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Abstract For many large-scale applications in data mining, machine learning,
and multimedia, fundamental operations such as similarity search, retrieval,
classification, clustering, and anomaly detection generally suffer from an ef-
fect known as the ‘curse of dimensionality’. As the dimensionality of the data
increases, distance values tend to become less discriminative due to their in-
creasing relative concentration about the mean of their distribution. For this
reason, researchers have considered the analysis of similarity applications in
terms of measures of the intrinsic dimensionality (ID) of the data sets. This
theory paper is concerned with a generalization of a discrete measure of ID,
the expansion dimension, to the case of continuous distance distributions. This
notion of the ID of a distance distribution is shown to precisely coincide with
a natural notion of the indiscriminability of distances, thereby establishing a
theoretically-founded relationship among probability density, the cumulative
density (cumulative probability divided by distance), intrinsic dimensionality,
and discriminability. The indiscriminability function proposed in this paper
is shown to completely determine an extreme-value-theoretic representation
of the distance distribution. From this representation, a characterization in
terms of continuous ID is derived for the notions of outlierness and inlierness
of data, as well as the hubness phenomenon in data sets.
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1 Introduction

In such areas as search and retrieval, data mining, machine learning, multime-
dia, recommendation systems, and bioinformatics, the efficiency and efficacy
of many fundamental operations commonly depend on the interplay between
measures of data similarity and the choice of features by which objects are rep-
resented. Similarity search, perhaps the most fundamental operation involving
similarity measures, is ubiquitous in data analysis tasks such as clustering,
k-nearest-neighbor classification, and anomaly detection, as well as content-
based multimedia applications.

One of the most common strategies employed in similarity search is that
of neighborhood expansion, in which the radius of the search (or, equivalently,
the number of points visited) is increased until a neighborhood of the desired
size has been identified. Even when this radius is known in advance, the actual
number of points visited can be considerably larger than the target neighbor-
hood size, particularly if the similarity measure is not discriminative. A highly
indiscriminative similarity measure is more susceptible to measurement error,
and (in the case of distance metrics) is less suited to classical methods for
search path pruning based on the triangle inequality.

1.1 Discriminability and Dimensionality

Much anecdotal and empirical evidence exists linking the discriminability of
similarity measures and the dimensionality of data sets [5,6,36,79,80]. When
the number of features (the ‘representational dimension’) is high, similarity val-
ues tend to concentrate strongly about their respective means, a phenomenon
widely referred to as the ‘curse of dimensionality’. In the face of this concen-
tration effect, a very slight relative increase in the search radius can result in
the discovery of an unmanageably-large number of new objects. Consequently,
as the dimensionality increases, the discriminative ability of similarity mea-
sures can diminish to the point where methods that depend on them lose their
effectiveness altogether [6,59,80]. Most theoretical studies of the relationship
between discriminability and dimensionality have hitherto been restricted to
demonstrations of the concentration effect for certain classes of distributions
and distances.

In the design and analysis of similarity applications, measures or crite-
ria often directly or indirectly express some notion of the discriminability of
similarity measures within neighborhoods. Of the many examples in the lit-
erature, three of the most prominent are as follows. Some spectral feature
selection criteria [55], such as the Laplacian score [31], measure the discrim-
inative power of candidate feature in terms of the variance of feature values.
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The distance ratio (aspect ratio), defined as the ratio between the largest and
smallest pairwise distances within a data set, has been applied to the analysis
of nearest-neighbor search [12]. Disorder inequalities, relaxations of the usual
metric triangle inequality, have been proposed for the analysis of combinato-
rial search algorithms making use of rankings of data points with respect to a
query [23]. The degree of relaxation of the disorder inequality can be regarded
as a measure of the discriminability of the data.

The curse of dimensionality has also been linked to the phenomenon of
hubness in data sets [62,63]. Given a finite dataset S ⊆ Rm and an integer
parameter k, the hubness of a point x ∈ S can be defined as the number of
objects of S whose k-nearest neighbor (k-NN) set contains x — or equiva-
lently, as the size of the reverse k-NN set of x. The hubs of the data set are
defined to be those objects having unusually high hubness values; the data set
as a whole is said to have high hubness if it contains many hubs. The hubness
phenomenon has been shown to have an influence on a wide range of tasks
in data mining, machine learning, and indexing [63], including clustering [73],
image data analysis [72], collaborative filtering [48,58], text retrieval [64], time
series classification [65], and content-based music retrieval [19,47]. It has been
empirically observed that hubness tends to increase with both the dimension-
ality of the data set, and variations in density within the data set [63]; as such,
high hubness can thus be regarded as an indicator of the degree of difficulty
of indexing and analyzing data.

In an attempt to alleviate the effects of high dimensionality, and thereby
improve the discriminability of data, simpler representations of the data are
often sought by means of a number of supervised or unsupervised learning tech-
niques. One of the earliest and most well-established simplification strategies
is dimensional reduction, which seeks a projection to a lower-dimensional sub-
space that minimizes the distortion of the data. Feature selection, the elimina-
tion of redundant or irrelevant features, produces a projective subspace that is
axis-aligned [54]. In feature extraction, a new (smaller) feature set is generated
via a linear transformation of the original features, resulting in an arbitrarily-
oriented projective subspace; the most well-known feature extraction methods
are PCA and its variants [10,20,60,68,76]. Multidimensional scaling deter-
mines a projection that approximately preserves the local distances within the
data [67,71]. Manifold learning [67,70,75] and other non-linear extensions [46]
resemble projective methods in that they attempt to fit a more complex (yet
still lower-dimensional) manifold to the data. With Kernel PCA [70], the data
is implicitly transformed into a higher-dimensional setting within which PCA
can be applied. In Locally-Linear Embedding (LLE) [67], the data is modeled
in terms of a collection of linear tangent spaces to an underlying manifold.
Related to manifold learning, regression-based similarity learning [81] uses re-
gression techniques on pairs of data objects in order to learn a simpler, more
discriminative similarity function with the greatest possible level of agreement
with the original similarity measure. For a recent survey of distance metric
learning for data mining applications, see [78].
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In general, dimensional reduction requires that an appropriate dimension
for the reduced space (or approximating manifold) must be either supplied or
learned, ideally so as to minimize the error or loss of information incurred. The
dimension of the surface that best approximates the data can be regarded as
an indication of the intrinsic dimensionality of the data set, or of the minimum
number of latent variables needed to represent the data. Intrinsic dimension-
ality thus serves as an important natural measure of the complexity of data.

1.2 Characterizations of Intrinsic Dimensionality

Over the past decades, many characterizations of the intrinsic dimensionality
of sets have been proposed. The earliest theoretical measures of intrinsic di-
mensionality, such as the classical Hausdorff dimension, Minkowski-Bouligand
or ’box counting’ dimension, and packing dimension, associate a non-negative
real number to metric spaces in terms of their covering or packing proper-
ties (for a general reference, see [17]). Although they are of significant the-
oretical importance, they are impractical for direct use in data mining ap-
plications, as the value of such measures is zero for any finite set. However,
these theoretical measures have served as the foundation of practical methods
for finite data samples, including the correlation dimension [24], and ‘fractal’
methods which estimate intrinsic dimensionality from the space-filling capac-
ity or self-similarity properties of the data [11,18,26]. Other practical tech-
niques for the estimation of intrinsic dimensionality include the topological
approaches, which estimate the basis dimension of the tangent space of a data
manifold from local samples [10,20,60,68,76]. In their attempt to determine
lower-dimensional projective spaces or surfaces that approximate the data with
minimum error, projection-based learning methods such as PCA can produce
as a byproduct an estimate of the intrinsic dimension of the data. Parametric
modeling and estimation of distribution often allow for estimators of intrinsic
dimension to be derived [50,52].

