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Abstract

Recent research has shown that machine learning systems, including state-of-
the-art deep neural networks, are vulnerable to adversarial attacks. By adding to the
input object an imperceptible amount of adversarial noise, it is highly likely that
the classifier can be tricked into assigning the modified object to any desired class.
Furthermore, these adversarial samples generalize well across models: samples
generated using one network can often succeed in fooling other networks or machine
learning models. These alarming properties of adversarial samples have drawn
increasing interest recently, with several researchers having attributed the adversarial
effect to different factors, such as the high dimensionality of the data or the overly-
linear nature of modern neural networks. Nevertheless, a complete picture of
the cause of adversarial samples has not yet emerged. Towards this goal, we
present a novel theoretical result that formally links the adversarial vulnerability of
learning to the intrinsic dimensionality of the data. In particular, our investigation
formally establishes that as the local intrinsic dimensionality (LID) increases,
1-NN classifiers become increasingly prone to being subverted. We show that in
expectation, a k-nearest neighbor of a test point can be transformed into its 1-nearest
neighbor by adding an amount of noise that diminishes as the LID increases. We also
provide an experimental validation of the impact of LID on adversarial perturbation
for both synthetic and real data, and discuss the implications of our result for general
classifiers.
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1 Introduction
Recent research has shown that the performance of machine learning systems, including
state-of-the-art deep neural networks, can be subverted by a form of adversarial attack,
in which a small amount of carefully-designed, imperceptible adversarial noise is added
to an input object so as to influence a classification result [19, 26]. Moreover, it is
often possible to cause a well-performing image classifier to misclassify a visually-
identical test image to any other desired class, by engineering a suitable perturbation
(see Figure 1). Adversarial perturbation generalizes surprisingly well across different
models: an adversarial sample designed using one model can often succeed in subverting
other models [26]. These alarming properties of adversarial perturbation carry many
practical implications in an era where machine learning technologies are ubiquitous.

Adversarial attacks on learning systems can potentially cause tremendous damage
and disruption. For example, an adversary could conceivably create a false passport
or other identification in which the image appears to match his or her own face, but is
recognized by the system as belonging to another individual (presumably one whose
identity has been stolen). Another example is that of autonomous systems such as those
found in surveillance systems or self-driving vehicles, which presumably rely heavily on
machine learning technology for scene recognition. An adversarial attack could result
in a disastrously erroneous decision by the system, even under the close scrutiny of a
human overseer (such as a security official or automobile passenger). Such situations
can seriously undermine the safety of autonomous systems, as well as public confidence
in them. Thus, the increasing social reliance on intelligent autonomous systems has
recently sparked significant research effort into the understanding and prevention of
adversarial attacks on classification.

Recent research has attempted to explain adversarial perturbation from different
perspectives. At first glance, it is tempting to hypothesize that vulnerability to adver-
sarial perturbation is a peculiarity of individual learning systems such as deep neural
networks, with the effect being the result of a complex interplay between the model
and the data. It was also initially thought that the effect is a consequence of overfitting;
however, as adversarial samples tend to generalize well even across models of different
types [26], this is not a likely explanation. Moreover, it has recently been shown that
even models with parameters picked at random are unstable with respect to adversarial
perturbation [23]. In [9], Goodfellow et al. conjectured that modern deep neural net-
works, particularly those built with rectified linear units, are vulnerable to adversarial
perturbation due to their highly linear nature. Their vulnerability has also been attributed
to the high dimensionality of the input space: when accumulated over many dimensions,
minor changes can ‘snowball’ into large changes in the transfer function [9]. Despite
the many hypotheses that have been posed in the literature, a complete picture on the
causes of the adversarial perturbation effect is yet to emerge.

Towards this goal, in this paper we present, to the best of our knowledge, the
first theoretical explanation of the adversarial effect for classification of objects, in
terms of the LID model of local intrinsic dimensionity (ID) [1, 12]. In the context of
Euclidean spaces, a constructive proof is provided within which any reference point
can be perturbed so as to change a targeted k-nearest neighbor (k-NN) into a 1-nearest
neighbor (1-NN). Since the argument works with distributions of points and not fixed
point sets per se, the notion of neighbor is stated in terms of mathematical expectation:
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with respect to a sample size n, a target location z is a k-NN of a reference point x by
expectation if k out of the n sample points would be expected to lie within distance
d(x, z) of x. The result gives a method of construction of a perturbed point y for which z
becomes a 1-NN of y by expectation, as n tends to infinity. Conditions on y are provided
for a relationship to hold between the amount of perturbation required on the one hand,
to the intrinsic dimensionality of the distance distribution from x on the other. The effect
is such that as the intrinsic dimensionality at x rises, the amount of perturbation required
tends to zero.

