices.
These matrices are all numerically singular. We generated the right-hand side b by the MATLAB function rand, so that the

systems are generically inconsistent.We compared the stabilized AB-GMRESwith the standard AB-GMRES, RR-AB-GMRES,
BA-GMRES with B = AT, LSMR4, and LSQR2. Table 7 gives the smallest relative residual norm and the number of iterations.
Table 9 gives the CPU times in seconds required to obtain relative residual norm ‖ATri‖2∕‖ATr0‖2 < 10−8. The switching
strategy which was introduced in Section 4.1 was used for the stabilized AB-GMRES when measuing CPU times. The number
of iterations when switching occurred is in brackets.
Table 7 shows that for most problems the BA-GMRES was the best in terms of accuracy of relative residual norm. The LSQR

and LSMR are similar and are comparable to the BA-GMRES, beacuse they all change the inconsistent problem into a consistent
problem. The LSQR and LSMR are more suitable for large and sparse problems compared to the BA-GMRES because they
require less CPU time and memory.
For Harvard500 and bw42, the AB-GMRES could only converge to the level of 10−9 regarding the relative residual norm,

while the stabilized AB-GMRES converged to the level of 10−14. The stabilized AB-GMRES was robust in the sense that it
could continue to compute even when the upper triangular matrix Ri became seriously ill-conditioned, and the relative residual
norm did not increase sharply towards the end, but just stagnated at a low level, just like for consistent problems. Comparing
the CPU time in Tabel 9, LSMR was the fastest. The stabilized AB-GMRES was usually faster than BA-GMRES.
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TABLE 8 Attainable smallest relative residual norm ‖ATri‖2∕‖ATr0‖2 for bw42.

method iter. mini ‖ATri‖2∕‖ATr0‖2
standard GMRES 147 8.08×10−9
stabilized GMRES 219 1.94×10−11

RR-GMRES 220 3.13×10−11

TABLE 9 Comparison of the CPU time (seconds) to obtain relative residual norm ‖ATri‖2∕‖ATr0‖2 < 10−8 for inconsistent
square linear systems.

matrix Harvard500 netz4504 TS grid2_dual uk bw42
iter. 104 134 1411 3134 4583 -

standard AB-GMRES 4.72×10−2 1.87×10−1 2.14×10 2.16×102 6.93×102 -
iter. 104 134 1531 (182) 3134 4679 (4199) -

stabilized AB-GMRES 4.78×10−2 1.89×10−1 8.19×10 2.21×102 1.93×103 -
iter. 114 153 1530 - - -

RR-AB-GMRES 6.42×10−2 2.62×10−1 2.68×10 - - -
iter. 103 131 1379 3134 4562 738

BA-GMRES 5.48×10−2 1.72×10−1 2.06×10 2.44×102 7.55×102 2.33×10
iter. 222 134 4239 11802 5948 913

LSQR 5.63×10−3 6.61×10−3 7.86×10−1 1.15 8.65×10−1 3.12×10−1

iter. 215 132 3913 11746 5898 655
LSMR 5.34×10−3 6.42×10−3 7.04×10−1 1.15 8.42×10−1 2.32×10−1

Thus, our stabilization method also makes AB-GMRES stable for highly ill-conditioned inconsistent systems with square
coefficient matrices.
The coefficient matrix A of bw42 is singular and satisfies  (A) = (AT). The problem comes from a finite-difference

discritization of a PDE with periodic boundary condition (Experiment 4.2 in Brown and Walker8 with the original b). Since
the matrix is range symmetric, the GMRES, RR-GMRES, and stabilized GMRES can be directly applied to Ax = b (See8
Theorem 2.4,21 Theorem 2.7, and22 Theorem 3.2.) as shown in Table 8. The stabilized GMRES gave the relative residual norm
1.94×10−11 for bw42 at the 219th iteration, similar to the BA-GMRES.