An important family of dimensional models, including the expansion di-
mension (ED) [45], generalized expansion dimension (GED) [35], and minimum
neighbor distance (MiND) models [68], quantify the intrinsic dimensionality
in the vicinity of a point of interest in the data domain. More precisely, expan-
sion models of dimensionality assess the rate of growth in the number of data
objects encountered as the distance from the point increases. For example, in
Euclidean spaces the volume of an m-dimensional set grows proportionally to
rm when its size is scaled by a factor of r — from this rate of volume growth
with distance, the dimension m can be deduced. Expansion models of dimen-
sionality provide a local view of the dimensional structure of the data, as their
estimation is restricted to a neighborhood of the point of interest. They hold
an advantage over parametric models in that they require no explicit knowl-
edge of the underlying global data distribution. Expansion models also have
the advantage of computational efficiency: as they require only an ordered
list of the neighborhood distance values, no expensive vector or matrix oper-
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ations are required for the computation of estimates. Expansion models have
seen applications in the design and analysis of index structures for similarity
search [7,37–40,45], and heuristics for anomaly detection [77], as well as in
manifold learning.

From the perspective of a given query point, the smallest distances en-
countered in a query result could be regarded as ‘extreme events’ associated
with the lower tail of an underlying distance distribution. The modeling of
neighborhood distance values can thus be investigated from the viewpoint of
extreme value theory (EVT), a statistical discipline concerned with the ex-
treme behavior of stochastic processes. EVT has seen widespread applications
in such areas as civil engineering [29], operations research [14,57,74], risk as-
sessment [51], material sciences [16,25], bioinformatics [66], geophysics [51],
and multimedia [21]. One of the pillars of EVT, a theorem independently
proven by Balkema and de Haans [2] and by Pickands [61], states that under
very reasonable assumptions, the tails of continuous probability distributions
converge to a form of power-law distribution, the Generalized Pareto Distri-
bution (GPD) [13]. In an equivalent (and much earlier) formulation of EVT
due to Karamata [43], the cumulative distribution function of a tail distri-
bution can be represented in terms of a ‘regularly varying’ function whose
dominant factor is a polynomial in the distance [13]; the degree (or ‘index’) of
this polynomial factor determines the shape parameter of the associated GPD.
The index has been interpreted as a form of dimension within statistical con-
texts [13]. Many practical methods have been developed for the estimation of
the index, including the well-known Hill estimator and its variants [4,32,42]
(for a survey, see [22]).

1.3 Contributions

In this theoretical paper, a general EVT framework for continuous distance
distributions is proposed that formally unites the notions of intrinsic dimen-
sionality and data discriminability, in a manner suitable for the non-parametric
or unsupervised learning applications that often arise in data mining contexts
and other applications of content-based similarity. The specific original con-
tributions of the paper include the following:

– In Section 2, the (generalized) expansion dimension is extended to a sta-
tistical setting, in which the distribution of distances to a query point is
modeled in terms of a continuous random variable X. This continuous
model of intrinsic dimensionality (here referred to simply as ‘ID’) is shown
to be equivalent to that of a model of the indiscriminability of the under-
lying continuous distance distribution, expressed as a function IDFX

(x) of
the distance x ∈ [0,∞). A preliminary version of this work (Sections 2.1
to 2.6) previously appeared as [34]. The relationship between ID and the
Hausdorff dimension is also established here, in Section 2.7.

– In Section 3, a representation theorem is derived under the ID model, which
shows that under reasonable assumptions, every continuous distance distri-
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bution is completely determined by its associated ID function. A second-
order formulation of ID is then introduced, and shown to be a natural
measure of the inlierness or outlierness of the reference point of the dis-
tance distribution.

– In Section 4, the theory developed in Section 3 is revealed to be a reworking
of extreme value theory for the case of continuous distance distributions.
The representation theorem is shown to be a special case of the Kara-
mata representation for short-tailed distributions, with all elements of the
Karamata representation being given an interpretation in terms of ID. A
well-studied second-order EVT parameter governing the convergence rate
of extreme values is also given an interpretation in terms of higher-order
ID.

– In Section 5, an explanation of the hubness phenomenon is offered in terms
of ID. First, a definition is stated of the hubness of a collection of distance
distributions, for which the original formulation of data hubness can be
seen as an estimator. Second, the ID representation of the distribution is
applied to establish a relationship between ID and local density on the one
hand, and the distributional hubness on the other.

– In Section 6, the paper concludes with a discussion of potential applications
of ID, as well as future research directions.

2 Data Discriminability and Intrinsic Dimensionality

In this section, we shall see how the (generalized) expansion dimension pro-
posed for finite data sets can be extended to the setting of continuous distribu-
tions of distance values. The measure of intrinsic dimensionality proposed for
this distributional model will be shown to be equivalent to a natural measure
of the indiscriminability of the distance function. Other fundamental prop-
erties of this measure will also be derived. We begin the discussion with an
overview of the expansion dimension and its applications.

2.1 Expansion Dimension

In [45], Karger and Ruhl introduced a measure of intrinsic dimensionality as a
way of analyzing the performance of a local search strategy for handling nearest
neighbor queries. The complexity of their method depended heavily on the
rate at which the number of visited elements grew as the search expanded. For
their analysis, they limited their attention to data sets satisfying the following
smooth-growth property. Formally, let (Rm, d) be a domain for which some
non-negative distance function d is defined. Given a set of objects S drawn
from the domain, let

BS(v, r) = {w ∈ S | d(v, w) ≤ r}
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be the set of elements of S contained in the closed ball of radius r centered at
v ∈ S. Given a query set U , S is said to have (b,∆)-expansion if for all q ∈ U
and r > 0,

|BS(q, r)| ≥ b =⇒ |BS(q, 2r)| ≤ ∆ · |BS(q, r)| .

The expansion rate δ of S is the minimum value of ∆ such that the above
condition holds over all q ∈ U , subject to the choice of some minimum ball
set size b. For cases where d is not a distance metric, the expansion rate has
been shown to be closely related to the degree of relaxation of the disorder
inequality [53].

Imagine now that the dimension m has been hidden from us. For the Eu-
clidean distance metric in Rm, doubling the radius of a sphere would increase
its volume by a factor of 2m. Were we inclined to measure the volumes of
these two spheres, applying the base-2 logarithm to their ratio would recover
the dimension m.

This way of discovering the true dimension of the vector space is of course
neither necessary or practical. However, by estimating the volumes of spheres
by the numbers of points of S that they contain, the value ED = log2 δ would
then serve as a measure of the intrinsic dimensionality of S. In other words,
ED can be regarded as the smallest dimension that could accommodate a
uniformly-distributed data set having the same maximum growth rate as S.
The quantity ED, known as the expansion dimension of S, can differ greatly
from the representational dimension m: as pointed out in [45], subsets in very
high-dimensional spaces can have very low expansion dimensions, whereas even
for one-dimensional data the expansion rate can be logarithmic in the size of
S. The expansion dimension has been shown to be related to another measure
of intrinsic dimensionality based on ball coverage, the doubling dimension [26].

The earliest uses of the expansion rate and expansion dimension have been
in the complexity analyses of several similarity search structures [7,39,40,45,
49]; in each case, the number of distance comparisons performed was shown
to depend on ED and not on m. Of these structures, the Cover Tree [7] and
Rank Cover Tree (RCT) [39,40] indices are noteworthy in that their query
execution costs depend only on a relatively small constant number of factors
of the expansion rate: for the Cover Tree, δ12, and for the RCT, as low as δ4

or δ5.