The remainder of the paper is organized as follows. In Section 2, we give a brief
overview of adversarial perturbation and the concept of intrinsic dimensionality, together
with a brief review of some of the useful properties of the LID model. In Section 3, we
give a proof of our main theoretical result, followed in Section 4 by an experimental
validation of the impact of intrinsic dimensionality on the adversarial perturbation effect.
Section 5 concludes the paper with a discussion of some of the possible implications of
our result for deep neural networks and other state-of-the-art learning systems.

2 Background

2.1 Adversarial perturbation
For a general machine learning model, adversarial perturbation can be designed as
follows. Following the notation in [27], let p = f(x) be a classifier that, for each
input object x ∈ Rd, outputs a vector of probabilities p = [p1, . . . , pC] of the object
belonging to each of the C predefined classes. We wish to add a small distortion d ∈ Rd
to x, such that f(x + d) is close to a target adversarial probability pA = [1i=a], which
assigns zero probability to all but a chosen adversarial label a. One way to craft the
adversarial noise d is by solving the following optimization problem:

min
d
‖d‖+ αDKL(pA||f(x + d)), subject to: l ≤ x + d ≤ u (1)

Here, DKL(·) is the Kullback-Leibler divergence, l and u define the lower and upper
bounds of the input domain respectively, and α is a balancing factor that determines
the tradeoff between the level of distortion and the closeness to the target adversarial
class label. With classifiers trained using gradient descent, the above optimization prob-
lem can be solved straightforwardly, using either gradient descent or box-constrained
L-BFGS [26]. An example of an adversarial attack using this strategy is shown in
Figure 1(a).

In this paper, we prove strong theoretical statements concerning the effect of perturba-
tion on 1-NN classifiers. 1-NN classification has long been known to be ‘asymptotically
optimal’, in that the probability of error is bounded above by twice the Bayes minimum
probability of error, as the training set size tends to infinity [4, 25]. In this sense, an
infinite sample set can be regarded as containing half the classification information in
the nearest neighbor.

Within a Euclidean space or other vector space, 1-NN classification admits a rela-
tively straightforward perturbation strategy that is particularly amenable to theoretical
analysis. In order to transform a test point so that it is misclassified as a given tar-
get class, it is sufficient to select a point from the target class (presumably but not
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(a) Using the optimization formulation in (1), adding ad-
versarial noise (center) to an example of class ‘Shark’ (left)
induces a deep neural network to assign the perturbed result
(right) to the class ‘Binocular’.

(b) Perturbation directly towards a target image. Although
it is almost indistinguishable from the original image (left),
the perturbed image (right) risks being assigned to the same
class as the target image (center) by 1-NN classifiers.

Figure 1: Examples of adversarial perturbation.

necessarily the candidate closest to the test point), and perturb the test point toward
the target point along the straight line joining them (for an example, see Figure 1(b)).
Assuming that all data points are distinct, as the amount of perturbation increases, the
perturbed point would eventually find itself with the target point as its 1-NN. Even for
deep neural networks and other state-of-the-art classifiers of continuously-distributed
data, it should be noted that a sufficiently-large perturbation directly towards a target
point must eventually result in the test point entering a region associated with the class
to which the target belongs.

2.2 Intrinsic dimensionality
Over the past decades, many characterizations of the ID of sets have been proposed:
classical measures (mainly of theoretical interest), including the Hausdorff dimension,
Minkowski-Bouligand or ‘box counting’ dimension, and packing dimension (for a
general reference, see [5]); the correlation dimension [10]; ‘fractal’ measures of the
space-filling capacity or self-similarity of the data [3, 6, 11]; topological estimation of
the basis dimension of the tangent space of a data manifold from local samples [2, 7, 20,
21, 28]. Projection-based learning methods such as PCA [7] can produce as a byproduct
an estimate of ID. Expansion-based models include the expansion dimension (ED) [17],
the generalized expansion dimension (GED) [14], and the minimum neighbor distance
(MiND) [21].

