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MODULUS-TYPE INNER OUTER ITERATION METHODS FOR
NONNEGATIVE CONSTRAINED LEAST SQUARES PROBLEMS∗

NING ZHENG† , KEN HAYAMI‡ , AND JUN-FENG YIN§

Abstract. For the solution of large sparse nonnegative constrained least squares (NNLS) prob-
lems, a new iterative method is proposed which uses the CGLS method for the inner iterations and
the modulus iterative method for the outer iterations to solve the linear complementarity problem
resulting from the Karush-Kuhn-Tucker condition of the NNLS problem. Theoretical convergence
analysis including the optimal choice of the parameter matrix is presented for the proposed method.
In addition, the method can be further enhanced by incorporating the active set strategy, which
contains two stages where the first stage consists of modulus iterations to identify the active set,
while the second stage solves the reduced unconstrained least squares problems only on the inactive
variables, and projects the solution into the nonnegative region. Numerical experiments show the
efficiency of the proposed methods compared to projection gradient-type methods with less iteration
steps and CPU time.
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1. Introduction. Consider the nonnegative constrained linear least squares prob-
lem [3], abbreviated as NNLS,

(1.1) min
x∈Rn

∥Ax− b∥2 subject to x ≥ 0,

where A ∈ Rm×n, b ∈ Rm×1, m ≥ n or m < n, and the inequalities are to be
interpreted componentwise. The rank-deficient case is allowed, when the equality in
rankA ≤ min(m,n) does not hold. Not only do the NNLS problems arise in many
scientific computing and engineering applications [3], e.g., image restoration [26], re-
construction problems in geodesy [5] and tomography, contact problems for mechan-
ical systems [17], and the modeling of ocean circulation, but it is even argued that
any minimization problem becomes realistic only when its variables are constrained
within meaningful intervals [5].

Algorithms for the solution of the unconstrained linear least squares problem

(1.2) min
x∈Rn

∥Ax− b∥2

fall into two classes: direct methods, which are usually based on some matrix factor-
izations and may not be so practical when the matrix A is large, sparse and does not
have a special structure, and iterative methods, among which the (preconditioned)
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CGLS method, which is mathematically equivalent to the conjugate gradient (CG)
method applied to the normal equation

(1.3) ATAx = ATb,

and (preconditioned) GMRES method by Hayami, Yin and Morikuni [16, 21] play im-
portant roles. However, the approximate solutions determined by the above methods
are not guaranteed to satisfy the nonnegative constraints in (1.1). Therefore, special
techniques must be added to the algorithms that handle the status of variables with
respect to their nonnegativity.

One of the most popular techniques is the projection operation

(1.4) P (x) = max(x,0),

where max(x,0) is the vector whose ith component is the maximum of xi and 0.
Projection is widely used for the solution of the NNLS problem (1.1). For example,
by iteratively solving the fixed-point equation

(1.5) x = P (x− α∇l(x)), l(x) ≡ 1

2
min
x∈Rn

∥Ax− b∥22,

which is equivalent to the NNLS problem (1.1), the projected gradient method was
proposed by Bertsekas [2], and was applied to quadratic programming with box con-
straints in [9, 24, 25]. Another projection-based method is the projected SOR method
proposed by Cryer [7], and we can easily extend it to be the projected NR-SOR
method, where NR-SOR method is SOR iteration for the normal equation (1.3). Be-
low, we give their corresponding versions for the NNLS problem. For the projected
NR-SOR method, we only list one forward sweep.

Algorithm 1.1. Projected Gradient Method
1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.
2. For k = 0, 1, 2, . . . until convergence

3. Compute sk = ATrk.
4. Compute αk = ∥sk∥22/∥Ask∥22.
5. Find the smallest integer m ≥ 0 that satisfies the sufficient decrease

condition

∥b−Axk+1∥22 ≤ ∥b−Axk∥22 − 2µ(sk)T(xk+1 − xk),

where 0 < β < 1, 0 ≤ µ < 1 and

xk+1 = P (xk + βmαks
k).

6. Compute rk+1 = b−Axk+1.

7. Endfor
Algorithm 1.2. Projected NR-SOR with One Forward Sweep

1. Given xk and rk(= b−Axk), k ≥ 0.
2. For i = 1, 2, . . . , n Do

3. Compute δi = ω(rk, Aei)/∥Aei∥22, where ei is the ith column vector
of the n× n identity matrix and 0 < ω < 2.

4. Compute xk+1
i = P (xk

i + δi).
5. Compute rk = rk − (xk+1

i − xk
i )(Aei).
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6. Endfor
7. Set rk+1 = rk.

In addition, a class of inner outer iterative methods is widely discussed for the
solution of NNLS problems, where a series of unconstrained least squares problems
are solved in the inner iteration, and the obtained solution is updated to satisfy the
nonnegative constraints, and then the inner iteration is resumed for each outer iter-
ation until convergence. Remark that the inner outer iteration methods contain two
tasks including how to update the solution of the unconstrained least squares problem
when some of its components violate the bounds, and when to terminate the inner
iteration and start the next outer iteration. For example, by restricting the step size
in each CG iteration to satisfy constraints, Polyak [29] and O’Leary [27] proposed a
generalized CG method for solving general box constrained quadratic programming
problems with a symmetric positive definite matrix, which can be naturally applied
to solving NNLS problems. Similar algorithm called the restricted LSQR method was
presented by Lötstedt [20], where LSQR is a stabilized version of CGLS, and Bierlaire,
Toint and Tuyttens [5] introduced a variant of the algorithm. Moreover, instead of
shrinking the step size, some researchers considered projection-type methods, which
orthogonally project the iterated solution into the feasible region by (1.4). For exam-
ple, Bierlaire et al. [5] proposed projected gradient methods with active set strategy.
However, the disadvantage is that the inner iteration is terminated as soon as a com-
ponent of a computed iterate violates a constraint, which forces frequent resuming of
the inner iteration and thus slows down convergence. Another undesirable feature is
that the active set type algorithm allows only one variable to leave a bound at a given
outer iteration, which allows to add or delete one index from the active set at a time.
This is an inefficient feature when the number of variables is large.

In order to avoid these disadvantages, Dembo and Tulowitzki [12] proposed algo-
rithms that allow to add or delete many indices at each iteration. Similar algorithms
were presented by Yang and Tolle [31], in which they showed theoretically that the
iterations converge to the solution in a finite number of steps. For the solution of
nonnegative constrained ill-posed problem, which is equivalent to solving the NNLS
problem with regularization, Calvetti et al. [8] proposed a projected iteration method
by allowing more consecutive iterations in the inner iteration. In addition, Morigi
et al. [23] proposed an active set projected CG method for general box constrained
ill-posed problems, which can be applied to nonnegative constrained problems, where
the components of the solution that equal their bounds are referred to as the active
set and identified in the outer iteration, and the reduced unconstrained least squares
problem is solved in the inner iteration by keeping the identified components fixed.
These methods are shown to require low storage requirement and are easy to imple-
ment, and numerical examples arising from constrained linear ill-posed problems and
image restoration indicate their fairly rapid convergence. However, there is few theo-
retical analysis to guarantee the convergence, and the norm of consecutively generated
residual vectors may not be monotonically decreasing [22, 23].

Wright [30] proposed a hybrid two-stage algorithm by using the projected gradient
method until a suitable active set is identified in the first stage, and then by applying
the CG method to obtain a numerical solution for the current inactive variable set
in the second stage. The idea was further developed by Moré and Toraldo [24, 25]
for the solution of box constrained quadratic programming, in which the convergence
can be guaranteed when the problem is nondegenerate. The active set strategy can
be regarded as a subspace acceleration technique, and numerical results show the
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significant acceleration of convergence. Moreover, Bardsley and Vogel [6] extended
the algorithm of Moré and Toraldo [25] to the solution of non-quadratic, but convex
problems with nonnegative constraints in image reconstruction, by taking Newton
steps in the inactive variables. The disadvantage of this hybrid method is that when
the initial vector is far from the solution, the convergence can be slow as a large number
of iterations are needed for the projected gradient method to identify a suitable active
set.