Generalizations of the expansion dimension have also been proposed in
which the radii of the enclosing balls could be chosen with a ratio other than 2.
In [77], a heuristic for outlier detection was presented in which approximations
of the well-known local outlier factor (LOF) score [9,83] were calculated after
projection to a lower-dimensional space. The quality of the approximation was
shown to depend on a measure of expansion dimension, in which the ratio of
the ball radii was taken to be a function of the targeted approximation error
bound.

The generalized expansion dimension (GED) has very recently found appli-
cation not only in complexity analysis, but also as a basis for guiding algorith-
mic decisions at runtime for a form of adaptive search, the so-called multi-step
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similarity search problem [37,38]. Multi-step search accepts a user-supplied
‘target’ distance function together with the query object, making use of a
search index constructed according to a second distance function; the only
constraint on the target distance function is that it must be bounded from
below by the distance used to precompute the index. In [37], a heuristic for
the multi-step search problem was proposed, utilizing generalized expansion
dimension values as the basis of an early termination condition. More infor-
mation on the estimation of generalized expansion dimension can be found
in [35].

2.2 Intrinsic Dimensionality of Distance Distributions

The generalized expansion dimension can be adapted for the continuous dis-
tributions discussed in Section 2.3, by replacing the notion of ball set size by
that of probability measure. With this substitution, we can quantify the local
intrinsic dimensionality of a feature space exclusively in terms of a distribution
of a non-negative random variable X with support [0,∞), without knowledge
of the features themselves. Henceforth, we will restrict our attention to the
case where X is continuous ‘almost everywhere’ — that is, throughout the
support range [0,∞) with the possible exception of a set of measure zero.

The variable X is said to have probability density fX, where fX is a non-
negative Lebesgue-integrable function, if and only if

Pr[a ≤ X ≤ b] =

∫ b

x=a

fX(x) dx ,

for any a, b ∈ [0,∞) such that a ≤ b. The corresponding cumulative distribu-
tion function FX is defined as

FX(x) = Pr[X ≤ x] =

∫ x

u=0

fX(u) du .

Accordingly, whenever X is absolutely continuous at x, FX is differentiable at
x, and its first-order derivative is fX(x).

As a motivating example from m-dimensional Euclidean space, consider
the situation which the volumes V1 and V2 are given for two balls of differing
radii r1 and r2, respectively. The dimension m can be deduced from the ratios
of the volumes and the distances, as follows:

V2
V1

=

(
r2
r1

)m
=⇒ m =

lnV2 − lnV1
ln r2 − ln r1

.

For finite data sets, GED formulations are obtained by estimating the volume
of balls by the numbers of points they enclose. In contrast, for continuous
random distance variables, the notion of volume is naturally analogous to
that of probability measure. Intrinsic dimensionality can then be modeled as
a function of distance X = x, by letting the radii of the two balls be r1 = x
and r2 = (1 + ε)x, and letting ε→ 0+.
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Definition 1 Let X be an absolutely continuous random distance variable.
For any x such that FX(x) > 0, the (continuous) intrinsic dimensionality of
X at x is given by

IntrDimX(x) , lim
ε→0+

lnFX((1 + ε)x)− lnFX(x)

ln((1 + ε)x)− lnx

= lim
ε→0+

lnFX((1 + ε)x)− lnFX(x)

ln(1 + ε)
,

wherever the limit exists.

2.3 Indiscriminability of Distance Distributions

A natural way of assessing the discriminability of a random distance variable
X is in terms of the relative rate at which probability measure increases as the
distance increases. If X is discriminative at a given distance r, then expanding
the distance by some factor should incur a small increase in the probability
measure (or, equivalently for data sets, the expected number of data points in
the neighborhood of the reference point). Conversely, if X is indiscriminative
at distance r, then the increase in probability measure would be large.

For applications in which we are concerned with relative increases in the
cost of exploring a neighborhood set (such as similarity search), or when mea-
surement error is a concern, or when the scale of distances is not in itself
meaningful, it is appropriate to consider relative increases in distance values
and probability measure, rather than absolute increases. Accordingly, we pro-
pose the following definition of the indiscriminability of X.

Definition 2 Let X be an absolutely continuous random distance variable.
For any x such that FX(x) > 0, the indiscriminability of X at x is given by

InDiscrX(x) , lim
ε→0+

[
(FX((1 + ε)x)− FX(x))

FX(x)

/
(1 + ε)x− x

x

]
= lim

ε→0+

FX((1 + ε)x)− FX(x)

ε · FX(x)
,

wherever the limit exists.

Note that this definition of indiscriminability is unitless, and does not de-
pend on statistical parameters of the distribution, such as a mean or variance.

2.4 Equivalence of Indiscriminability and Intrinsic Dimensionality

The following fundamental theorem shows that for continuous distance dis-
tributions with differentiable cumulative distribution functions, the notions of
indiscriminability and intrinsic dimensionality presented earlier are one and
the same.
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Theorem 1 Let X be an absolutely continuous random distance variable. If
FX is both positive and differentiable at x, then

IntrDimX(x) = InDiscrX(x) =
x · fX(x)

FX(x)
, IDFX

(x).

Proof Since X is absolutely continuous, and since FX is differentiable at x, we
may apply l’Hôpital’s rule to the limits in the definitions of both the intrinsic
dimensionality and the indiscriminability. In the former case we obtain

IntrDimX(x) = lim
ε→0+

∂
∂ε (lnFX((1 + ε)x)− lnFX(x))

∂
∂ε ln(1 + ε)

= lim
ε→0+

(1 + ε) · x · fX((1 + ε)x)

FX((1 + ε)x)

=
x · fX(x)

FX(x)
,

and in the latter case as well,

InDiscrX(x) = lim
ε→0+

∂
∂ε (FX((1 + ε)x)− FX(x))

∂
∂ε (ε · FX(x))

= lim
ε→0+

x · fX((1 + ε)x)

FX(x)

=
x · fX(x)

FX(x)
.

As FX is positive and differentiable at x, the existence of both limits is guar-
anteed. ut

IDFX
need not be defined for all x ∈ [0,∞); however, since X is assumed to

be absolutely continuous, IDFX
exists almost everywhere over the range where

FX is positive. Moreover, we can extend the definition to the case where x = 0,
by taking the limit of IDFX

(x) as x→ 0+, whenever this limit exists:

IDFX
(0) , lim

x→0+
IDFX

(x) .

For continuous distance distributions, the functional IDFX
can be viewed

interchangeably as the intrinsic dimensionality or indiscriminability of FX. The
acronym ‘ID’ can thus refer to ‘Intrinsic Dimensionality’ or ‘InDiscriminabil-
ity’, without the need to make the distinction explicit. Henceforth, it will also
be convenient to extend the functional notation to apply to any real-valued
function g(x) that is differentiable at x, as follows:

IDg(x) , lim
y→x

y · g′(y)

g(y)
,

whenever the limit exists.
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2.5 Transformations of Variable

In some similarity applications, transformations of the underlying distance
measures are sometimes sought so as to improve the overall performance of
tasks that depend upon them. Here, we show that for reasonably well-behaved
transformations, the ID of a continuous distance distribution can be decom-
posed into two factors: the ID of the transformed distribution, and the ID of
the transform itself.