As a motivating example from m-dimensional Euclidean space, consider the situa-
tion which the volumes V1 and V2 are known for two balls of differing radii r1 and r2,
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respectively, centered at a common reference point. The dimensionm can be deduced
from the ratios of the volumes and the distances to the reference point, as follows:

V2

V1
=

(
r2

r1

)m
=⇒ m =

lnV2 − lnV1
ln r2 − ln r1

.

For finite data sets, GED formulations are obtained by estimating the volume of balls by
the numbers of points they enclose [14, 17].

Instead of regarding intrinsic dimensionality as a characteristic of a collection of
data points (as evidenced by their distances from a supplied reference location), the
GED was recently extended to a statistical setting, in which the distribution of distances
to a query point is modeled as a continuous random variable X [1, 12]. The notion of
volume is naturally analogous to that of probability measure. ID can then be modeled
as a function of distance X = r, by letting the radii of the two balls be r1 = r and
r2 = (1+ ε)r, and letting ε→ 0+.

Definition 1 ([12]) Let X be a random distance variable. For any r such that FX(r) > 0,
the local intrinsic dimensionality of X at r is given by

IDFX(r) , lim
ε→0+

ln FX((1+ ε)r) − ln FX(r)

ln((1+ ε)r) − ln r
=

r · F ′X(r)
FX(r)

,

wherever the limit exists. The second equality follows by applying l’Hôpital’s rule to the
limits provided that FX is positive and differentiable over an open interval containing r.

Under this distributional interpretation, the original data set determines a sample of
distances from a given point. The intrinsic dimensionality (here referred to simply as
‘local ID’, or ‘LID’) of this distance distribution FX is estimated. The definition of IDFX

can be extended to the case where r = 0, by taking the limit of IDFX(r) as r → 0+,
whenever this limit exists:

IDFX(0) , lim
r→0+ IDFX(r) .

For an illustration of the intrinsic dimensionality of distance distributions, see Figure 2.
The smallest distances from a given point can be regarded as ‘extreme events’ asso-

ciated with the lower tail of the underlying distribution. The modeling of neighborhood
distance values can thus be investigated from the viewpoint of extreme value theory
(EVT). In [13], it is shown that the EVT representation of the distance distribution FX
completely determines function IDFX , and that the EVT index is in fact identical to
IDFX(0).

Theorem 1 ([13]) Let F : (0, z) → R be a function over the range (0, z), for some
choice of z > 0 (possibly infinite). Let v ∈ [0, z) be a value for which IDF(v) exists.
Then for any r,w ∈ (0, z) such that F is positive and differentiable everywhere over an
open interval containing [min{r,w},max{r,w}],

F(r)

F(w)
=

( r
w

)IDF(v)

·GF,v,w(r), where

GF,v,w(r) , exp
(∫w
r

IDF(v) − IDF(t)
t

dt
)
.
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Figure 2: The random distance variables X and Y have different LID values at distance r.
Although the total probability measures within distance r are the same (that is, FX(r) =
FY(r)), IDFY(r) is greater than one would expect for a locally uniform distribution of
points in R2, while IDFX(r) is less.

Moreover, let c > 1 be a constant, and assume that IDF(0) exists. Then

lim
w→0+

0<w/c≤r≤cw

GF,0,w(r) = 1 .

Proof: (Adapted from [13].)
For any r ∈ (0, z),

F(r) = F(r) · exp (ln F(r) − ln F(r) + ln F(w) − ln F(w))
· exp (IDF(v) lnw− IDF(v) lnw+ IDF(v) ln r− IDF(v) ln r)

= F(w) ·
( r
w

)IDF(v)

· exp (IDF(v) lnw− IDF(v) ln r− ln F(w) + ln F(r))

= F(w) ·
( r
w

)IDF(v)

· exp
(

IDF(v)
∫w
r

1

t
dt−

∫w
r

F ′(t)

F(t)
dt
)
,

since F is assumed to be positive and differentiable over an open interval containing
[min{r,w},max{r,w}]. Definition 1 therefore implies that IDF(t) must exist over this
interval, and thus

F(r) = F(w) ·
( r
w

)IDF(v)

· exp
(∫w
r

IDF(v) − IDF(t)
t

dt
)

as required.
For the second part of the proof, it suffices to show that∫w

r

IDF(0) − IDF(t)
t

dt → 0 .