In this paper, instead of using shrinking step size or the projection techniques,
we apply a modulus transformation to constrain the nonnegativity of the variable,
and the solution of NNLS problem (1.1) can be replaced by the solution of a sequence
of unconstrained least squares problems, for which numerous efficient solvers can be
exploited. Therefore, a new class of inner outer iterative methods is proposed by
using CGLS method for inner iterations and the modulus-based iterative method
in the outer iterations for the solution of LCP (linear complementarity problem)
resulting from the KKT (Karush-Kuhn-Tucker) conditions of the NNLS. Theoretical
convergence analysis is presented, and the choice of the parameter matrix is discussed
for the proposed method. We also propose a corresponding hybrid algorithm by
incorporating the active set strategy, which contains two stages where the first stage
consists of modulus iterations to identify the active set, while the second stage solves
the reduced unconstrained least squares problems only on the inactive variables, and
projects the solution into the nonnegative region. Numerical experiments show the
efficiency of the proposed methods compared to projection-type methods with less
iteration steps and CPU time. Moreover, the modulus method is more efficient for
identifying a suitable active set compared to projected gradient methods.

The rest of the paper is organized as follows. In Section 2, the modulus inner
outer iteration method is proposed for the solution of the NNLS problem. In Section
3, convergence analysis of the proposed method is presented, and the choice of the pa-
rameter matrix is discussed. In Section 4, a hybrid method is proposed by alternately
performing the modulus iterations and the active set CGLS iterations. In Section 5,
numerical results are presented, and Section 6 concludes the paper.

2. Modulus Iterative Methods. In this section, we show that the solution of
the NNLS problem can be transformed to a series of unconstrained least squares prob-
lems by applying a modulus transformation on the variables. First, the equivalence
between the nonnegative constrained quadratic programming and the linear comple-
mentarity problem (LCP) is shown in the following theorem, when the coefficient
matrix is symmetric positive semidefinite.

Theorem 2.1. The nonnegative constrained quadratic programming problem
NNQP(B, c)

(2.1) min
x∈Rn

(
1

2
xTBx+ cTx

)
, subject to x ≥ 0

is equivalent to the linear complementarity problem LCP(B, c)

(2.2) x ≥ 0, Bx+ c ≥ 0, and xT(Bx+ c) = 0,

provided that B is a symmetric positive semidefinite matrix.
Proof. See Appendix A. �

Corollary 2.2. If matrix B is symmetric positive definite, then both NNQP(B, c)
and LCP(B, c) have the same unique solution.

Corollary 2.3. ([3]) The NNLS problem (1.1) is equivalent to LCP(ATA,−ATb)
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(2.3) x ≥ 0, λ ≡ ATAx−ATb ≥ 0, and xTλ = 0.

Proof. Set B = ATA and c = −ATb in Theorem 2.1. �
Furthermore, the following theorem, where the proof can be easily obtained by

Theorem 2.1 in [1], implies that LCP(ATA,−ATb) is equivalent to the implicit fixed-
point equation

(2.4) (Ω +ATA)z = (Ω−ATA)|z|+ATb

with modulus transformation x = z + |z|, where Ω is a positive diagonal parameter
matrix. Hence, it is equivalent to solve the implicit fixed-point equation (2.4) for the
solution of (1.1) by Corollary 2.3.

Theorem 2.4. Let Ω be an n×n positive diagonal matrix. For the LCP(ATA,−ATb),
the following statements hold:
(i) if x is a solution of the LCP(ATA,−ATb), then z = (x − Ω−1λ)/2 satisfies the

implicit fixed-point equation (2.4), where λ = ATAx−ATb;
(ii) if z satisfies the implicit fixed-point equation (2.4), then x = |z|+z is a solution

of the LCP(ATA,−ATb). Moreover, λ = Ω(|z| − z) holds.
Based on the equivalence in Theorem 2.4, the modulus-type iterative scheme

(2.5) (Ω +ATA)zk+1 = (Ω−ATA)|zk|+ATb

is naturally derived for the solution of the fixed-point equation (2.4). If z∗ is a fixed
point of (2.5), then by Theorems 2.1 and 2.4, the solution of the NNLS problem (1.1)
can be obtained straightforwardly by x∗ = z∗ + |z∗|. Therefore, the solution of the
NNLS problem (1.1) is transformed to the solution of a series of fixed-point equations
(2.5), which can be solved directly by matrix decompositions, or by iterative methods,
such as the preconditioned CG method as the coefficient matrix Ω+ATA is symmetric
positive definite.

The modulus iteration method for NNLS problem (1.1) is described as follows.
Algorithm 2.1. Modulus Iteration Method

1. Choose an initial approximate solution z0 and a parameter matrix Ω.
2. Compute x0 = z0 + |z0|.
3. For k = 0, 1, 2, . . . until convergence

4. Compute zk+1 by solving equation (2.5).
5. Compute xk+1 = zk+1 + |zk+1|.
6. Endfor

We remark that this modulus method derived from (2.4) is a special case of
modulus-based matrix splitting methods with M = ATA and N = 0 in [1]. For more
numerical methods for LCP, see [32] and the references therein.

Another remark is that a similar idea that transforms the constrained minimiza-
tion problem into an unconstrained problem using the parameterization x = ez in-
stead of x = z + |z| is proposed by Hanke, Nagy and Vogel [15], and is applied for
image reconstruction problems in [26]. The main difference is the iterative methods
constructed in [26] are based on the solution of fixed-point equation with respect to
x, and thus line search is needed at each iteration to maintain nonnegativity, while it
is not necessary for the modulus iteration, since the iteration is based on the uncon-
strained vector z.
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Finally, it is noted that the iterative scheme (2.5) can be reorganized as the normal
equations

(2.6) ÃTÃzk+1 = ÃTb̃
k
,

of the unconstrained least squares problem

(2.7) min
zk+1∈Rn

∥Ãzk+1 − b̃
k
∥2

for any fixed k = 0, 1, 2, ..., where

Ã =

[
A

Ω
1
2

]
and b̃

k
=

[
−A|zk|+ b

Ω
1
2 |zk|

]
,

Therefore, the solution of the NNLS problem (1.1) is transformed to the solution of a
series of unconstrained least squares problems (2.7). This is the main idea of modulus
method.

The modulus-type inner outer iteration method for NNLS problem (1.1) is de-
scribed as follows.

Algorithm 2.2. Modulus-Type Inner Outer Iteration Method
1. Choose an initial approximate solution z0 and a parameter matrix Ω.
2. Compute x0 = z0 + |z0| and r0 = b−Ax0.
3. Set

Ã =

[
A

Ω
1
2

]
and r̃0 =

[
r0

Ω
1
2 (|z0| − z0)

]
4. For k = 0, 1, 2, . . . until convergence

5. Compute an approximate solution wk+1 by solving

(2.8) min
w∈Rn

∥Ãw − r̃k∥2.

6. Compute zk+1 = zk +wk+1.
7. Compute xk+1 = zk+1 + |zk+1| and rk+1 = b−Axk+1.
8. Set

r̃k+1 =

[
rk+1

Ω
1
2 (|zk+1| − zk+1)

]
9. Endfor

Here, the iterative solution of the unconstrained least squares problems (2.8) for
each k = 0, 1, 2, ... is referred to as the inner iteration of the algorithm, while the
for loop is referred to as the outer iteration. Note that Algorithms 2.1 and 2.2 are
mathematically equivalent, since the solution of the inner unconstrained least squares
problems (2.8) is equivalent to the solution of the normal equations (2.5), which can
be solved by efficient solvers like (preconditioned) CGLS method, or BA-GMRES
method [16] with inner iteration preconditioning [21].

For the iterative solution of the NNLS problem (1.1), we define the residual as

(2.9) Res(xk) ≡ min(λk,xk) = min(ATAxk −ATb,xk),
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and set the stopping criterion as

(2.10)
∥Res(xk)∥2
∥Res(x0)∥2

< tol

with initial vector x0 and given tolerance tol. The definition (2.9) shows that Res(x∗) =
0 if and only if x∗ is a solution of the NNLS problem (1.1) by Corollary 2.3. Mean-
while, for the iterative solution of the unconstrained least squares problems (2.8), the
stopping criterion is set as

(2.11)
∥sk∥2
∥s0∥2

=
∥AT(b−Axk)∥2
∥AT(b−Ax0)∥2

< tol,

where sk = −λk is the residual of the normal equation (1.3). Note that (2.10) and
(2.11) are used as stopping criteria of outer and inner iterations in Algorithm 2.2,
respectively.