Consider now a strictly increasing transform g : [0,∞) → [0,∞); if g is
applied to the continuous random distance variable X, the result is a random
variable Y = g(X) with cumulative distribution function FY such that (FY ◦
g)(x) = FX(x) for all x ≥ 0. Note that FY is well-defined, since FY(y) =
FY(g(0)) = FX(0) = 0 for all 0 ≤ y ≤ g(0), and since limx→∞ FY(g(x)) =
limx→∞ FX(x) = 1.

Theorem 2 Let X and Y be random distance variables with Y = g(X), for
a strictly increasing function g as defined above. If FX and g are both positive
and differentiable at x, then

IDFX
(x) = IDFY◦g(x) = IDg(x) · IDFY

(g(x)).

Proof The assumption that FX and g are both differentiable at x implies that
FY ◦ g is differentiable at x. Using the chain rule, we obtain

(FY ◦ g)′(x) =
d

dx
FY(g(x)) = g′(x) · fY(g(x)).

Since by assumption g(x) > 0 and (FY ◦ g)(x) = FX(x) > 0, applying Theo-
rem 1 yields

IDFY◦g(x) =
x · (FY ◦ g)′(x)

(FY ◦ g)(x)
=
x · g′(x) · fY(g(x))

FY(g(x))

=
x · g′(x)

g(x)
· g(x) · fY(g(x))

FY(g(x))

= IDg(x) · IDFY
(g(x)).

as required. ut

Note that the proof of Theorem 2 does not strictly require that FY be a
cumulative distribution function — the proof also holds when FY and g are
replaced by any two positive-valued differentiable functions. Several interesting
choices of transformation are shown in Table 1.

2.6 Joint Probability Distributions

Given a collection of continuous random distance variables X = {Xi| 1≤ i≤m}
(for m ≥ 1), their joint probability distribution is determined by a multivari-
ate cumulative distribution function F∧X(x) = Pr[

∧m
i=1(Xi≤xi)], with corre-

sponding probability density function f∧X. If the distance associated with vec-
tor x = (x1, x2, . . . , xm) is the vector norm ‖x‖ (not necessarily Euclidean), the
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Table 1 Effects of various distance transformations on ID, where c and m are positive
constants.

g(x) = cxm IDFX
(x) = m · IDFY

(cxm)

g(x) = ecx
m

IDFX
(x) = cmxm · IDFY

(ecx
m

)
g(x) = x + c IDFX

(x) = x
x+c

· IDFY
(x + c)

g(x) = c ln(x + 1) IDFX
(x) = x

(x+1) ln(x+1)
· IDFY

(c ln(x + 1))

definitions of intrinsic dimensionality and indiscriminability can be extended
to the multivariate case in a natural way.

Definition 3 Let X = {Xi| 1≤ i≤m} be a collection of m ≥ 1 absolutely
continuous random distance variables. For any x such that F∧X(x) > 0, the
(joint) intrinsic dimensionality of X at x is given by

IntrDim∧X(x) = lim
ε→0+

lnF∧X((1 + ε)x)− lnF∧X(x)

ln((1 + ε)‖x‖)− ln ‖x‖

= lim
ε→0+

lnF∧X((1 + ε)x)− lnF∧X(x)

ln(1 + ε)
,

wherever the limit exists.

Definition 4 Let X = {Xi| 1≤ i≤m} be a collection of m ≥ 1 absolutely
continuous random distance variables. For any x such that F∧X(x) > 0, the
(joint) indiscriminability of X at x is given by

InDiscr∧X(x) = lim
ε→0+

(
F∧X((1 + ε)x)− F∧X(x)

F∧X(x)

/
(1 + ε)‖x‖ − ‖x‖

‖x‖

)
= lim

ε→0+

F∧X((1 + ε)x)− F∧X(x)

ε · F∧X(x)
,

wherever the limit exists.

Theorem 3 Let X = {Xi| 1≤ i≤m} be a collection of m ≥ 1 absolutely
continuous random distance variables. If F∧X is both positive and differentiable
at x, then

IntrDim∧X(x) = InDiscr∧X(x) =

m∑
i=1

IDFXi
(xi) , ID∧X(x).

Proof Theorem 1 implies that the result holds for the case where m = 1. For
the remainder of the proof, we will assume that m > 1.

Since F∧X is both positive and differentiable at x, we may apply l’Hôpital’s
rule to the limits of Definitions 3 and 4 (using the chain rule for multivariate
differentiation). Letting v = (1+ε)x, the indiscriminability of X thus becomes

InDiscr∧X(x) = lim
ε→0+

∑m
i=1

∂F∧X(v)
∂vi

· ∂vi∂ε
∂(ε·F∧X(x))

∂ε

=
1

F∧X(x)
· lim
ε→0+

m∑
i=1

∂F∧X(v)

∂vi
xi (1)
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To determine formulae for the partial derivatives, we first express F∧X as
a multiple integral

F∧X(b) =

∫ b1

0

∫ b2

0

· · ·
∫ bm

0

f∧X(x1, x2, . . . , xm) dxm . . . dx2 dx1.

The partial derivative with respect to xm is thus

∂F∧X(x)

∂xm

∣∣∣∣
b

=

∫ b1

0

∫ b2

0

· · ·
∫ bm−1

0

f∧X(x1, x2, . . . , xm−1, bm) dxm−1 . . . dx2 dx1

= fXm(bm) ·∫ b1

0

∫ b2

0

· · ·
∫ bm−1

0

f∧X\Xm|Xm
(x1, x2, . . . , xm−1| bm) dxm−1 . . . dx2 dx1

= fXm(bm) · F∧X\Xm|Xm
(b1, b2, . . . , bm−1| bm)

= fXm(bm) · F∧X(b)

FXm(bm)
;

the other partial derivatives are of the same form. Substituting into Equa-
tion (1) yields

InDiscr∧X(x) =
1

F∧X(x)
· lim
ε→0+

m∑
i=1

xi · fXi
(vi) ·

F∧X(v)

FXi
(vi)

=

m∑
i=1

xi · fXi(xi)

FXi
(xi)

=

m∑
i=1

IDFXi
(xi).

To complete the proof, we note that the joint intrinsic dimensionality can
be derived in a similar way:

IntrDim∧X(x)

= lim
ε→0+

∑m
i=1

∂ lnF∧X(v)
∂vi

· ∂vi∂ε
∂ ln(1+ε)

∂ε

= lim
ε→0+

(1 + ε) ·
m∑
i=1

1

F∧X(v)
·
(
fXi

(vi) ·
F∧X(v)

FXi
(vi)

)
· xi

=

m∑
i=1

IDFXi
(xi).

ut

Perhaps surprisingly, Theorem 3 indicates that for absolutely continuous
random distance variables, the ID of a joint distribution is equal to the sum
of the IDs of the individual distributions, even when the distributions are not
independent. However, the correctness of the proof relies heavily on the fact
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that the joint distribution is differentiable, and that the region of integration is
the Cartesian product of the intervals [0, xi] for 1 ≤ i ≤ m. Theorem 3 should
therefore not be taken to mean that ID is necessarily additive for other local
regions of interest. For example, for a distribution of Euclidean distances to a
reference point in the the two-dimensional XY-plane, the ID of the distribution
is not necessarily the sum of the IDs of the two distance distributions obtained
by projection to the X-axis and Y-axis.

2.7 ID and the Hausdorff Dimension

Hausdorff dimension (which we will refer to here as ‘HD’) was introduced in
1919 as a measure of the local size of a set S, in terms of the distance associated
with an underlying metric space [30]. When S is a subspace of dimension m,
the Hausdorff dimension of S is m, as one would expect. However, HD is of
particular use in accounting for the complexity of more complex shapes, such
as fractals. In such situations, HD can take non-integer values. Despite the
wide theoretical importance of HD, it is very difficult to estimate in practice
(although for finite sets, the Hausdorff dimension is always 0).