Since IDF(0) is assumed to exist, and since F is assumed to be positive and differentiable
over the open interval defined relative to 0, Definition 1 implies that IDF must exist over
the interval. Therefore, for any real value ε > 0 there must exist a value δ > 0 such that
t < δ implies that |IDF(t) − IDF(0)| < ε. Hence, when cw < δ,∣∣∣∣∫w

r

IDF(0) − IDF(t)
t

dt
∣∣∣∣ ≤ ε ·

∣∣∣∣∫w
r

1

t
dt
∣∣∣∣ = ε ·

∣∣∣ln w
r

∣∣∣ .
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Figure 3: An illustration of the construction by which the reference point x is perturbed
towards a target point z, so that the rank of z relative to the resulting perturbed point y is
at most a target value.

From the limit conditions, we have that 1/c ≤ w/r ≤ c, and thus ln(w/r) is bounded
from above and below by constants. Therefore, since ε can be made arbitrarily small,
the limit is indeed 0, and the result follows. �

Practical methods that have been developed for the estimation of the index, including
expansion-based estimators [1] and the well-known Hill estimator and its variants [15],
can all be applied to LID (for a survey, see [8]).

3 Neighborhood perturbation theorem
In this section, we present the main theoretical contribution of the paper, which provides
conditions for which the perturbation of a test point can reduce the rank (by expectation)
of a target location. The theorem is not directly concerned with the effect of perturbation
on fixed point sets; rather, it relates to the underlying distribution from which the data
can be regarded to be a sample. Our result shows that for smooth distributions over
Euclidean spaces, as the intrinsic dimensionality of the test point rises, the amount of
perturbation required tends to zero.

Consider a Euclidean vector space S with distance metric d(x, y) , ‖x − y‖ and
probability measure µ. For a given reference point x ∈ S within the space, we denote
by X the random variable associated with the distribution of distances from x induced
by µ. The cumulative distribution function of X will be denoted by FX.

We begin by giving a technical lemma that establishes a condition by which a
perturbation of x into y can reduce the probability of a data sample falling within a
distance determined by a target location z.

Lemma 2 Let x be a reference point within the Euclidean space S . Let 0 < δ < 1/2 be
a fixed real value, and let p and q be real values such that 0 < p < q < 1. Consider
the following construction with points y and z and distance parameters r, u, v, and w
all depending on p, q and δ (see Figure 3):

1. Let u and v be the infimums of the distances from x at which FX(u) = p/2 and
FX(v) = q, respectively.

2. Let z ∈ S be any point for which d(x, z) = v.
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3. Let y ∈ S be the point lying on the line segment joining x and z, at distance δv
from x.

4. Let r be the supremum of the distances from y at which FY(r) = p, and let w be
the infimum of the distances from z at which FZ(w) = p/2.

If δ ≥ (v2−u2)/(v2−u2+w2), then d(y, z) ≤ r.

Proof: Consider the two balls B(x, u) and B(z, w). The union of the two balls has
as its axis of rotational symmetry the unique line l containing u and w. Consider any
two-dimensional plane containing the line l. Within this plane, the intersection of the
balls form disks as shown in Figure 3. The disk formed by the intersection of the plane
with B(x, u) will be denoted by C(x, u); the other disks will be described in a similar
manner.

The interiors of the two disks C(x, u) and C(z, w) must intersect. Otherwise,
u+w ≤ v would hold, from which it would follow that v2 ≥ (u+w)2 ≥ u2 +w2,
and thus that (v2 − u2)/(v2 − u2 +w2) ≥ 1/2. However, this would violate the
assumptions on δ.

Since B(x, u) and B(z, w) both have probability measure p/2, the disk C(x, u)
cannot be contained in the strict interior of the disk C(z, w) — otherwise, the radius
of B(z, w) could be decreased without reducing the probability associated with it,
contradicting the minimality of w. C(x, u) and C(z, w) therefore must intersect in
either two points (in which case the intersection points form two symmetric triangles
with x and z, one of which is illustrated in Figure 3) or one point (in which case the
triangle is degenerate). Without loss of generality, let h be one of these intersection
points.

Let t denote the distance d(y,h). Regardless of whether the triangle 4hxz is
degenerate, the disk C(y, t) must be contained in the union of C(x, u) and C(z, w),
and hence FY(t) ≤ FX(u) + FZ(w) = p. Since r is assumed to be the supremum of
distances from y at which FY(r) = p, we see that r ≥ t.