6 CONCLUDING REMARKS

We proposed a stabilized AB-GMRES method for ill-conditioned underdetermined and inconsistent least squares problems. It
shifts upwards the tiny singular values of the upper triangular matrix appearing in AB-GMRES, making the process more stable,
giving better convergence, and more accurate solutions compared to AB-GMRES. The method is also effective for making
AB-GMRES stable for inconsistent least squares problems with highly ill-conditioned square coefficient matrices.
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APPENDIX

A PROOF OF STATEMENT IN SECTION 2.3

Lemma 1. Assume (Ã) ∩(Ã) = {0}, and grade(Ã, b|(Ã)) = k. Then, k+1(Ã, b|(Ã)) = Ãk(Ã, b|(Ã)) holds.

Proof. Note that

Ãk(Ã, b|(Ã)) = span{Ãb|(Ã), Ã
2b|(Ã),⋯ , Ãkb|(Ã)} ⫅ span{b|(Ã), Ãb|(Ã),⋯ , Ãkb|(Ã)} = k+1(Ã, b|(Ã)).

grade(Ã, b|(Ã)) = k implies that

k+1(Ã, b|(Ã)) = k(Ã, b|(Ã)) = span{b|(Ã), Ãb|(Ã),⋯ , Ãk−1b|(Ã)}.
Hence,

Ãkb|(Ã) = c0b|(Ã) + c1Ãb|(Ã) +⋯ + ck−1Ãk−1b|(Ã), ci ∈ ℝ, i = 0, 1, 2,⋯ , k − 1.
If c0 = 0,

Ãkb|(Ã) = c1Ãb|(Ã) + c2Ã
2b|(Ã) +⋯ + ck−1Ãk−1b|(Ã).

Hence,

c1Ãb|(Ã) + c2Ã
2b|(Ã) +⋯ + ck−1Ãk−1b|(Ã) − Ã

kb|(Ã) = Ã(c1b|(Ã) +⋯ + ck−1Ãk−2b|(Ã) − Ã
k−1b|(Ã)) = 0.

Hence,
c1b|(Ã) + c2Ã

2b|(Ã) +⋯ + ck−1Ãk−2b|(Ã) − Ã
k−1b|(Ã) ∈ (Ã) ∩(Ã) = {0}.

which implies

Ãk−1b|(Ã) = c1b|(Ã) + c2Ãb|(Ã) +⋯ + ck−1Ãk−2b|(Ã).
Thus,

k(Ã, b|(Ã)) = k−1(Ã, b|(Ã)),

which contradicts with grade(Ã, b|(Ã)) = k. Hence, c0 ≠ 0, and

b|(Ã) = d1Ãb|(Ã) + d2Ã
2b|(Ã) +⋯ + dk−1Ãk−1b|(Ã) + dkÃ

kb|(Ã).
Hence,

k+1(Ã, b|(Ã)) = span{b|(Ã), Ãb|(Ã),⋯ , Ãkb|(Ã)} ⫅ span{Ãb|(Ã), Ã
2b|(Ã),⋯ , Ãkb|(Ã)} = Ãk(Ã, b|(Ã)).

Thus,
k+1(Ã, b|(Ã)) = Ãk(Ã, b|(Ã)).

Corollary 1. Assume (Ã) = (ÃT), and grade(Ã, b|(Ã)) = k. Then, k+1(Ã, b|(Ã)) = Ãk(Ã, b|(Ã)) holds.

Proof.  (Ã) = (ÃT) implies that

 (Ã) ∩(Ã) = (ÃT) ∩(Ã) = (Ã)⊥ ∩(Ã) = {0}.

Hence, from Lemma 1, Corollary 1 holds.
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B PROOF OF STATEMENT IN SECTION 2.3

Lemma 2. Assume (Ã) ∩(Ã) = {0}, grade(Ã, b|(Ã)) = k, and b ∉ (Ã). Then, dim(k+1(Ã, b)) = k + 1 holds.