3. Convergence Analysis. In this section, we establish the convergence theory
of Algorithm 2.1 in which the inner unconstrained least squares problems (2.8) are
solved based on the normal equations (2.5). Specifically, we will discuss the cases
when the inner systems are solved exactly or inexactly, respectively, as well as the
theoretically optimal choice of the iteration parameter matrix Ω.

Assume that z∗ ∈ Rn is a solution of the implicit fixed-point equation (2.4), i.e.,

(3.1) (Ω +ATA)z∗ = (Ω−ATA)|z∗|+ATb,

and zk+1 is computed exactly from zk by solving (2.5). After subtracting (3.1) from
(2.5), we obtain

(3.2) zk+1 − z∗ = (Ω +ATA)−1(Ω−ATA)(|zk| − |z∗|),

provided that Ω + ATA is nonsingular. The relationship (3.2) is the basis for us to
establish convergence theorems about Algorithm 2.1. The following analysis is based
on the condition that A is of full column rank and thus ATA is symmetric positive
definite.

3.1. Scalar matrix case. Consider the case when Ω = ωI with ω > 0. It
follows from taking vector norm ∥ · ∥2 of both sides of (3.2) that

∥zk+1 − z∗∥2 ≤ ∥(ωI +ATA)−1(ωI −ATA)∥2∥|zk| − |z∗|∥2
≤ ∥(ωI +ATA)−1(ωI −ATA)∥2∥zk − z∗∥2

It can be easily shown that (ωI +ATA)−1(ωI −ATA) is symmetric. Therefore,

∥(ωI +ATA)−1(ωI −ATA)∥2 = max
λi∈σ(ATA)

∣∣∣∣ω − λi

ω + λi

∣∣∣∣ ,
where σ(ATA) denotes the set of all eigenvalues of ATA. As A is of full column rank,
it follows that λi > 0 and ∣∣∣∣ω − λi

ω + λi

∣∣∣∣ < 1,
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for any i, and thus

∥(ωI +ATA)−1(ωI −ATA)∥2 < 1.

Consequently, the iteration sequence {zk}+∞
k=0 generated by (2.5) converges to the

unique solution z∗ for any initial vector.
Let λmin and λmax be the minimum and maximum eigenvalues of ATA, respec-

tively. It can be easily shown that the optimal ω∗ is

ω∗ ≡ argmin
ω

{
max

λmin≤λ≤λmax

∣∣∣∣ω − λ

ω + λ

∣∣∣∣} =
√

λminλmax

and

∥(ω∗I +ATA)−1(ω∗I −ATA)∥2 =

√
λmax −

√
λmin√

λmax +
√
λmin

=

√
κ(ATA)− 1√
κ(ATA) + 1

,

where κ(ATA) denotes the spectral condition number of matrix ATA.

3.2. General positive diagonal matrix case. Consider the general case when
Ω is a positive diagonal matrix. We define two vector norms and a matrix norm that
are useful in the following discussions. For all x ∈ Rn, ∥x∥Q ≡

√
xTQx and ∥x∥P,q ≡

∥Px∥q define vector norms onRn, where Q ∈ Rn×n is an arbitrary symmetric positive
definite matrix, P ∈ Rn×n is an arbitrary nonsingular matrix and q is a positive
integer. Moveover, if X ∈ Rn×n, then ∥X∥P,q ≡ ∥PXP−1∥q; see [1, 28]. It follows
from taking vector norm ∥ · ∥Ω1/2,2 of both sides of (3.2) that

(3.3) ∥zk+1 − z∗∥Ω1/2,2 ≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥|zk| − |z∗|∥Ω1/2,2.

Note that

∥zk+1 − z∗∥Ω1/2,2 = ∥Ω1/2(zk+1 − z∗)∥2 = ∥zk+1 − z∗∥Ω

and

∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2

= ∥Ω−1/2(I + (AΩ−1/2)T(AΩ−1/2))−1Ω−1/2Ω1/2(I − (AΩ−1/2)T(AΩ−1/2))Ω1/2∥Ω1/2,2

= ∥(I + (AΩ−1/2)T(AΩ−1/2))−1(I − (AΩ−1/2)T(AΩ−1/2))∥2
≡ ∥(I + ÂTÂ)−1(I − ÂTÂ)∥2,

where Â ≡ AΩ−1/2. Therefore, (3.3) gives

∥zk+1 − z∗∥Ω ≤ ∥(I + ÂTÂ)−1(I − ÂTÂ)∥2∥|zk| − |z∗|∥Ω
≤ ∥(I + ÂTÂ)−1(I − ÂTÂ)∥2∥zk − z∗∥Ω.

Notice that Â ≡ AΩ−1/2 is of full column rank as A is of full column rank and Ω is a
positive diagonal matrix. Hence, ÂTÂ is symmetric positive definite and

∥(I + ÂTÂ)−1(I − ÂTÂ)∥2 = max
λ̂i∈σ(ÂTÂ)

∣∣∣∣∣1− λ̂i

1 + λ̂i

∣∣∣∣∣ < 1.
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Consequently, the iteration sequence {zk}+∞
k=0 generated by (2.5) converges to the

unique solution z∗ for any initial vector.

Next, the choice of the parameter matrix Ω is discussed. Set Ω = ω̄D, where
D ≡ diag(ATA) denotes the diagonal part of ATA and ω̄ is a positive scalar parameter.

Then Â = ω̄−1/2AD−1/2 ≡ ω̄−1/2Ā and

∥(I + ÂTÂ)−1(I − ÂTÂ)∥2
= ∥(I + ω̄−1ĀTĀ)−1(I − ω̄−1ĀTĀ)∥2
= ∥(ω̄I + ĀTĀ)−1(ω̄I − ĀTĀ)∥2.

Similar to the previous analysis, the optimal parameter can be obtained by

ω̄∗ =
√
λ̄minλ̄max,

where λ̄min and λ̄max are the minimum and maximum eigenvalues of ĀTĀ, respectively.
In addition,

∥(ω̄∗I + ĀTĀ)−1(ω̄∗I − ĀTĀ)∥2 =

√
λ̄max −

√
λ̄min√

λ̄max +
√
λ̄min

=

√
κ(ĀTĀ)− 1√
κ(ĀTĀ) + 1

,

where κ(ĀTĀ) denotes the spectral condition number of matrix ĀTĀ.

Remark that ĀTĀ = D−1/2ATAD−1/2 can be regarded as a symmetric diagonal
scaling preconditioning of ATA. Hence, it may be more efficient to choose Ω = ωD
than to choose Ω = ωI in the modulus iteration Algorithm 2.1.

3.3. Convergence of inexact inner iteration. Finally, the convergence anal-
ysis based on the inexact solution of the implicit fixed-point equation (2.5) is consid-
ered. Suppose zk has already been computed. Then, zk+1 is computed by applying
iterative methods, such as the PCG method, to (2.5). Thus, we have

(3.4) (Ω +ATA)zk+1 = (Ω−ATA)|zk|+ATb+ ek,

where ek denotes the error of inner iteration. Note that ek = 0 for some fixed k
indicates that the inner iteration is solved exactly. In addition, we define the error of
outer iteration

εk = (Ω +ATA)zk − (Ω−ATA)|zk| −ATb.

Note that if εk = 0 for some fixed k, then x∗ = xk is an exact solution of the
fixed-point equation (2.4).

Assume that ∥ek∥ ≤ γk∥εk∥, which indicates that the error of inner iteration is
controlled by the error of outer iteration. Then, it follows by subtracting (3.1) from
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(3.4) that

∥zk+1 − z∗∥Ω
= ∥(Ω +ATA)−1(Ω−ATA)(|zk| − |z∗|) + (Ω +ATA)−1ek∥Ω
≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥|zk| − |z∗|∥Ω + ∥(Ω +ATA)−1∥Ω1/2,2∥ek∥Ω
≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω + γk∥(Ω +ATA)−1∥Ω1/2,2∥εk∥Ω
= ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω
+ γk∥(Ω +ATA)−1∥Ω1/2,2∥(Ω +ATA)zk − (Ω−ATA)|zk| −ATb∥Ω
= ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω
+ γk∥(Ω +ATA)−1∥Ω1/2,2∥(Ω +ATA)(zk − z∗)− (Ω−ATA)(|zk| − |z∗|)∥Ω
≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω
+ γk∥(Ω +ATA)−1∥Ω1/2,2(∥Ω+ATA∥Ω1/2,2 + ∥Ω−ATA∥Ω1/2,2)∥zk − z∗∥Ω
=: Lk∥zk − z∗∥Ω.