The concept of Hausdorff dimension relates to the properties of cover sets
of S, defined as (possibly infinite) collections of balls whose union contains S.
The radius of a cover set is taken to be the largest radius of any ball in the
collection. If A is a cover of S, then consider the quantity

α(m) = lim
ε→0

inf
A: ρ(A)≤ε

∑
A∈A

(ρ(A))
m
,

where ρ(A) is the radius of set A. The Hausdorff dimension is the unique real
value m0 ≥ 0 such that

m < m0 =⇒ α(m) =∞
m > m0 =⇒ α(m) = 0 .

The Hausdorff dimension is a ‘global’ measure of intrinsic dimensionality,
in that it describes the overall complexity of S. The following theorem (a
proof of which can be found in [82]) provides bounds on HD in terms of local
contributions across (almost) all points of a set S having positive measure in
a probability space.

Theorem 4 ([82]) Let the random variable X represent the distribution of
distances from x ∈ M, where M is a manifold with positive measure. Here,
FX(x) represents the probability measure within distance x of x. If

δ0 ≤ lim inf
x→0+

logFX(x)

log x
≤ lim sup

x→0+

logFX(x)

log x
≤ δ1

for almost every point x ∈ M, then the Hausdorff dimension of M is in the
range [δ0, δ1].
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The following theorem makes use of Theorem 4 to show that under certain
conditions of continuity and differentiability of the distance distributions based
at the points of manifold M, the Hausdorff dimension falls within the range
of values of IDX(0) attained over these points of M.

Theorem 5 Let the random variable X represent the distribution of distances
from x ∈ M, where M is a manifold with positive measure, and let FX be
the cumulative distribution function associated with x. Suppose that almost
everywhere in M, we have that X is absolutely continuous, and that the limit
IDFX

(0) exists. Then the Hausdorff dimension HD(M) of M satisfies

inf
x∈M∗

IDFX
(0) ≤ HD(M) ≤ sup

x∈M∗
IDFX

(0),

where M∗ ∈M is the subset of M for which the assumptions are satisfied.

Proof Let x ∈ M∗ be a point satisfying the assumptions of the theorem.
Since X is absolutely continuous, FX is differentiable almost everywhere. Let
the probability density function of X be fX. Using l’Hôpital’s rule together
with Theorem 1, we see that

lim
x→0+

logFX(x)

log x
= lim
x→0+

x · fX(x)

FX(x)
= lim
x→0+

IDFX
(x) = IDFX

(0).

The result then follows by applying Theorem 4 with δ0 = infx∈M∗ IDFX
(0)

and δ1 = supx∈M∗ IDFX
(0). ut

In contrast with HD, ID is a ‘local’ measure of dimensionality — when the
distribution of distances from a fixed point is continuous, IDFX

(0) measures
the intrinsic dimensionality in the vicinity of that point. Theorem 5 essentially
states that the global Hausdorff dimension falls within the range of variation
of the local ID values associated with the distance distributions determined
within the set.

3 ID-Based Characterization of Distance Distributions

The ID formula IDFX
(x) = x · fX(x)/FX(x) established in Theorem 1 si-

multaneously expresses the notions of intrinsic dimensionality and indiscrim-
inability of distance. The formula also suggests an interpretation of ID as a
normalization of the probability density fX(x) with respect to the cumulative
density FX(x)/x. In this section we will see that the ‘normalized’ probabil-
ity density function IDFX

(x) fully characterizes a continuous distance distri-
bution. Moreover, we show that the second-order ID function IDIDFX

(x) =

x · ID′FX
(x)/IDFX

(x) (the ‘indiscriminability of the indiscriminability’) in turn
fully characterizes IDFX

(x). We conclude by showing that second-order ID
naturally expresses the inlierness or outlierness of a data point with respect
to its locality.

Later on, in Section 4, we will see that the characterizations presented in
this section are in fact a reworking of extreme value theory (EVT) for short-
tailed distributions.



16 Michael E. Houle

3.1 ID Characterization Theorem

Our goal here is to show that under reasonable assumptions, every continuous
distance distribution is completely determined by its associated ID function.
We begin by presenting a characterization of a slightly more general class of
functions.

Theorem 6 Let F : (0, z) → R be a function over the range (0, z), for some
choice of z > 0 (possibly infinite), such that F is absolutely continuous, and
positive everywhere. Let v ∈ [0, z) be a value for which IDF (v) exists. Then
for any x,w ∈ (0, z),

F (x) = F (w) ·
( x
w

)IDF (v)

·GF,v,w(x), where

GF,v,w(x) , exp

(∫ w

x

IDF (v)− IDF (t)

t
dt

)
.

Proof For any x ∈ (0, z)

F (x) = F (x)

· exp (lnF (x)− lnF (x))

· exp (lnF (w)− lnF (w))

· exp (IDF (v) lnw − IDF (v) lnw)

· exp (IDF (v) lnx− IDF (v) lnx)

= F (w) ·
( x
w

)IDF (v)

· exp (IDF (v) lnw − IDF (v) lnx− lnF (w) + lnF (x))

= F (w) ·
( x
w

)IDF (v)

· exp

(
IDF (v)

∫ w

x

1

t
dt−

∫ w

x

F ′(t)

F (t)
dt

)
,

since the absolute continuity of F implies that F is differentiable almost ev-
erywhere.

Since F (x) and F (w) are assumed to be positive, and since IDF (t) exists
almost everywhere,

F (x) = F (w) ·
( x
w

)IDF (v)

· exp

(∫ w

x

IDF (v)− IDF (t)

t
dt

)
as required. ut

The representation formula in Theorem 6 reveals the behavior of the func-
tion at values close to some reference value. Let us consider the values of F (x)
for those values of x contained in a shrinking range [v, w], where 0 ≤ v < w
and w tends to v from above. In this situation, the following lemma shows that
the exponential factor GF,v,w(x) tends to 1, with some further restrictions on
x when v = 0.
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Theorem 7 Let F : (0, z) → R be a function over the range (0, z), for some
choice of z > 0 (possibly infinite), such that F is absolutely continuous, and
positive everywhere. Let c ∈ (0, 1) be a constant, and let v ∈ [0, z) be a value
for which IDF (v) exists. Then for any x ∈ (0, z),

lim
w→v+

max{v,cw}≤x≤w

GF,v,w(x) = 1 .

Proof It suffices to show that

lim
w→v+

max{v,cw}≤x≤w

∫ w

x

IDF (v)− IDF (t)

t
dt = 0 .

Since IDF (v) is assumed to exist, for any real value ε > 0 there must exist
a value 0 < δ < 1 such that t − v < δ implies that |IDF (t) − IDF (v)| < ε.
Therefore, when w − v < δ,∣∣∣∣∫ w

x

IDF (v)− IDF (t)

t
dt

∣∣∣∣ ≤ ε ·
∣∣∣∣∫ w

x

1

t
dt

∣∣∣∣ = ε ln
w

x
.

If v = 0, we have that w/x = 1/c. On the other hand, if v > 0,

1 ≤ w

x
≤ w

max{v, cw}
≤ min

{
v + 1

v
,

1

c

}
≤ 1

c
.

In either case, ln(w/x) is bounded from above and below by positive constants.
Therefore, since ε can be made arbitrarily small, the limit is indeed 0, and the
result follows. ut

For the case when v = 0, x can be allowed to range over an arbitrarily
large proportion of the interval [v, w], by choosing c sufficiently close to zero.
When v > 0, for any valid choice of c, x becomes free to range over the entire
interval [v, w] as w → v+, once w ≤ v/c holds.