Consider now the angle θ = ∠hxy = ∠hxz, which falls in the range 0 < θ ≤ π
(θ = π if4hxz is degenerate). From the construction, we have

t2 = u2 + δ2v2 − 2δuv cos θ and
w2 = u2 + v2 − 2uv cos θ ,

regardless of whether4hxz is degenerate. Solving each equation for 2δuv cos θ and
combining, we obtain

u2 + δ2v2 − t2 = δ (u2 + v2 −w2)

t2 = (1− δ)u2 + (δ2 − δ) v2 + δw2 . (2)

Since v > u implies that v2 − u2 +w2 is positive, the assumption

δ ≥ v2 − u2

v2 − u2 +w2
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can be restated as δw2 ≥ (1−δ)(v2−u2). Substitution of this inequality into Equation 2
yields

t2 ≥ (1− δ)u2 + (δ2 − δ) v2 + (1− δ)(v2 − u2)

≥ (1− 2δ+ δ2) v2 ,

and thus t ≥ (1− δ) v. However, since we have already shown that r ≥ t, we conclude
that d(y, z) = (1− δ) v ≤ t ≤ r, as required. �

For any choice of probabilities p and q such that 0 < p < q < 1, Lemma 2 provides
conditions on the proportion δ, which when satisfied guarantee that FY(d(y, z)) ≤ p
even when FX(d(x, z)) = q > p.

Under certain assumptions of the smoothness of the underlying data distribution,
the construction of Lemma 2 can be used to relate the effect of perturbation on neigh-
borhoods to the intrinsic dimensionality of the distance distribution from the perturbed
point. For the following theorem, we will say that the local intrinsic dimensionality of
S is itself continuous at x ∈ S if the following conditions hold:

1. There exists a distance ρ > 0 for which all points z ∈ S with d(x, z) ≤ ρ admit a
distance distribution whose cumulative distribution function FZ is differentiable
and positive within some open interval with lower bound 0.

2. FZ converges in distribution to FX as z → x.

3. For each z satisfying the condition above, IDFZ(0) exists.

4. limz→x IDFZ(0) = IDFX(0).

Note that if the distributions FZ are assumed to be absolutely continuous, and if uniform
convergence is assumed in the second condition, then the third and fourth conditions
would follow from the first two conditions.

Theorem 3 Let x be a reference point within the Euclidean space S , and let FX be the
cumulative distribution function of the distribution of distances from x. Let us assume
that the local intrinsic dimensionality of S is continuous at x. For any real constant
k > 1, consider the real-valued parameter n chosen such that n > k, and let ρn be the
infimum of the distances for which the cumulative distribution function FX achieves k/n
— that is, ρn = inf{ρ| FX(ρ) = k/n}.

Let 0 < δ < 1/2 be a fixed real value. With respect to the particular choice of n, let
zn ∈ S be any point for which d(x, zn) = ρn, and let yn ∈ S be the point lying on the
line segment joining x and zn at distance δ · d(x, zn) from x. Then for every real value
ε > 0, there exists n0 > k such that for all n ≥ n0, we have that

δ ≥ 1− (2k)
−2

IDFX
(0) + ε =⇒ FYn

(d(yn, zn)) ≤ 1/n .

Proof: For a given choice of n, consider the construction in the statement of Lemma 2,
with p = 1/n and q = k/n, where zn = z, yn = y, hn = h, vn = d(x, zn) = ρn,
un = d(x,hn), and wn = d(zn,hn). Next, we define

δn , (v2n − u2n)/(v
2
n − u2n +w2n)

= (1− u2n/v
2
n)/(1− u

2
n/v

2
n +w2n/v

2
n) . (3)
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Also, let kn , n · FZn
(vn).

Using the local ID characterization formula of Theorem 1, we observe that

1

2k
=

FX(un)

FX(vn)
=

(
un

vn

)IDFX(0)

GFX,0,vn(un) and

1

2kn
=

FZn
(wn)

FZn
(vn)

=

(
wn

vn

)IDFZn
(0)

GFZn ,0,vn
(wn) ,

which in turn imply that

un/vn = (2k ·GFX,0,vn(un))
−1/IDFX(0) and

wn/vn = (2kn ·GFZn ,0,vn
(wn))

−1/IDFZn
(0)
.