Proof. Let c0, c1,… , ck ∈ ℝ satisfy
c0b + c1Ãb +⋯ + ckÃkb = 0.

Since (Ã) ∩(Ã) = {0},
b = b|(Ã) ⊕ b| (Ã),

where b| (Ã) denotes the orthogonal projection of b onto (Ã). Hence,

c0b| (Ã) + c0b|(Ã) + c1Ãb|(Ã) +⋯ + ckÃkb|(Ã) = 0.

If c0 ≠ 0
b| (Ã) = −b|(Ã) −

c1
c0
Ãb|(Ã) −⋯ −

ck
c0
Ãkb|(Ã) ∈ (Ã).

Hence,
b| (Ã) ∈ (Ã) ∩(Ã) = {0}.

Thus, b| (Ã) = 0, which contradicts b ∉ (Ã). Hence, we have c0 = 0, and

c1Ãb + c2Ã2b +⋯ + ckÃkb = c1Ãb|(Ã) + c2Ã
2b|(Ã) +⋯ + ckÃkb|(Ã) = 0.

But, since

dim(span{Ãb|(Ã), Ã
2b|(Ã),⋯ , Ãkb|(Ã)}) = dim(Ãspan{b|(Ã), Ãb|(Ã)⋯ , Ãk−1b|(Ã)}) = dim(Ãk(Ã, b|(Ã))) = k

holds from Lemma 1, we have c1 = c2 =⋯ = ck = 0, which implies dim(k+1(Ã, b)) = k + 1.

Corollary 2. Assume (Ã) = (ÃT), grade(Ã, b|(Ã)) = k, and b ∉ (Ã). Then, dim(k+1(Ã, b)) = k + 1 holds.

Proof.  (Ã) = (ÃT) implies (Ã) ∩(Ã) = {0}. Hence, the corollary follows from Lemma 2.

C PROOF OF THEOREM 4

Note that
RT
s+1Rs+1 =

(

Rs 0
dT rs+1,s+1

)(

Rs d
0T rs+1,s+1

)

=
(

RT
sRs RT

s d
dTRs dTd + r2s+1,s+1

)

.

Proof of (⇒). Assume fl(r2s+1,s+1) ≤ fl(dTd)O(�). Then, since

fl(dTd) = dTd + O(s�)dTd = (1 + O(s�))dTd,
fl(dTd + r2s+1,s+1) = (d

Td + r2s+1,s+1)(1 + O(s�)) = d
Td(1 + O(s�)),

we have

fl(RT
s+1Rs+1) =

(

RT
sRs + O(s�)|Rs|

T
|Rs| RT

s d + O(s�)|Rs|
T
|d|

dTRs + O(s�)|d|T|Rs| dTd + O(s�)dTd

)

=
(

RT
s

dT

)

(

Rs d
)

+ (s�), (C1)

since Rs = (1) and d = O(1). Note
(

Rs d
)

(

−R−1s d
1

)

= −RsR−1s d + d = 0,

since Rs is nonsingular.
Hence,

fl(
(

Rs d
)

(

−R−1s d
1

)

) = fl{Rsfl(−R−1s d) + d} = [fl{Rsfl(−R
−1
s d)} + d]{1 + O(�)}.
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Note here that
fl{Rsfl(−R−1s d)} = Rsfl(−R

−1
s d) + O(s�)|Rs||R

−1
s d|,

and
fl(−R−1s d) = −R

−1
s d + O(s

2�)M(Rs)−1|d| (C2)
from Theorem 3. Hence,

fl(
(

Rs d
)

(

−R−1s d
1

)

) = O(s2�)RsM(Rs)−1|d| + O(s�)|Rs||R−1s d| = O(s2�),

since R−1s = (1) andM(Rs)−1 = (1).
Then,

fl(RT
s+1Rs+1

(

−R−1s d
1

)

) = fl({
(

RT
s

dT

)

(

Rs d
)

+ (s�)}
(

−R−1s d + (s2�)M(Rs)−1|d|
1

)

) = O(s2�) = O(�),

since (C1), (C2), andO(s2) = O(1). Since
(

−R−1s d
1

)

= O(1), RT
s+1Rs+1 is numerically singular. By contraposition, (⇐) holds.