The proof of Theorem 7 can easily be adapted to show that the limit also
holds when w tends to v from below.

Corollary 1 Let F : (0, z)→ R be a function over the range (0, z), for some
choice of z > 0 (possibly infinite), such that F is absolutely continuous, and
positive everywhere. Let v ∈ (0, z) be a value for which IDF (v) exists. Then
for any x ∈ (0, z),

lim
w→v−
w≤x≤v

GF,v,w(x) = 1 .

Given an absolutely continuous random distance variable X, its cumulative
distribution function FX satisfies the conditions of Theorem 6 provided that it
is strictly positive over (0,∞). The ID characterization expresses the behavior
of the entire distribution in terms of the ID function. For the special case when
v = 0, Theorem 6 addresses the behavior of FX as distances tend toward zero.
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The theorem, together with Theorem 7, shows that within the extreme lower
tail of essentially any smooth distribution of distances, the relative increase in
probability measure tends to a polynomial function of the relative increase in
distance, of degree equal to the limit of the continuous ID at distance 0:

FX(x)

FX(w)
→
( x
w

)IDFX
(0)

.

This is precisely the growth rate that would be expected if the distances were
generated from a reference point to a uniform distribution of points, restricted
to the relative interior of a manifold of dimension IDFX

(0).

3.2 Second-Order ID

A characterization formula for IDFX
can be obtained for the second-order ID

function IDIDFX
(x) from the characterization formulas for FX and fX. Note

that Theorems 6 and 7, and Corollary 1, can be applied to the probability
density fX to yield a characterization in terms of IDfX , provided that fX is
both non-zero and differentiable almost everywhere.

For the proof of the characterization of IDFX
, we require two technical

lemmas. The first of the two lemmas shows that the second-order ID function
IDIDF

(x) can be expressed in terms of the difference between the indiscrim-
inabilities of F and F ′.

Lemma 1 Let F : (0, z) → R be a function over the range (0, z), for some
choice of z > 0 (possibly infinite). If F is twice differentiable at some distance
x > 0 for which F (x) 6= 0 and F ′(x) 6= 0, then IDF (x), IDF ′(x) and ID′F (x)
all exist, and

IDIDF
(x) =

x · ID′F (x)

IDF (x)
= IDF ′(x) + 1− IDF (x).

Proof Since F is doubly differentiable at x, F ′′(x) must exist. Together with
the assumption that F (x) 6= 0 and F ′(x) 6= 0, we have that IDF (x) = x ·
F ′(x)/F (x) 6= 0, and that IDF ′(x) = x · F ′′(x)/F ′(x) must exist. IDF (x) can
therefore be differentiated to obtain

ID′F (x) =
F (x) · (xF ′′(x) + F ′(x))− x (F ′(x))

2

(F (x))
2 .

Since x/IDF (x) = F (x)/F ′(x), multiplying yields

x · ID′F (x)

IDF (x)
=
F (x) · (xF ′′(x) + F ′(x))− x (F ′(x))

2

(F (x))
2 · F (x)

F ′(x)

IDIDF (x) =
x · F ′′(x)

F ′(x)
+ 1− x · F ′(x)

F (x)

= IDF ′(x) + 1− IDF (x).

ut
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The next technical lemma shows that the the second-order ID converges
to 0 as x→ 0.

Lemma 2 Let F : (0, z)→ R be a twice-differentiable function over the range
(0, z), for some choice of z > 0 (possibly infinite). If F and F ′ are positive
everywhere or negative everywhere, if F (x) → 0 as x → 0, and if IDF (0)
exists, then IDF ′(0) also exists, and

IDIDF
(0) = IDF ′(0) + 1− IDF (0) = 0.

Proof Lemma 1 implies that IDF (x), IDF ′(x) and ID′F (x) all exist, for all
x ∈ (0, z). We may then apply l’Hôpital’s rule to obtain

IDF (0) = lim
x→0+

IDF (x) = lim
x→0+

x · F ′(x)

F (x)
= lim
x→0+

x · F ′′(x) + F ′(x)

F ′(x)

= 1 + lim
x→0+

IDF ′(x) = 1 + IDF ′(0).

By applying Lemma 1 and letting x→ 0, the result follows. ut

We are now in a position to state and prove a characterization of the first-
order ID function in terms of the second-order ID function.

Theorem 8 Let F : (0, z) → R be a twice-differentiable function, for some
choice of z > 0 (possibly infinite). Also, assume that F and F ′ are positive
everywhere or negative everywhere. Given any distance values x,w ∈ (0, z),
|IDF (x)| admits the following representation:

|IDF (x)| = |IDF (w)| · exp

(
−
∫ w

x

|IDIDF
(t)|

t
dt

)
.

Furthermore, if F (x) → 0 as x → 0, and if IDF (0) exists and is non-zero,
then the representation is also valid for x = 0.

Proof The assumptions on F and F ′, together with Lemma 1, imply that
IDF , IDF ′ , ID′F and IDIDF

exist everywhere, and that |IDF (x)| is positive
everywhere. We can therefore establish the result for the case where x > 0, as
follows:

|IDF (x)| = |IDF (w)| · exp (ln |IDF (x)| − ln |IDF (w)|)

= |IDF (w)| · exp

(
−
∫ w

x

|ID′F (t)|
|IDF (t)|

dt

)
= |IDF (w)| · exp

(
−
∫ w

x

|IDIDF
(t)|

t
dt

)
.

If F (x) → 0 as x → 0, and if |IDF (0)| exists and is positive, by Lemma 2 we
have that IDF ′(0) exists, and that IDIDF

(0) = 0. Since |IDF (w)| is also pos-
itive, the integral in the representation formula must converge, and therefore
the representation is valid for x = 0 as well. ut
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Theorem 8, as well as Lemmas 1 and 2 can be applied so as to obtain
representation formulae for IDFX

and |IDfX | over intervals of the form (0, z)
where FX is thrice differentiable, and FX and its derivatives are either positive
everywhere or negative everywhere. The representation for |IDfX | will turn out
to be useful in establishing a connection between ID and second-order extreme
value theory, in Section 4.

In the remainder of this section, we will see how the second-order ID func-
tion IDIDFX

naturally expresses the inlierness or outlierness of a data point
with respect to its locality.

3.3 Inlierness, Outlierness and ID

Traditional distributional techniques for data clustering generally assume that
the data can be modeled as a mixture of underlying distributions, whose na-
ture must be decided in advance. Each distribution in the mixture represents
an individual data cluster — the clustering task is to determine those parame-
ter values that allow the best possible fit of distributions to data. Perhaps the
most common example of distributional clustering is that of Gaussian mixture
models, for which heuristics from the Expectation Maximization (EM) fam-
ily [15] — including DENCLUE [33], and k-Means and its variants [56] — are
perhaps the best known. In general, however, the underlying distributions are
not known in advance, and the Gaussian assumption may not be justified.

Density-based clustering methods, such as DBSCAN [69] and OPTICS [1],
avoid placing explicit assumptions on the nature of the cluster distribution.
Instead, they identify clusters as regions of high local density, by means of
thresholding. However, density thresholding may obscure embedded clusters
in areas of relatively high density, and prune away local clusters in regions of
relatively low density. Moreover, the determination of cluster borders generally
depends purely on the supplied density threshold, and not on the underlying
cluster distribution.

Local manifold learning techniques such as Locally-Linear Embedding [67]
can be adapted to produce a data clustering, with each cluster corresponding
to a tangent manifold of the embedding [41]. Although such methods have the
advantage of implicitly adapting to the local intrinsic dimensionality of the
data, in general the assumption of local linearity may not be warranted. Even
when the data is well-described by a linear manifold, the determination of the
cluster boundary or extent can be problematic.