Hence, we only need to verify that Lk ≤ θ < 1, where θ is a scalar constant indepen-
dent of k.

Set

τ ≡ ∥(Ω +ATA)−1∥Ω1/2,2∥Ω+ATA∥Ω1/2,2,

δ ≡ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2,

µ ≡ ∥(Ω +ATA)−1∥Ω1/2,2∥Ω−ATA∥Ω1/2,2.

By the fact that δ < 1, we have

θ ≡ α+ (1− α)δ < 1,

where α ∈ [0, 1). If there exists an integer k0 such that for all k ≥ k0,

Lk = δ + γk(τ + µ) ≤ θ ⇒ γk ≤ α(1− δ)

τ + µ
,

then it follows that for k ≥ k0, Lk ≤ θ < 1, which guarantees the convergence of
the iteration sequence {zk}+∞

k=0 generated by inexact modulus iteration for any initial
vector.

Combining the analysis above, we have the following theorem.

Theorem 3.1. If A is of full column rank, then the iteration sequence {xk}∞k=0

generated by modulus-type inner outer iteration Algorithm 2.2 converges to the unique
solution x∗ for any initial vector when

• the inner system is solved exactly;
• or the inner system is solved iteratively with

∥ek∥Ω ≤ γk∥εk∥Ω with γk ≤ α(1− δ)

τ + µ
,

for k ≥ k0, where k0 is an integer and 0 ≤ α < 1.
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4. Two-Stage Hybrid Iterative Methods with Active Set Strategy. In
this section, we propose a two-stage hybrid algorithm that resembles the algorithm
of Moré and Toraldo [25] and Bardsley and Vogel [6] by using modulus iterations to
identify the active set in the first stage, and the CGLS method to solve unconstrained
least squares subproblem only on the current inactive variables in the second stage,
and alternately performing these two stages until convergence.

Suppose xk is the kth iterative solution. Then the active set is defined as

(4.1) A(xk) = {j : xk
j = 0},

and the binding set is defined as

(4.2) B(xk) = {j : xk
j = 0, λk

j ≥ 0},

where λk = −ATrk = −AT(b − Axk) is the Lagrange multiplier, which is also the
gradient vector of the least-squares objective function in (1.2), or the negative residual
of the normal equation (1.3). The corresponding set of free variables is defined as

(4.3) F(xk) = {1, 2, ..., n}\A(xk).

It can be easily obtained from Corollary 2.3 that x∗ is the solution of the NNLS
problem (1.1) if and only if A(x∗) = B(x∗) and ∀j ̸∈ B(x∗), x∗

j > 0 and λ∗
j = 0.

In the first stage, the modulus inner outer iteration method in Algorithm 2.2 is
applied to perform a fast update of the active set. By choosing y0 = xk+1, a sequence
of iterates {yj}∞j=0 is generated until either the modulus iterations fails to update a
new active set when

(4.4) A(yj) = A(yj−1)

is satisfied, or it fails to make sufficient progress in decreasing the objective function
value when

(4.5) |l(yj−1)− l(yj)| ≤ η1 max{|l(yi−1)− l(yi)| : 1 ≤ i < j}

is satisfied, where η1 is a given tolerance and l(y) is defined in (1.5).
Next, we discuss the details of the active set method in the second stage. Let

i1, i2, ..., iň be the elements in F(xk), and the matrix Zk ∈ Rn×ň be the matrix whose
jth column is the ijth column of the n× n identity matrix, j = 1, 2, ..., iň. Then, the
CGLS method is used to compute the minimization subproblem

(4.6) min
w∈Rň

∥A(xk + Zkw)− b∥2.

Denote AF := AZk as the submatrix of A consisting of the columns of A whose indices
belong to F . Then, the subproblem (4.6) is equivalent to the reduced unconstrained
least squares problem

(4.7) min
w∈Rň

lk(w) ≡ ∥AFw − rk∥2.

Note that if A(xk) = A(x∗), where x∗ is a solution of the NNLS (1.1) and w∗ is the
solution of (4.7), then x∗ = xk + Zkw

∗. In a word, if the constraints active at the
exact solution x∗ are known in advance, then the NNLS problem can be solved by
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simply optimizing the least-square function in an unconstrained manner over only the
variables that correspond to the inactive constraints.

Given an initial vector wk+1,0, let the CGLS method generate a sequence of
iterates until

(4.8) lk(w
k+1,j−1)− lk(w

k+1,j) ≤ η2 max{lk(wk+1,i−1)− lk(w
k+1,i) : 1 ≤ i < j}

is satisfied, where η2 is a given tolerance. The stopping criterion (4.8) indicates
that the CGLS method fails to make sufficient progress at the jth step. After setting
wk+1 ≡ wk+1,j , in general we do not set xk+1 = xk+Zkw

k+1 since this may produce
negative elements in xk+1. Similar to the strategy used in Algorithm 1.1, we set

(4.9) xk+1 = P (xk + βmZkw
k+1),

with the smallest integer m ≥ 0 that satisfies the sufficient decrease condition

(4.10) ∥b−Axk+1∥22 ≤ ∥b−Axk∥22 − 2µ(sk)T(xk+1 − xk),

where 0 < β < 1 and 0 ≤ µ < 1. It can be easily calculated that (4.10) is equivalent
to

(4.11) (xk+1 − xk)T((2µ− 1)sk − sk+1) ≤ 0,

which is used in the practical algorithm to avoid evaluating the objective function.
Due to the projection operation in (4.9), more elements in xk+1 are constrained

to zero and thus A(xk) ⊆ A(xk+1). It can be observed that if A(xk+1) = A(x∗),
then B(xk+1) = A(xk+1). Otherwise there exists at least one index i ∈ A(xk+1) and
i ̸∈ B(xk+1), such that xk+1

i = 0 and λk+1
i < 0. Note that it is possible to optimize the

objective further by making xk+1
i > 0 and λk+1

i = 0 at the next iteration, and thereby
x∗
i ̸= 0. Therefore, B(xk+1) = A(xk+1) is a necessary condition for xk+1 = x∗. In

the second stage of the hybrid algorithm, if B(xk+1) = A(xk+1) holds, we update the
active set and then resume the CGLS iterations until either the exact solution x∗ of
NNLS (1.1) is obtained, or the condition B(xk+1) = A(xk+1) is violated. If the latter
case occurs, we go to the first stage.

The two-stage hybrid modulus active set CGLS method is described as follows.
Algorithm 4.1. Hybrid Modulus Active Set CGLS Method

1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.
2. For k = 0, 1, 2, . . . until convergence

3. First Stage Choose y0 = xk and generate {yj}∞j=0 by modulus inner
outer iterations until either (4.4) or (4.5) is satisfied.

4. Set xk = yj and compute rk = b−Axk.
5. Second Stage Update A(xk) and F(xk) and then solve the reduced

subproblem (4.7) by CGLS method until (4.8) is satisfied.
6. Compute xk+1 using (4.9) with sufficient decrease condition (4.10).
7. If B(xk+1) = A(xk+1), set xk = xk+1 and resume the Second Stage;

otherwise go to the First Stage.

8. Endfor
Here, the modulus iterations in the first stage and the CGLS iterations for the

unconstrained least squares problems (4.7) in the second stage for each k = 0, 1, 2, ...
are referred to as the inner iteration of the algorithm, while the for loop is referred
to as the outer iteration. Since the modulus Algorithm 2.2 is an inner outer iteration
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method, the whole Algorithm 4.1 contains three-level iterations. The stopping crite-
rion for the outer iteration is set as (2.10), while for inner iteration, (4.4), (4.5) and
(4.8) are used for two stages, respectively.

Remark that if the modulus inner outer iteration method in the first stage is
replaced by the projected gradient method, then the above algorithm is the gradient
projection conjugate gradient (GPCG) method proposed by Moré and Toraldo [25].