Substituting into Equation 3, we obtain

δn =
1− (2k ·GFX,0,vn(un))

−2/IDFX(0)

1− εn
, where

εn , (2k ·GFX,0,vn(un))
−2/IDFX(0) −

(
2kn ·GFZn ,0,vn

(wn)
)−2/IDFZn

(0)
.

Note that since FZn
is assumed to converge in distribution to FX as n→ ∞,

lim
n→∞ kn

k
= lim

n→∞ n · FZn
(vn)

k

= lim
n→∞ lim

m→∞
(
FZm

(vn)

FX(vn)
· FX(vn)

k/n

)
= lim

n→∞
(
FX(vn)

FX(vn)
·
k/n
k/n

)
= 1 ,

and thus limn→∞ kn = k. Furthermore, Theorem 1 and the continuity of the intrinsic
dimension of S imply that

lim
n→∞GFZn ,0,vn

(wn) = 1, and

lim
n→∞ IDFZn

(0) = IDFX(0) ,

respectively. Together, these two statements establish that limn→∞ εn = 0, and that

lim
n→∞ δn = 1− (2k)

−2/IDFX(0) .

For any real value ε > 0, the limit of δn ensures the existence of a constant n0 > k
such that for all n ≥ n0, we have that∣∣∣δn − 1+ (2k)

−2/IDFX(0)
∣∣∣ ≤ ε .

Any choice of δ satisfying

1/2 > δ ≥ 1− (2k)
−2/IDFX(0) + ε

thus ensures that δn ≤ δ < 1/2; from this, Lemma 2 can be applied with p = 1/n and
q = k/n to yield

FYn
(d(yn, zn)) ≤ 1/n ,

as required. �
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Figure 4: Experiments on synthetic data.

4 Experimental validation
In this section, we design several experiments so as to verify the trends revealed by
Theorem 3. This theorem should not be interpreted to mean that any given test point
within a fixed data configuration always admits a perturbation that results in its k-NN
object becoming its 1-NN — instead, it describes a tendency that holds asymptotically
for increasingly large samples of points. Nevertheless, the theorem does illustrate
an important trend: as the intrinsic dimensionality IDFX(0) increases, the minimum
threshold on the perturbation proportion δ tends to zero.

Given a data set of size n, an embedding dimension d, and a set of nq query points,
we record the minimum perturbation proportion δ added to each query in order to reduce
the rank of its k-NN to 1. Our experimental results show a clear association between
the LID at the query and the amount of perturbation.

4.1 Synthetic data
We consider a simple setting involving the standardized Gaussian (normal) distribu-
tion with i.i.d. components, from which we independently draw data sets with n ∈
{104, 105, . . . , 109} points, and varying dimensionality d ∈ {2, 5, 10, 20, 50, 100, 200,
500, 1000}. The normal distribution possesses the convenient property that the local ID
at each point is theoretically equal to the representational dimension d. Figure 4 shows
the empirically observed trends for nq = 100 query points and k = 1000.

Figures 4(a) and 4(b) show the observed minimum δ averaged over all query points.
Figure 4(a) plots this amount against the dimensionality d for each choice of n, while
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Figure 4(b) provides an alternative view of the same results by plotting (using standard
deviation bars) the average minimum δ against n, for selected values of d. Two
clear trends can be seen: the observed minimum δ (i) decreases with IDFX(0), and
(ii) decreases with n. For comparison, the theoretical bound from Theorem 3 is also
plotted. For low to moderate d, the observed noise levels are mostly below the theoretical
bound, providing direct support to the theorem — for noise levels above the bound,
the perturbation would surely produce the same effect on this data. On the other hand,
although the theoretical and empirical lines cross near d = 100 in Figure 4(a), the
second trend observed in Figure 4(b) indicates that for sufficiently-large data set sizes,
the empirical noise level will eventually reach the theoretical bound.

Figure 4(c) plots the average rank k ′ achieved by 1000-NN points after the perturba-
tion of the query points by the amounts indicated by the theoretical bound. It can be seen
that the adversarial goal of k ′ = 1 is reached for low to moderate ID, after which k ′ rises.
However, the growth rate of k ′ flattens as the data set size n increases. For large ID,
this trend again suggests that for sufficiently large n, perturbation by the amount given
by the bound in Theorem 3 will eventually produce a rank of k ′ = 1 (by expectation).
This tendency also serves to explain why the theoretical dependency between δ and ID
shown in Figure 4(a) has a sharper rate of diminution than the observed dependency:
for the theoretical relationship, the value of n required to achieve the perturbation goal
increases with ID, whereas for the empirical relationships, n is fixed.