The ID model proposed in this paper for continuous distance distributions
can be used to reveal characteristics of local manifolds without the need to
explicitly construct the manifold itself, without the need to learn parameters of
an assumed data distribution, and without needing to set absolute thresholds
on the minimum cluster density. For a given point of interest x on the manifold,
the local intrinsic dimension of the manifold at that point is simply the value
of IDFX

(0), where the random variable X follows the distribution of distances
from x. In addition, the ID function at positive distances gives an indication
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as to whether x should be regarded as an inlier or as an outlier relative to its
local neighborhood within the manifold, as the following argument shows.

If IDFX
(x) < IDFX

(0) within a small local neighborhood 0 < x < ε (where
ε > 0), then:

– The discriminability of the data at distance x from x is greater than at
distances approaching 0.

– The growth rate in probability measure at distance x from x is less than
that which would be expected within a locally-uniform distribution of
points within a manifold of dimension IDFX

(0).
– Under the assumption that the local manifold has a fixed intrinsic dimen-

sion within a sufficiently small neighborhood of x, the drop in indiscrim-
inability (or rise in discriminability) indicates a decrease in local density
as the distance from x increases.

– With this interpretation, the relationship between x and its neighborhood
is therefore that of an inlier.

By similar arguments, if instead IDFX
(x) > IDFX

(0), then the rise indiscrim-
inability (or drop in discriminability) indicates an increase in local density as
the distance from x increases, in which case x would be an outlier with respect
to its neighborhood.

Within a small local neighborhood 0 < x < ε, the condition IDFX
(x) <

IDFX
(0) is equivalent to that of ID′FX

(x) < 0, and the condition IDFX
(x) >

IDFX
(0) is equivalent to that of ID′FX

(x) > 0. The strength of the inlierness
or outlierness of x can be assessed according to the magnitude |ID′FX

(x)|.
However, for ease of comparison across manifolds of different intrinsic dimen-
sions, and across different distances x, |ID′FX

(x)| should be normalized with
respect to these two quantities. The second-order ID function IDIDFX

(x) =

x · ID′FX
(x)/IDFX

(x) can thus be viewed as a natural measure of the inlierness
(when negative) or outlierness (when positive) of x, one that normalizes the
relative rate of change of the ID function with respect to the average rate of
change of ID within distance x of x, namely IDFX

(x)/x.

4 ID and Extreme Value Theory

The characterization of continuous distance distributions established in Sec-
tion 3 can be regarded as an elucidation of extreme value theory (EVT) in the
setting of short-tailed distributions. Several mutually-equivalent formulations
of EVT exist; in our treatment, the formulation that we will concern ourselves
is that of regularly varying functions, pioneered by Karamata in the 1930s.
There is a vast literature on EVT and its applications. For a detailed account
of regular variation and EVT, see (for example) [3,8].
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4.1 First-order EVT

Let X be an absolutely continuous random distance variable. Karamata’s char-
acterization theorem [43,44] implies that the asymptotic cumulative distribu-
tion of X in the lower tail [0, w) can be expressed as FX(x) = xγX`X(1/x) for
some constant γX, where `X is differentiable and slowly varying (at infinity);
that is, for all c > 0, `X satisfies

lim
u→∞

`X(cu)

`X(u)
= 1.

The cumulative distribution FX restricted to [0, w) is itself said to be regularly
varying with index γX.

Note that the slowly-varying component `X(u) is not necessarily constant
as u → ∞. However, the slowly-varying condition ensures that the derivative
`′X(u) is bounded, and that the following auxiliary function tends to 0:

εX(u) ,
u`′X(u)

`X(u)
,

lim
u→∞

εX(u)→ 0 .

Slowly varying functions are also known to be representable in terms of
their auxiliary function. More specifically, `X(1/x) can be shown to be slowly
varying as 1/x→∞ if and only if there exists some w > 0 such that

`X(1/x) = exp

(
ηX(1/x) +

∫ 1/x

1/w

εX(u)

u
du

)
,

where ηX and εX are measurable and bounded functions such that ηX(1/x)
tends to a constant, and εX(1/t) tends to 0, as x and t tend to 0. Note that
under the substitution t = 1/u, the slowly-varying component can be expressed
as

`X(1/x) = exp

(
ηX(1/x) +

∫ w

x

εX(1/t)

t
dt

)
.

Thus the cumulative distribution formula FX(x) = xγX`X(1/x) can easily be
verified to fit the form of the representation given in Theorem 6, with

γX = IDFX
(0) ;

ηX(1/x) = lnFX(w)− IDFX
(0) lnw ;

εX(1/t) = IDFX
(0)− IDFX

(t) .
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4.2 Second-Order EVT

An issue of great importance and interest in the design and performance of
semi-parametric EVT estimators is the speed of convergence of extreme values
to their limit [28]. As is the case with first-order EVT, many approaches to
the estimation of second-order parameters have been developed [22].

Here, we will follow the formulation presented in [27] using second-order
regular variation. In this paper, de Haan and Resnick presented a proof of the
equivalence of two conditions regarding the derivatives of regularly varying
functions, which can be stated as follows. Let φ : (0,∞) → R be twice differ-
entiable, with φ′(t) eventually positive as t → ∞, and let γ ∈ R. Consider a
function A(t) whose absolute value is regularly varying with index ρ ≤ 0, such
that A(t) → 0 as t → ∞ with A(t) either eventually positive or eventually
negative. Then the condition

A(t) ,
t · φ′′(t)
φ′(t)

− γ + 1

is equivalent to φ′ having the representation

φ′(t) = k · tγ−1 · exp

(∫ t

1

A(u)

u
du

)
for some non-zero constant k.

In the context of continuous distance distributions, we transform the upper-
tail formulation stated above to that of the lower tail of the cumulative dis-
tribution function for X, by setting t = 1/x and φ′(t) = fX(x). Noting that
f ′X(x) = −t2φ′′(t), and defining B(x) , A(t), the first condition can be shown
to be

B(x) , 1− γ − x · f ′X(x)

fX(x)
= 1− γ − IDfX(x),

and, under the substitution u = 1/y, the second condition can be shown to be

fX(x) = k · x1−γ · exp

(∫ 1

x

B(y)

y
dy

)
.

Thus these equivalent conditions can be verified to fit the form of the
representation given in Theorem 6, with w = 1, v = 0, and

k = fX(1);

γ = 1− IDfX(0) = 2− IDFX
(0) = 2− γX ;

B(x) = 1− γ − IDfX(x) = IDFX
(0)− 1− IDfX(x) .

Second-order EVT is largely concerned with the estimation of the param-
eter ρ. Here, we shall show that the index of regular variation of the functions
B(x) and |IDIDfX

(x)| is in fact the non-negative value −ρ.
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Theorem 9 Let X be a random distance variable whose cumulative distribu-
tion function fX is twice-differentiable over the interval (0, z), for some choice
of z > 0 (possibly infinite). Furthermore, assume that fX and f ′X are positive
everywhere or negative everywhere over (0, z), that fX(x)→ 0 as x→ 0, and
that IDFX

(0) exists. Let B(x) = IDFX
(0) − 1 − IDfX(x). Then |B(x)| and

B∗(x) , |IDIDfX
(x)| are both regularly varying with index −ρ ≥ 0. Further-

more, if B∗ is absolutely continuous, then −ρ = IDB∗(0).