The convergence of Algorithm 4.1 is proved in the following. The idea of the
proof comes from the proof of convergence of the general multilevel algorithm for
optimization problems. See [19] and the references therein.

Theorem 4.1. If A is of full column rank, and the modulus Algorithm 2.2 gener-
ates a nonincreasing objective function sequence, then the iteration sequence {xk}∞k=0

generated by the hybrid modulus active set CGLS iteration Algorithm 4.1 converges to
the unique solution x∗ for any initial vector.
Proof. Since A is of full column rank, q(x) is a strictly convex quadratic function.
If {xk}∞k=0 is the iteration sequence generated by hybrid modulus active set CGLS
iteration Algorithm 4.1, then {q(xk)}∞k=0 is a nonincreasing sequence by the fact that
the modulus algorithm generates a nonincreasing objective function sequence and the
sufficient decrease condition in (4.10). Therefore, {xk}∞k=0 is bounded. In addition,
Theorem 3.1 guarantees that every limit point of {xk} ⊆ Kmod, where Kmod is the
set of iterates generated by the modulus iteration, is a stationary point of the NNLS
(1.1). Hence, there exists a subsequence xkj → x∗, and thus q(xk) → q(x∗).

Next we prove that xk → x∗. Note that the NNLS solution x∗ satisfies the
variational inequality

(x− x∗)T∇(q(x∗)) = (x− x∗)T(ATAx∗ −ATb) ≥ 0,

for any x ≥ 0. Hence,

q(xk)− q(x∗) = (xk − x∗)TATA(xk − x∗) + 2(xk − x∗)T(ATAx∗ −ATb)

≥ λmin∥xk − x∗∥22,

where λmin > 0 is the minimum eigenvalues of ATA. We can easily obtain xk → x∗

for k → ∞. �
Remark that the assumption of generating a nonincreasing sequence in the mod-

ulus inner outer iteration method can be easily satisfied, if we modify step 6 in Algo-
rithm 2.2 as zk+1 = zk+βmwk+1 and choose the smallest integer m ≥ 0 that satisfies
the sufficient decrease condition (4.10).

5. Numerical Experiments. Finally, numerical experiment results are pre-
sented to show the performance of the modulus-type inner outer iteration Algorithm
2.2 and the two-stage hybrid modulus active set CG iteration Algorithm 4.1. We
compare them to the projected gradient Algorithm 1.1, the projected NR-SOR Algo-
rithm 1.2 and the GPCG method in [25] which replaces the modulus method in the
first stage of Algorithm 4.1 with the projected gradient method, for overdetermined
NNLS problems.

All the computations were run on a personal computer with 2.20 GHz CPU and
2 GB memory. The programming language is Matlab 7.8 with machine precision
ϵ = 1.1 × 10−16. The initial vectors for the outer and inner iterations were chosen
to be zero vector. For the modulus-type iteration methods, the parameter matrix
was chosen to be Ω = ωI or Ω = ωdiag(ATA), where ω is a positive parameter.
The abbreviations for all the compared methods are listed in Table 1. Remark that
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Table 1
Abbreviations for the compared methods.

Method Description
PG Projected gradient method (Algorithm 1.1)
PSOR Projected NR-SOR method (Algorithm 1.2)
Mod Modulus method (Algorithm 2.2 with Ω = ωI)
GMod Modulus method (Algorithm 2.2 with Ω = ωdiag(ATA))
GPCG Hybrid projected gradient active set CG method [25]
ModASCG Hybrid modulus active set CG method (Algorithm 4.1 with Ω = ωI)
GModASCG Hybrid modulus active set CG method (Algorithm 4.1 with Ω = ωdiag(ATA))

all the inner least squares problems are solved by the CGLS method, which is easy
to implement and needs small storage requirement. However, for ill-conditioned and
rank-deficient problems, one would recommend the BA-GMRES method [16] with
suitable preconditioners [21] for the solution of unconstrained least squares problems
in order to achieve better convergence with less iteration steps and CPU time.

As mentioned in (2.10), the stopping criterion for the outer iteration of all meth-
ods is chosen as ∥Res(xk)∥2/∥Res(x0)∥2 < tol. For one stage methods including
PG, PSOR, Mod and GMod, the stopping criterion for the inner unconstrained least
squares problems is chosen as (2.11)

∥sk∥2
∥s0∥2

=
∥AT(b−Axk)∥2
∥AT(b−Ax0)∥2

< tolin ≡ 10−2/k,

which means the accuracy required for the solution of the inner systems is refined with
the increase of the outer iterations k. Different tolerances tol and tolin are chosen for
different numerical problems. For two-stage methods including GPCG, ModASCG
and GModASCG, the stopping criteria for the inner iterations are chosen as (4.8),
(4.4) and (4.5). In order to perform a fair comparison among different methods, the
parameters in (4.8), (4.5) and the sufficient decrease condition (4.10) are chosen as

(5.1) η1 = η2 = 0.1, µ = 0.1 and β = 0.9

for all methods. In addition, the maximum number of iteration steps is restricted to
be 10,000.

In the following, we compare the numerical methods on four examples, which are
dense full rank case, sparse full rank case, sparse rank deficient case and nonnegative
image restoration problems.

5.1. Dense full rank case. First, we show how the condition number and the
distribution of singular values of A influence the convergence of the modulus-type
and projection-type methods with a class of dense matrices of the form A = UΣV T,
where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices obtained from the QR
decomposition of random matrices, and Σ ∈ Rm×n is a rectangular diagonal matrix
with diagonal entries σ1 > σ2 > ... > σn, where the ith smallest singular value is

σn−i+1 = σn +
i− 1

n− 1
(σ1 − σn)ρ

n−i, i = 1, ..., n,

with the parameter ρ ∈ (0, 1]. Note that when ρ decreases, the singular values are
tightly clustered towards the smallest singular value σn and are far apart towards the
largest singular value σ1. The idea of generating this kind of matrices is from [13, 16].
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Fig. 1. Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.9, (c) ρ = 0.8 and (d) ρ = 0.7
with σn = 0.01 (κ(A) = 100).

In our numerical experiments, we set m = 200, n = 100, σ1 = 1, σn = 0.01 or
0.0001, ρ = 1, 0.9, 0.8, 0.7, and form inconsistent NNLS problems where the elements
of the vector b are generated randomly following the normal distribution with mean
zero and variance 1, using the Matlab function randn(m, 1). The same b is used for
all the cases.

We compared the four testing methods, PG, PSOR, Mod and GMod, where the
inner unconstrained least squares problems (2.8) were solved by backslash “\” in
Matlab, The relaxation parameter in the PSOR method were chosen as ωPSOR = 1.2,
and the parameters in the Mod and GMod methods were chosen as ω = 0.1.

In Figures 1 and 2, we depict the curves of the relative residual ∥Res(xk)∥2/∥Res(x0)∥2
of the testing methods versus the number of iteration steps with σn = 0.01 and
σn = 0.0001, respectively. In each figure, there are four diagrams denoted by (a), (b),
(c) and (d) corresponding to ρ = 1, 0.9, 0.8 and 0.7, respectively. The tolerances
were chosen as tol = 10−8 and tol = 10−5 for σn = 0.01 and σn = 0.0001, respectively.

From Figure 1, it is observed that the relative residual of the GMod method
decreases much more rapidly than any other iterative method as the iteration steps
increase for the case when the singular values cluster towards the smallest singular
value in (b), (c) and (d). For the case when the singular values are uniformly dis-
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Fig. 2. Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.9, (c) ρ = 0.8 and (d) ρ = 0.7
with σn = 0.0001 (κ(A) = 104).

tributed with ρ = 1, Mod and GMod methods show similar convergence performance.
This shows that the modulus method with Ω = ωdiag(ATA) outperforms projection-
type iterative methods, and the choice of Ω = ωdiag(ATA) in GMod is more efficient
than the choice of Ω = ωI in Mod, which confirms our convergence analysis.

Figure 2 shows similar convergence phenomena as in Figure 1. As the iteration
steps increase, the relative residual of the GMod method decreases much more rapidly
than any other iterative method. Note that the convergence behavior of all four meth-
ods deteriorate as the condition number of the matrix A increases and the singular
values cluster towards σn, as can be seen by comparing Figures 1 and 2. PSOR, Mod
and GMod show relatively smooth residual curves, whereas those of PG are oscillatory
and the convergence behaviors are erratic.