4.2 Real data
We conducted experiments with real data in order to (i) confirm the asymptotic behavior
of Theorem 3 when n is extremely large, and to (ii) demonstrate that δ decreases as the
local ID increases. LID values were obtained using the maximum likelihood estimator
described in [1], over 100 samples.

Figure 5(a) plots the values for δ when using the BIGANN_SIFT1B dataset [16],
where d = 128 and n = 109. Here, we chose nq = 10, 000 and k = 100. In order
to estimate the mean minimum noise level, we group the ID values into integer bins.
The mean and standard deviation of the noise levels for each bin is reported in this
figure. In this experiment, n is extremely large, revealing the asymptotic behavior of
Theorem 3. Very few values for δ are above the theoretical curve (only 22 query points).
This experiment, however, uses SIFT descriptors whose estimated ID is in the low to
moderate range.

In contrast, Figures 5(b) and (c) show complementary configurations where the
estimated ID is much larger (although n is much smaller). Figure 5(b) plots δ against
local ID for the ImageNet data set [22]. This dataset consists of n = 1, 281, 167 training
images and 50, 000 test images. We take nq = 10, 000 images from the test set as
queries. Figure 5(c) corresponds to the case of the CIFAR-10 data set [18], which
consists of n = 50, 000 training images. 10, 000 test images are also provided, which
we use as queries. Both data sets were fed into a deep neural network to extract high
level features. Specifically, for ImageNet data, we employed a 19-layer convolutional
network [24] to extract d = 4, 096 high level features. Similarly, for CIFAR-10, we
extracted d = 9, 408 high level features. Note that when generating adversarial high
level features, the original images can be manipulated so as to conform to them, as
described in [23].

12



0 5 10 15 20 25 30 350.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) BIGANN_SIFT1B

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) ImageNet

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) CIFAR-10

Figure 5: Experiments on three real data sets, plotting the minimum noise level required
(y-axis) vs. estimated LID (x-axis). Red curve: theoretical bound (3). Green bars:
empirical mean and standard deviation.

As expected, the theoretical curves pass through the data clouds plotted in Fig-
ures 5(b) and (c), as n is too small for the asymptotic trends to fully assert themselves.
However, the plots clearly show that the amount of perturbation required for the sub-
version of query points decreases as the local ID grows. Note also that, as we saw in
our experiments with synthetic data, the rate of diminution of the theoretical curves
between δ and ID is greater than what we observed on ImageNet and CIFAR-10. Once
again, this is due to the hidden dependency on the value of n needed for the theoretical
relationship to hold.

5 Conclusion
In this paper, we have presented a theoretical explanation of the effect of adversarial
perturbation on nearest-neighbor classification under the Euclidean distance metric: the
larger the intrinsic dimensionality and data set size, the smaller the amount of adversarial
noise required to transform the k-NN of a test point into a 1-NN (by expectation). These
theoretical trends were confirmed experimentally for both synthetic and real data sets.
Perhaps surprisingly, our result demonstrates that this vulnerability to adversarial attack
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is inevitable as the data scales in both size and intrinsic dimensionality, regardless of the
nature of the data.

Strictly speaking, the question remains open as to whether a quantitative explanation
analogous to that of Theorem 3 can be found for other classification models, or for other
similarity measures. However, it is our conjecture that the general trends should hold
even for deep neural networks and other classifiers of continuously-distributed data.
Intuitively, even when the distance is not Euclidean, and even when the component
of the class region containing the target is not convex, an argument similar to (but
perhaps considerably looser than) that of Lemma 2 is likely to hold, provided that a
transformation exists between the original domain and an appropriate Euclidean domain.
Theorem 3 could then be applied within the Euclidean domain, which under reverse
transformation would serve to establish the trends in the original domain. The details
would depend very much on the interplay between the underlying data distribution and
data model, and so we will not pursue them here.

Sophisticated features, such as the ones resulting from a deep learning process,
are often very effective in classification and recognition tasks. Our analysis suggests
that their higher dimensionality, however, renders them very vulnerable to adversarial
attack. For this reason, for deep neural networks and other state-of-the-art classifiers,
a systematic and comprehensive empirical investigation of the relationship between
intrinsic dimensionality and adversarial perturbation would be a very worthwhile topic
for future research.
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