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Abstract

In this report, we proposes a neural network structure that combines
a recurrent neural network (RNN) and a deep highway network. Com-
pared with the highway RNN structures proposed in other studies, the
one proposed in this study is simpler since it only concatenates a highway
network after a pre-trained RNN. The main idea is to use the ‘iterative
unrolled estimation’ of a highway network to finely change the output
from the RNN. The experiments on the proposed network structure with
a baseline RNN and 7 highway blocks demonstrated that this network per-
formed relatively better than a deep RNN network with a similar mode
size. Furthermore, it took less than half the training time of the deep
RNN.

1 Introduction

Statistical parametric speech synthesis is widely used in text-to-speech (TTS)
synthesis. We assume a TTS system using a pipeline structure in which a front-
end derives the information on the pronunciation and prosody of the input
text, then the back-end generates the acoustic features based on the output of
the front-end module. While various approaches can be used for the back-end
acoustic modeling, we focus on the neural-network (NN)-based acoustic models.

Suppose the output from the front-end is a sequence of textual feature vectors
x1:T = [x1, · · · ,xT ] in T frames, where each xt may include the phoneme
identity, pitch accent, and other binary or continuous-valued linguistic features.
The task of the NN-based acoustic model is to convert x1:T into a sequence of
acoustic features o1:T = [o1, · · · ,oT ]. The vector ot can encode various types
of acoustic features, but this report is only focused on the commonly used low-
dimensional spectral and F0 features. The task of the NN-based acoustic model
is to convert x1:T to o1:T . Various types of networks, including conventional
feedforward and recurrent neural networks (RNN), can be used for this task.

Neural networks with a sufficient number of hidden layers are assumed to be
powerful tools for regression tasks [Ben09]. For acoustic modeling, recent studies
have explored feedforward networks with up to 7 hidden layers [ZSS13, ZS14].
Our recent study based on highway networks investigated deeper networks with
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up to 40 hidden layers 1. However, these networks contain no recurrent layers.
This study proposed a structure that combines the highway network and

RNN. Although there have been related studies on this topic [ZSKS16, ZCY+16],
the structures of RNN highway networks in those studies are very complex.
Based on a recent theoretical analysis on the highway network [GSS16], which
argues that each highway block inside the network learns through iterative esti-
mation, we believe a simple structure can be used to combine a highway network
and RNN without significantly increasing the computational complexity. The
idea is just to simply attach a normal highway network after the pre-trained
RNN. The experiments demonstrated that this simple combination performed
relatively better than a deep RNN with a similar number of model parameters.
Furthermore, the training time of the combined network was less than half that
for the deep RNN.

2 Methods

2.1 Highway block

A highway network consists of one or multiple highway blocks. Suppose an
input linguistic feature vector xt is fed as the input to one highway block. This
block first processes xt as a conventional feedforward layer

H(xt) = f(WHxt + bH). (1)

Here, f(·) is the non-linear activation function, bH is the bias vector, and WH

is the transformation matrix. Then, the highway block uses a highway gate to
compute a control vector

T (xt) = σ(W Txt + bT ), (2)

and merges the first feature vector H(xt) with the input xt as the output of
this highway block:

ht = T (xt)�H(xt) + [1− T (xt)]� xt. (3)

Here, � denotes element-wise multiplication, and the sigmoid function σ(x) =
1

1+e(−x) is used in the highway gate. The output vector ht can be further
processed by any type of hidden layer to approximate the target vector ot.

Note that parameters W T and bT in the highway gate are also trainable.
When the output of the gate T (x) is approximately zero, the input x can
be directly propagated forwards, i.e., y ≈ x. In this case, the gradient can
also be propagated backwards without being attenuated by the feedforward
transformation layer in the highway block. Thus, a very deep network based
on highway blocks can be trained using the standard gradient-descent back-
propagation algorithm. Note that H(x) can be a transformation conducted by
multiple feedforward layers. In other words, one highway block can contain
more than one feedforward transformation layer.

1Please find the manuscript on http://tonywangx.github.io
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Figure 1: Structure of the RNN-plus-highway network.

2.2 Recurrent layer

Different from the feedforward layer and highway block, an RNN layer is used
to transform the input xt and previously extracted hidden state ht−1 into a
new vector ht:

ht = f(W Ixt + WHHht−1 + bHH). (4)
The generated feature vectors {h1, · · · ,ht, · · · } can be further transformed using
another RNN or feedforward layer. At the output layer, the hidden feature
vectors are transformed into the target acoustic feature vectors.

The network parameters, including W I ,WHH , and bHH , are learned from
the training data by using the back-propagation algorithm. However, the vanilla
RNN shown above is difficult to train because of the gradient vanishing and
exploding problem. As a solution, the long short term memory (LSTM) unit,
in which trainable gates control the input, output, and state of the memory cell
[Gra08], has been proposed to replace the simple function f(.).

2.3 Combination of highway network and RNN

The highway block targets the gradient-vanishing problem across layers while
an RNN with LSTM units focuses on the gradient propagation across time. It
seems natural to combine these two so that the gradient can be well propagated
both across layers and time. Some studies have taken into account this idea
by designing more complex network structures that facilitate the gradient flow
across layers and time [ZSKS16, ZCY+16].