When the inner least squares problems (2.8) are solved by the CGLS method,
in Tables 2 and 3 we compare the six testing methods, PG, Mod, GMod, GPCG,
ModASCG and GModASCG, from the aspects of outer iteration steps, average inner
iteration steps, the number of matrix vector multiplications, and CPU time in seconds.
Note that for two-stage methods, the average inner iterations of the first and second
stages are shown separately. The tolerance for outer iteration is chosen as tol = 10−8

except for the cases (b), (c) and (d) in Table 3, where the tolerance for PG, Mod and
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Table 2
Comparison of the iterative methods (full rank and inconsistent problem with κ(A) = 100).

PG Mod GMod GPCG ModASCG GModASCG

(a) 302 33 32 2 2 2
1.00 8.09 8.63 (4.00,5.00) (3.50,4.50) (3.50,4.50)
908 602 618 150 177 181
0.03 0.01 0.01 ∗0.00 0.00 0.01

(b) − 4,294 256 20 16 26
9.26 34.77 (33.45,1.90) (12.56,1.88) (4.65,1.69)
88,144 18,316 5,985 2,446 3,332
1.31 0.28 0.11 ∗0.06 0.07

(c) − 4,971 322 20 13 12
6.51 28.09 (32.20,2.25) (6.00,2.54) (4.00,2.67)
74,632 18,736 7,441 1,671 1,336
1.08 0.28 0.13 0.05 ∗0.04

(d) − 6,084 367 18 8 10
5.03 25.59 (10.89,2.06) (7.75,3.88) (4.20,2.70)
73,332 19,518 1,961 1,175 1,035
1.06 0.29 0.05 0.03 ∗0.03

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplications.
Fourth row: computational time in seconds.

(tol = 10−8, tolin = 10−2/k)

GMod is tol = 10−3. The tolerance for inner iteration is chosen as tolin = 10−2/k
for all the one stage methods, and the parameters in two-stage methods are chosen
as (5.1). In addition, the parameters in Mod, GMod, ModASCG and GModASCG
methods are chosen as ω = 0.1.

In Tables 2 and 3, the symbol “−” indicates that the iterative method failed
to converge within the maximum iteration steps (10,000), and “∗” denotes the most
efficient method with the least number of matrix vector multiplications and least CPU
time among all the testing methods.

From Table 2, it is observed that GPCG is more efficient than other iterative
methods with less matrix vector multiplications and CPU time when ρ = 1. For ρ < 1,
the two-stage modulus methods including ModASCG and GModASCG outperform
other iterative methods with less computational costs, and the PG method fails to
converge within the maximum iteration steps. Similar phenomena can be observed in
Table 3, namely, the modulus type methods require less matrix vector multiplications
and CPU time than the projection type methods.

For the one stage methods, GMod converges much faster than PG and Mod with
far less outer iterations, more inner iterations, but less computational costs except
for the case ρ = 1 in Tables 2 and 3, where Mod requires slightly less matrix vector
multiplications. For the two-stage methods, the modulus type methods outperform
projection type methods in most cases. However, there is no optimal method between
ModASCG and GModASCG. The reason is that the tolerance η1 = 0.1 used in the
first stage of the two-stage methods are quite large, and thus it is hard to show the
advantage of the modulus method with Ω = ωdiag(ATA).
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Table 3
Comparison of the iterative methods (full rank and inconsistent problem with κ(A) = 104).

PG Mod GMod GPCG ModASCG GModASCG
tol = 10−8

(a) 256 31 31 3 2 2
1.00 8.23 8.77 (2.33,3.67) (3.50,4.50) (3.50,4.00)
770 574 608 168 181 168
0.02 0.01 0.02 ∗0.01 0.01 ∗0.01

tol = 10−3 tol = 10−8

(b) 7,423 846 72 62 149 443
3.41 9.80 28.58 (432.66,2.35) (12.17,1.75) (3.61,1.84)
58,105 18,282 4,262 286,543 54,595 42,666
0.84 0.27 0.06 5.64 0.95 ∗0.88

(c) − 7,315 261 4,400 3,516 842
7.74 33.95 (97.65,1.32) (5.50,1.96) (7.53,2.03)

127,820 18,246 2,462,239 414,452 246,024
1.84 0.27 63.36 8.18 ∗4.45

(d) − − − − 3,932 2,824
(5.84,1.42) (11.85,1.20)
429,613 741,330
∗8.20 13.68

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplications.
Fourth row: computational time in seconds.

Moreover, it can be observed from Tables 2 and 3 that the two-stage methods
require much less computational costs than the corresponding one-stage methods.
This shows that the active set strategy in the second stage of the hybrid algorithm
enhances the performance of PG, Mod and GMod. In Table 3, when the singular
values cluster towards 0, the PG, Mod and GMod methods fail to converge within the
maximum iteration steps for tol = 10−8. This is the reason why we set tol = 10−3

in (b), (c) and (d) for all the one-stage numerical methods. In addition, it is further
confirmed in Tables 2 and 3 that the convergence behavior of all methods deteriorate
as the condition number of the matrix A increases, as was shown in Figures 1 and
2. Note that generally the CPU time show positive correlation with matrix vector
multiplications, since matrix vector multiplication is the main computational cost in
the algorithms. Therefore, the iterative methods with least CPU time have least
number of matrix vector multiplications.

5.2. Sparse full rank case. Next, we generate a class of large, sparse full
column rank matrices, abbreviated as “Randn i”, i = 1, 2, 3, 4, 5, 6, 7, 8, using the
Matlab function “sprandn” with m = 30, 000, n = 3, 000, and the ratio of nonzero
elements density= 0.1%. The condition numbers of these matrices are specified as

κ(Randn i) = 10i, i = 1, 2, 3, 4, 5, 6, 7, 8.

The nonzero element values were generated by a random number generator following
the normal distribution, and the pattern of the nonzero elements is also determined
by a random number generator. In these experiments, we form inconsistent NNLS
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Table 4
Comparison of the iterative methods (full rank and inconsistent problem).

Problem PG Mod GMod GPCG ModASCG GModASCG
tol = 10−5 tol = 10−8

Randn 1 353 49 16 2 2 2
6.39 5.08 13.63 (3.50,4.00) (7.50,4.50) (2.50,4.00)
4,869 598 470 179 229 202
1.61 0.19 0.14 ∗0.07 0.10 0.09

Randn 2 − 2,618 93 7 4 8
5.02 60.85 (5.00,4.86) (19.25,7.75) (4.25,4.13)
31,546 11,506 1,419 1,597 1,485
9.02 3.49 ∗0.43 0.46 0.45

Randn 3 − − 540 30 7 4
143.92 (5.50,6.53) (33.57,10.14) (11.75,10.75)
156,518 11,103 8,458 7,588
43.21 3.05 2.08 ∗1.94

Randn 4 − − 1,523 12 2 3
146.04 (7.33,27.17) (263.00,40.50) (11.67,22.33)
447,896 60,244 27,919 30,387
123.02 13.17 ∗6.66 7.52

Randn 5 − − 524 137 20 3
832.20 (2.12,8.99) (24.30,22.10) (16.00,38.00)
873,194 77,495 41,358 19,466
239.72 19.54 10.03 ∗5.03

Randn 6 − − 450 44 22 10
485.65 (2.55,64.95) (47.91,37.05) (6.70,34.90)
437,988 134,208 99,409 39,087
120.39 33.87 23.15 ∗9.40

Randn 7 − − 1,933 120 88 173
308.59 (2.15,31.29) (8.13,21.51) (4.87,12.93)

1,196,884 109,427 70,037 85,397
424.00 31.55 ∗19.55 24.58

Randn 8 − − 2,137 26 6 4
205.73 (3.81,12.03) (44.50,24.33) (13.50,27.75)
883,554 24,088 20,242 17,633
302.65 5.88 4.74 ∗4.42

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplication.
Fourth row: computational time in seconds.

problems where the elements of the right-hand side vector b are generated randomly
using the Matlab function randn(m, 1). The same b is used for all the cases.