Proof of (⇐). Assume RT
s+1Rs+1 is not numerically singular. Then, there exists a vector

(

z
w

)

∈ ℝs+1 such that
|

|

|

|

|

(

z
w

)

|

|

|

|

|

>

O(�), and

fl{RT
s+1Rs+1

(

z
w

)

} = RT
s+1

(

Rs+1

(

z
w

)

+ |Rs+1|
|

|

|

|

|

(

z
w

)

|

|

|

|

|

O((s + 1)�)

)

+

|

|

|

RT
s+1

|

|

|

|

|

|

|

|

Rs+1

(

z
w

)

+ |Rs+1|
|

|

|

|

|

(

z
w

)

|

|

|

|

|

O((s + 1)�)
|

|

|

|

|

O((s + 1)�) = O(�)

assuming O(s + 1) = O(1).
Hence,

fl{RT
s+1Rs+1

(

z
w

)

} =
(

RT
sRs RT

s d
dTRs dTd + r2s+1,s+1

)(

z
w

)

+O(�) = O(�).

Thus,
RT
sRsz +wR

T
s d = O(�), (C3)

dTRsz + (dTd + r2s+1,s+1)w = O(�). (C4)
(C3) can be expressed as RT

s (Rsz +wd) = O(�). From Lemma 3, RT
s is numerically nonsingular, so that

Rsz +wd = O(�). (C5)

Hence, from (C4), dTRsz + w(dTd + r2s+1,s+1) = dT(Rsz + wd) + wr2s+1,s+1 = O(�). Thus, wr2s+1,s+1 = O(�). If w = O(�),
Rsz = O(�) from (C5). Since Rs is numerically nonsingular, z = O(�), which contradicts with the assumption.
Hence, |w| > O(�), so that r2s+1,s+1 = O(�), which gives

fl(r2s+1,s+1) = O(�) ≤ fl(d
Td)O(�).

Lemma 3. Let n = O(1). If A ∈ ℝn×n is numerically nonsingular, and A−1 = (1), then AT is numerically nonsingular.

Proof. If
fl(ATx) = ATx +O(n�)|AT

||x| = O(n�),
then

fl(xTA) = xTA +OT(n�) = OT(n�).
Thus,

fl(xTAy) = fl(xTA)y + O(n�)|fl(xTA)||y| = O(n�)
holds for all y = O(1).
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For arbitrary z = O(1) ∈ ℝn, let
y = A−1z = O(1).

Then,
fl(Ay) = Ay + O(n�)|A||y| = z + O(n�)|A||y|.

Hence,
z = fl(Ay) + O(n�)|A||y| = fl(Ay) +O(n�).

Thus, we have
fl(xTz) = xTz + O(n�)|x|T|z| = fl(xTAy) + O(n�) = O(n�)

for arbitrary z = O(1) ∈ ℝn. Hence, x = O(�), so that AT is numerically nonsingular.

D PROOF OF THEOREM 5 IN SECTION 4.5

Proof. Let the singular value decomposition of Ri be given by Ri = UΣV T ∈ ℝi×i, where U, V are orthogonal matrices and

Σ = diag(�1, �2,… , �i). Let Ii ∈ ℝi×i be the identity matrix. Then, we haveR′i =

(

Ri
√

�Ii

)

= U ′Σ′V T, where U ′ =
(

U 0
0 V

)

and Σ′ =

(

Σ
√

�Ii

)

. Since Σ′TΣ′ = Σ2 + �Ii = diag(�21 + �, �22 + �,… , �2i + �), the singular values of

(

Ri
√

�Ii

)

are
√

�21 + � ≥
√

�22 + � ≥⋯ ≥
√

�2i + �.
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