However, a recent study provided a different view on the highway network
[GSS16]. The basic idea is that, a highway block does not extract completely
different structural hidden representations. Instead, it finely changes the output
from the previous layer. Based on this explanation, we think a simple way to
combine RNN and highway network is to attach highway blocks after a normal
RNN. The role played by an RNN is as a rough feature transformer. Then, the
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highway blocks finely tune the output from the RNN. This combined structure
is shown in Figure 1.

Other structures, such as putting the highway network before RNN or adding
highway networks to both sides of the RNN, suffer from the gradient-vanishing
problem since the gradients must pass through the RNN part before arriving
at the highway network on the network’s input side. Our experiments failed to
train these structures with acceptable performance.

3 Experiments

3.1 Corpus and i/o features

In the experiments, the Blizzard Challenge 2011 Nancy corpus that has 12072
English utterances [KK11] was used. Both the test and validation set contained
500 randomly selected utterances. Mel-generalized cepstral coefficients (MGCs)
of order 60, continuous F0 trajectory, voiced/unvoiced (V/U) condition, and
band aperiodicity (BAP) of order 25 were extracted for each speech frame by
using the STRAIGHT vocoder [KMKC99]. The Flite toolkit [HTS14] was used
to conduct the text-analysis for the entire corpus. The outputs of Flite were
converted into a vector of order 382 as the input to the neural network (xt).
This vector encodes common textual features similar to those used in the HMM-
based framework [TZB02].

The experiments were conducted on the three types of network listed in
Table 1. The toolkit for training the networks was modified on the basis of the
CURRENNT library [WBS15].

3.2 Networks and configurations

Similar to the configuration in [FQXS14], the network R-B used 2 feedforward
layers with 512 nodes, 2 bi-directional LSTM layers with 256 nodes, and a linear
output layer. For deeper networks, R-FF was created by attaching 21 tanh-based
single-stream feedforward layers after the last LSTM layer of R-B, where each
attached layer had 256 hidden nodes; R-FF was constructed in a similar way
by attaching 7 single-stream highway blocks with a layer size of 256. Each of
the highway block contained 2 tanh-based feedforward layers. The R-FF and
R-HS had the number of model parameters (listed in Table 2). For reference, a
deep RNN R-D was included. This network was similar to R-B but included 3
additional bi-directional LSTM layers. The number of parameters in R-D was
roughly the same as that in R-HS and R-FF.

The R-B was trained first using stochastic gradient descent with early stop-
ping. The other deep networks were first initialized for the 4 layers near the input
side by using the weights of R-B. The rest of the parameters were then initial-
ized using the layer-size-dependent uniform distribution [GB10]. The training
method for these deep networks was the same as that for R-B. 2

2The toolkit modified based on CURRENNT [WBS15], implementation details of AR-RMDN,
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Table 1: Experimental networks.

Definition
R-B Baseline RNN
R-D Baseline RNN + 3 RNN layers

R-FF Baseline RNN + 21 tanh feedforward layers
R-HS Baseline RNN + 7 highway blocks (2 tanh layers in each block)

Table 2: Objective evaluation results. #.Para denotes the number of model
parameters and the last column is the average training time per epoch (hour).
Note that the Nvidia K80 with CUDA8.0 was used to train the networks.

F0 F0 F0 MGC Ave.T
RMSE (Hz) CORR U/V RMSE #.Para per epoch

R-B 40.0 0.766 4.75% 1.004 1577475 0.88h
R-D 39.5 0.776 4.65% 0.998 3025155 2.50h
R-FF 40.9 0.756 4.67% 1.004 2959107 1.00h
R-HS 38.9 0.783 4.55% 0.978 2959107 1.00h

3.3 Results and analysis

The gross errors over all types of acoustic features for each training epoch are
plotted in Figure 2. The objective measures were calculated and are shown
in Table 2. Note that the test utterances were synthesized given the natural
alignment. The MLPG algorithm [KT+00] was not used.

Figure 2 shows that the three deep networks performed better than the
baseline on the validation set. The R-HS achieved the lowest error curve. Fur-
thermore, the training curve of R-HS converged first. Compared with the curve
of R-HS, R-FF’s curve showed a similar shape but was higher than that of R-HS.
The deep RNN R-D was the slowest to converge. Although the final gross error
of R-D was close to that of R-HS, the total training time for R-D was much larger
(see average training time per epoch for each network in Table 2).

The objective measure on the test set demonstrated that R-HS achieved
the best performance. The R-D performed similarly to R-HS. Although R-FF

had a better learning curve on the validation set, its objective performance
was worse than R-B. Sample trajectories of the generated MGC and F0 fea-
tures are plotted in Figure 3. The synthesized speech samples can be found at
http://tonywangx.github.io. Please search RNNHighway on the webpage and
then download the package of sample waveforms from the link.

and speech samples can be found at http://tonywangx.github.io
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Figure 2: Gross error of networks on the validation set.

4 Conclusion

A simple network structure was proposed to combine the highway network
and RNN. Specifically, the highway network was concatenated after the pre-
trained RNN. Then, the whole network can be trained using the standard back-
propagation algorithm. The experiments demonstrated that this structure ex-
hibited better objective performance than a deep RNN with roughly the same
model size. Furthermore, the training time for the proposed RNN-plus-highway
network was less than half that for training the deep RNN.
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Figure 3: Predicted feature trajectories of MGC (2nd and 30th order) and F0
of utterance BC2011 nancy APDC2-166-00. Frame shift is 5ms.
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