The numerical results are shown in Table 4. The tolerance for outer iterations
for PG, Mod and GMod is chosen as tol = 10−5, while for GPCG, ModASCG and
GModASCG the tolerance is chosen as tol = 10−8. The iteration parameters used in
modulus type methods are set to be ω = 0.1.
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Fig. 3. Relative residual vs. matrix vector multiplications for Randn 4 (inconsistent).

Table 5
Information on the practical test matrices.

Problem m n nnz dens. [%] rank κ(A)

Maragal 3 1,682 858 18,391 1.27 613 1.10× 103

Maragal 4 1,964 1,027 26,719 1.32 801 9.33× 106

Maragal 5 4,654 3,296 93,091 0.61 2,147 1.19× 105

Maragal 6 21,251 10,144 537,694 0.25 8,331 2.91× 106

Maragal 7 46,845 26,525 1,200,537 0.10 20,843 8.98× 106

Maragal 8 60,845 33,093 1,308,415 0.06 15,343 1.76× 109

Table 4 shows that the GPCG method outperforms the other iterative methods
for “Randn 1” and “Randn 2” when the condition number is small, while the two-
stage modulus methods achieve better performance than the other methods with less
matrix vector multiplications and CPU time for the case when the condition number
is larger. This shows that the modulus inner outer iterative method is more effective
and efficient than projected gradient methods in identifying a suitable active set in
the first stage of the hybrid algorithm. Moreover, the PG and Mod methods could
not converge within the maximum outer iteration numbers except for “Randn 1” and
“Randn 2”. The GMod method converged for all the cases with tol = 10−5, although
it requires large computational costs compared to the two-stage methods. Similar to
the previous numerical experiments, it can be concluded that the active set strategy
accelerates the convergence behavior with far less iteration steps and CPU time, and
the convergence behavior of all methods deteriorate as the condition number of the
matrix A increases.

In Figure 3, we plot the relative residual ∥Res(xk)∥2/∥Res(x0)∥2 of the testing
methods versus the number of matrix vector multiplications for Randn 4 inconsistent
problem. The residual curves of the two-stage modulus active set iterative methods
decline much more rapidly than GPCG and other one-stage iterative methods.

5.3. Sparse rank deficient case. In the following, we test a class of rect-
angular matrices from the University of Florida Sparse Matrix Collection [10]. We
construct the rank-deficient overdetermined systems by deleting all the zero rows and



MODULUS-TYPE INNER OUTER ITERATIVE METHODS FOR NNLS PROBLEMS 21

Table 6
Comparison of the iterative methods (rank-deficient and consistent problem).

Problem PG Mod GMod GPCG ModASCG GModASCG

Maragal 3 − 1,507 505 48 39 36
22.33 664.97 (7.21,1.00) (4.62,1.00) (4.56,1.00)
70,348 672,628 6,346 5,406 6,076
3.72 35.07 0.42 ∗0.35 0.40
0.7 0.1 0.3 1.4 0.7

Maragal 4 − 801 446 26 30 12
20.14 470.94 (7.31,1.00) (4.37,1.00) (4.00,1.00)
33,870 420,970 2,832 2,746 2,368
2.37 28.89 0.24 0.24 ∗0.21
0.7 0.1 0.1 0.5 0.8

Maragal 5 − 1,106 546 41 28 21
23.43 2,664.70 (50.20,1.00) (5.00,1.00) (6.48,1.00)
54,040 2,910,980 8,634 3,766 3,738
12.47 724.04 2.20 ∗0.95 1.01
1.4 0.2 0.5 2 0.5

Maragal 6 − 1,972 − 73 93 49
32.71 (13.93,1.00) (5.94,1.00) (6.84,1.00)
132,966 18,379 13,334 13,958
174.47 24.58 ∗18.07 19.22
0.6 0.3 1.1 0.5

Maragal 7 − 1,927 − 138 79 81
38.48 (23.77,1.00) (6.96,1.00) (10.01,1.00)
152,142 19,584 11,094 13,612
510.06 64.24 ∗35.16 47.35
0.6 0.7 1.3 0.2

Maragal 8 − 745 − 39 41 36
20.02 (322.97,1.00) (8.83,1.00) (8.89,1.00)
31,326 44,110 5,908 5,360
111.63 164.78 ∗21.91 26.63
1.3 0.2 0.8 0.4
First row: number of outer iterations.

Second row: average inner iterations (of the first stage, second stage).
Third row: number of matrix vector multiplication.

Fourth row: computational time in seconds.
Fifth row: optimal iteration parameters.

(tol = 10−6, tolin = 10−2/k)

zero columns. The resulting number of rows m, columns n, nonzero elements nnz, as
well as the rank, are given in Table 5.

For the consistent case, we form NNLS problems where the right-hand side vector
b = Ax∗ and x∗ = [1, 0, 1, 0, ...]T ∈ Rn. The numerical results are shown in Table
6, where the tolerance for the outer iteration is chosen to be tol = 10−6 for all
methods. The optimal µ and ω were chosen for projected gradient type methods
and modulus type methods, respectively, by minimizing the number of matrix vector
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Fig. 4. Number of outer iterations, inner iterations and matrix vector multiplication vs. ω for
Mod method in Maragal 3.

multiplications. We chose the optimal µ practically by changing it from 0.1 to 2, and
chose the optimal ω by changing it from 0 to 0.9 with an interval of 0.1.

Table 6 shows that PG fails to converge for all the cases, and the two-stage
modulus methods ModASCG or GModASCG require the least matrix vector multi-
plications and CPU time. Different from the dense full rank case and the sparse full
rank case, Mod outperforms GMod with less average inner iterations and CPU time.
For Maragal 8, Mod is faster than GPCG when ω = 1.3 is chosen. Apart from Mara-
gal 4, ModASCG is faster than GModASCG. Remark that although it is not guaran-
teed theoretically, the modulus type methods including Mod, GMod, ModASCG and
GModASCG converge for the rank deficient problems. This can be explained as the
conditions proposed in the previous convergence analysis are sufficient conditions but
not necessary ones.

Figure 4 shows the number of outer iterations, inner iterations and matrix vector
multiplications vs. ω for the Mod method for Maragal 3. The number of outer
iterations decreases at first, and then increases, while the number of inner iterations
always decreases as ω increases. The optimal parameter with the least number of
matrix vector multiplications was ω∗ = 0.7. Note that the dependence on ω is mild
for 0.5 ≤ ω ≤ 2. Hence, in practice one may set ω = 1.0.

In Figure 5, we plot the relative residual ∥Res(xk)∥2/∥Res(x0)∥2 of the testing
methods versus the number of matrix vector multiplications for Maragal 5 consistent
problem. The residual curves of the two-stage modulus active set iterative methods
decline much more rapidly than GPCG and other one-stage iterative methods as
shown in Figure 3.
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Fig. 5. Relative residual vs. matrix vector multiplications for Maragal 5 (consistent).

For the inconsistent case, we form inconsistent NNLS problems where the elements
of the right-hand side vector b are generated randomly using the Matlab function
randn(m, 1). The numerical results are shown in Table 7, where the tolerance for the
outer iterations is chosen to be tol = 10−6.

Similar to the phenomena observed in Table 6, Table 7 shows that PG fails to
converge within the maximum iteration steps for all the cases, and Mod outperforms
GMod with less average inner iterations and CPU time. It can be concluded that
modulus type methods including Mod, ModASCG and GModASCG outperform the
projection type methods with less computational costs. When the practically optimal
parameters are chosen, even Mod converges faster than GPCG for problems Mara-
gal 4, Maragal 6 and Maragal 8. Compared with the consistent problems in Table 6,
the solution of inconsistent problems require more matrix vector multiplications and
CPU time. In addition, the convergence behavior of all methods deteriorate as the
problem size and the condition number of the matrix A increases.

5.4. Image restoration. Lastly, we apply the proposed method to the solution
of nonnegative constrained ill-posed problems

(5.2) Ax = b subject to x ≥ 0,

where A ∈ Rn×n is a matrix with ill-determined rank and has many singular values
of different orders of magnitude close to the origin. In many linear discrete ill-posed
problems that arise in science and engineering, the right hand side vector is contam-
inated by measurement errors [8]. For example, in image restoration problems, the
right hand side vector is contaminated by noise, and the desired solution x whose
entries represent pixels values is known to be nonnegative. Hence, (5.2) is generally
inconsistent and thus one has to solve a NNLS problem with some regularization.
Here, we use the Tikhonov regularization (i.e., stabilization with an additive penalty
term [14])

(5.3) min
x∈Rn

∥Ax− b∥22 + α∥x∥22 ≡
∥∥∥∥[ A√

αI

]
x−

[
b
0

]∥∥∥∥2
2

subject to x ≥ 0,
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Table 7
Comparison of the iterative methods (rank-deficient and inconsistent problem).

Problem PG Mod GMod GPCG ModASCG GModASCG

Maragal 3 − 875 590 24 13 17
34.63 578.56 (86.33,1.00) (16.15,1.08) (22.94,1.00)
62,346 683,884 28,446 10,146 13,158
3.26 35.24 1.57 ∗0.57 0.77
0.6 0.1 0.1 0.6 0.1

Maragal 4 − 822 436 66 33 26
35.06 889.40 (152.56,1.00) (4.82,1.00) (5.62,1.00)
59,278 776,430 129,807 5,602 7,424
4.08 53.17 9.61 ∗0.43 0.56
0.5 0.1 0.5 3 0.9

Maragal 5 − 649 569 24 14 15
37.38 2,092.10 (94.58,1.00) (13.71,1.00) (26.07,1.00)
49,818 2,381,966 30,736 12,622 20,090
11.45 547.63 6.91 ∗2.79 4.64
0.8 0.2 0.1 0.2 0.1

Maragal 6 − 1,105 − 110 40 63
43.43 (70.54,1.00) (4.46,1.00) (4.92,1.00)
98,182 123,023 7,548 10,764
127.39 161.32 ∗9.71 14.64
0.6 0.8 3.5 0.7

Maragal 7 − 1,210 − 136 51 62
42.33 (42.97,1.00) (9.65,1.00) (4.52,1.00)
104,864 67,490 19,062 11,674
359.51 238.37 57.22 ∗39.92
0.8 0.6 3 0.5

Maragal 8 − 735 − 122 3,716 2,121
39.34 (182.32,1.00) (2.59,1.00) (4.55,1.00)
59,296 381,421 116,542 106,202
∗223.67 2,508.94 519.81 476.51
0.8 0.3 1.3 1.9
First row: number of outer iterations.

Second row: average inner iterations (of the first stage, second stage).
Third row: number of matrix vector multiplication.

Fourth row: computational time in seconds.
Fifth row: optimal iteration parameter ω.

(tol = 10−6, tolin = 10−2/k)

where α > 0 is the regularization parameter, since it is convenient for comparing the
efficiency of the different NNLS solvers.

We test the numerical methods PG, Mod, GPCG and ModASCG on image
restoration problems, which come from Nagy’s Matlab toolbox “RestoreTools” [4].
The modulus type methods with Ω = ωdiag(ATA) are not applied here since it re-
quires large computational costs to obtain the diagonal elements of ATA. Some basic
definitions in image restoration are shown in Table 8. Note that the matrix A is deter-



MODULUS-TYPE INNER OUTER ITERATIVE METHODS FOR NNLS PROBLEMS 25

Table 8
Definitions in image restoration.

A blurring operator
x̂ noise- and blur-free image

b̂ = Ax̂ blurred noise-free image
e noise

b = b̂+ e blurred and noisy image

γ = ∥e∥2/∥b̂∥2 noise level

Fig. 6. The exact image (left), PSF function (middle) and large blurred and noisy image (right)
of test problem “AtmosphericBlur”.

mined by the point spread function. Vector e is generated with normally distributed
entries with zero mean by Matlab. The noise level δ is set to be 5% and the regular-
ization parameter is set to be α = 10−4. The parameters in Mod and ModASCG are
set to be ω = 0.1. The relative error of the restored image is defined as

Error =
∥xk − x̂∥2

∥x̂∥2
.

In Figures 6 and 7, the exact image and the blurred and noisy image of test
problems “AtmosphericBlur” and “Text” are shown, respectively. Moreover, in Figure
8, we depict the relative error curves of four testing methods versus the number of
outer iterations for the two image restoration problems, respectively. In Figures 9 and
10, the restored images are shown.

From Figure 8, it is observed that the ModASCG method obtains the smallest
error, and thus the most accurate restored images at the fewest outer iterations. For
“AtmosphericBlur” problem, the relative error curves of PG and Mod can not reach
the minimum point within 30 steps. The relative error of the two-stage methods
decreases in the first few iterations, then increases with more iterations. The opti-
mal number of outer iterations for GPCG and ModASCG are 5 and 4, respectively.
Similar phenomena can be observed in “Text” problem. The modulus type methods
outperform projection type methods by obtaining more accurate solutions with same
computational costs.

6. Concluding Remarks. A new class of inner outer iterative methods for
nonnegative constrained least squares (NNLS) problem (1.1) was proposed based on
the modulus transformation for the nonnegative variables. Thus, the solution of
the NNLS problem (1.1) can be transformed into the solution of a sequence of un-
constrained least squares problems. Theoretical convergence analysis was presented
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Fig. 7. The exact image (left), PSF function (middle) and large blurred and noisy image (right)
of test problem “Text”.
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Fig. 8. Relative error vs. outer iterations for test problems “AtmosphericBlur” (left) and
“Text” (right).

when the inner system is solved either exactly or iteratively, and the choice of the
parameter matrix was discussed for the proposed methods. Moreover, we proposed a
two-stage hybrid modulus algorithm by incorporating the active set strategy, which
contains two stages where the first stage consists of modulus iterations to identify
the active set, while the second stage solves the reduced unconstrained least squares
problems only on the inactive variables, and projects the solution into the nonneg-
ative region. Numerical experiments show the efficiency of the proposed modulus
methods compared to projection gradient-type methods with less iteration steps and
CPU time for full column rank and rank deficient overdetermined NNLS problems.
The modulus method is not only more efficient for identifying a suitable active set, but
also outperforms projection gradient-type methods with less iteration steps and CPU
time when the coefficient matrix has ill-determined rank with large condition number
and the singular values cluster near zero. We also applied our modulus methods to
nonnegative constrained ill-posed image restoration problems, and the numerical re-
sults showed that the proposed method gives more accurate results compared to the
projected gradient type methods.

Appendix A. Equivalence between the nonnegative constrained quadratic
programming and the linear complementarity problem in Theorem 2.1. If
x∗ is a solution of LCP(B, c), then it holds that

x∗ ≥ 0, Bx∗ + c ≥ 0, and (x∗)T(Bx∗ + c) = 0.
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(a) Error=0.3814 (b) Error=0.2783

(c) Error=0.2775 (d) Error=0.2747

Fig. 9. Restored images by (a) PG, (b) Mod, (c) GPCG and (d) ModASCG methods for test
problem “AtmosphericBlur”.

It is observed that for any x ≥ 0,

1

2
xTBx+ cTx−

(
1

2
(x∗)TBx∗ + cTx∗

)
=

1

2
(x− x∗)TB(x− x∗) + xT(Bx∗ + c)− (x∗)T(Bx∗ + c)

=
1

2
(x− x∗)TB(x− x∗) + xT(Bx∗ + c) ≥ 0.

The last inequality holds by the fact that B is symmetric positive semidefinite. Hence,
we have

1

2
xTBx+ cTx ≥ 1

2
(x∗)TBx∗ + cTx∗,

which indicates that x∗ is a minimization solution of NNQP(B, c).
If x∗ is a solution of NNQP(B, c), then x∗ satisfies the necessary KKT conditions

as follows. There exists f ∈ Rn, called KKT multipliers, such that
Stationarity

∇
(
1

2
xTBx+ cTx− fTx

) ∣∣∣∣
x=x∗

= Bx∗ + c− f = 0,

Primal and Dual feasibility

x∗ ≥ 0, f ≥ 0,
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(a) Error=0.3198 (b) Error=0.2945

(c) Error=0.2762 (d) Error=0.2763

Fig. 10. Restored images by (a) PG, (b) Mod, (c) GPCG and (d) ModASCG methods for test
problem “Text”.

Complementarity slackness

(x∗)Tf = 0.

By collecting the KKT conditions above, it is derived that x∗ satisfies LCP(B, c).
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