Proof From the definition of the index of regular variation, we have that

c−ρ =

(
1

c

)ρ
= lim
t→∞

|A(t/c)|
|A(t)|

= lim
x→0

|B(cx)|
|B(x)|

for any fixed c > 0. To prove that |IDIDfX
(x)| is also regularly varying with

index −ρ, it suffices to show that for all fixed c > 0,

lim
x→0

|B∗(cx)|
|B∗(x)|

= lim
x→0

|B(cx)|
|B(x)|

.

Since B(x) = IDFX
(0)− 1− IDfX(x), Lemma 2 implies that

lim
x→0

|B(cx)|
|B(x)|

= lim
x→0

|IDFX
(0)− 1− IDfX(cx)|

|IDFX
(0)− 1− IDfX(x)|

= lim
x→0

|IDfX(0)− IDfX(cx)|
|IDfX(0)− IDfX(x)|

.

Since IDfX and ID′fX do not change sign over (0, z), applying the ID charac-
terization formula of Theorem 8, we obtain

lim
x→0

|B(cx)|
|B(x)|

= lim
x→0

|IDfX(0)| − |IDfX(w)| · exp

(
−
∫ w
cx

|IDIDfX
(u)|

u du

)
|IDfX(0)| − |IDfX(w)| · exp

(
−
∫ w
x

|IDIDfX
(u)|

u du

) .

The limit of the numerator and the denominator are both zero. Applying
l’Hôpital’s rule yields

lim
x→0

|B(cx)|
|B(x)|

= lim
x→0

−|IDfX(w)| ·
c·|IDIDfX

(cx)|
cx · exp

(
−
∫ w
cx

|IDIDfX
(u)|

u du

)
−|IDfX(w)| ·

|IDIDfX
(x)|

x · exp

(
−
∫ w
x

|IDIDfX
(u)|

u du

)
= lim

x→0

|IDIDfX
(cx)|

|IDIDfX
(x)|

· exp

(
−
∫ x

cx

|IDIDfX
(u)|

u
du

)
.

Note that since fX(x) → 0 as x → 0, we have that |IDIDfX
(x)| → 0 from

Lemma 2. By means of an argument similar to that of the proof of Theorem 7,
it can then be shown that

lim
x→0

exp

(
−
∫ x

cx

|IDIDfX
(u)|

u
du

)
→ 1 ,



Inlierness, Outlierness, Hubness and Discriminability 25

which establishes that

lim
x→0

|B∗(cx)|
|B∗(x)|

= lim
x→0

|B(cx)|
|B(x)|

.

To complete the proof, note that if B∗ = |IDIDfX
| is absolutely continuous,

then −ρ = IDB∗(0) follows from Theorem 6. ut

4.3 Discussion

The connection between EVT and ID for continuous distance distributions
can thus be summarized as follows:

– The first-order EVT index γX that asymptotically determines the distri-
bution of distances within a radius-w neighborhood is precisely IDFX

(0),
the limit of the ID function as the distance tends to zero.

– Although the Karamata representation states that ηX must tend to a con-
stant as x→ 0, the ID representation implies that ηX is independent of x
altogether.

– The second-order EVT index ρ that asymptotically determines the rate
of convergence of extreme values is the negation of the index of the reg-
ularly varying function B∗ = |IDIDfX

|. If this function is itself absolutely
continuous, then −ρ equals IDB∗(0).

Unlike the first-order EVT index γX, for which many estimation methods
are known for both short-tailed and heavy-tailed distributions, little or no re-
search effort seems to have been devoted to the estimation of ρ for short-tailed
distributions [22]. However, we have seen that the estimation of ID|IDIDFX

|(0)

would likely be of interest in data mining applications.

5 Hubness

The characterization of continuous distance distributions in terms of ID has
the potential for explaining the interactions between intrinsic dimensionality,
discriminability of distances, and local density variation in similarity applica-
tions. Here, as an example, we will see how the hubness phenomenon can be
better understood in terms of ID.

5.1 Hubness of Distance Distributions

As originally defined, hubness is a property of a specific point with respect to
a specific data set. To demonstrate a connection between data hubness and
continuous intrinsic dimensionality, we must first extend the notion of hubness
to that of a data distribution. Whereas the hubness value of a reference point
can be calculated directly from the neighborhood information of a given data
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set, when speaking of a distribution, we will instead consider the hubness of a
distance distribution FX relative to the lower tails of a collection of distance
distributions Y = {FY}.

Definition 5 (Hubness of Distributions) Let Y be a non-empty collection
of distance distributions, and let p be a probability threshold (0<p< 1) such
that for all FY ∈ Y, the cumulative probability function FY of FY achieves
p at a unique distance value. Given a reference distance distribution FX, the
(normalized) hubness of FX relative to FY and p is

NH(FX,Y, p) ,
1

p · |Y|
∑
FY∈Y

FX

(
F−1Y (p)

)
.

The normalization factor in the above definition allows us to compare the
hubness of distributions across different settings. If for every FY ∈ Y the
distance distribution FY were identical to FX, then the above expression would
equal 1. The distribution FX can thus be regarded as a hub if NH(FX,Y, p) >
1, and as an anti-hub if NH(FX,Y, p) < 1. The more extreme the value of
NH(FX,Y, p), the greater the degree to which FX may be considered a hub
or anti-hub, as the case may be.

To see how Definition 5 relates to the established notion of the hubness of
a data set, consider the point sample {yi| 1 ≤ i ≤ n} of size n ≥ 2 drawn from
Rm according to the distribution F . Let us assume that we are interested in
the hubness of a distinguished point x ∈ Rm for a given choice of neighborhood
size k, where 1 ≤ k ≤ n− 1. Let the probability threshold p be chosen so that
p = k/n. For each sample point yi, we denote by FYi the distance distribution
induced by F with respect to yi. The collection of all such distributions will be
denoted by Y. Similarly, we denote by FX the distance distribution induced
by F with respect to x.

Consider now the relationships between x and each of the sample points
yi. For any sample of n points drawn according to F , if we assume that the
cumulative distribution function FYi achieves the probability p for a unique
distance value ri = F−1Yi

(p), then ri is the neighborhood distance threshold
at which one would expect k members of the sample to lie within the neigh-
borhood. Thus, if the sample point yi were to lie within distance ri of x, the
hubness of x would be expected to increase by one. Since the probability of a
sample point falling within distance ri is given by FX(ri), the total hubness
score that one would expect is given by

n∑
i=1

FX(ri) =

n∑
i=1

FX

(
F−1Yi

(p)
)
.

After normalization by k, the expression is seen to fit the form of Definition 5:

1

k

n∑
i=1

FX(ri) =
1

pn

n∑
i=1

FX

(
F−1Yi

(p)
)

= NH(FX,Y\{FX}, k/n) .
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5.2 Hubness and Continuous ID

Let X and Y be any two absolutely continuous random distance variables
with support [0,∞), and let FX and FY be their respective distributions. By
solving for the quotient r/w in the intrinsic dimensional representations of FX

and FY, Theorem 6 implies that

r

w
=

(
FX(r)

FX(w) ·GFX,0,w(r)

)1/IDFX
(0)

=

(
FY(r)

FY(w) ·GFY,0,w(r)

)1/IDFY
(0)

.

These quantities, being unitless, allow the growth characteristics of distribu-
tions to be compared across different domains.

Theorem 10 Let Y be a non-empty collection of distance distributions, and
let FX be a distinguished distance distribution, with the assumption that all
are absolutely continuous. Let p be a probability threshold (0 < p < 1) such
that for all FY ∈ Y, the cumulative distribution function FY of FY achieves p
uniquely at the distance value ry > 0, and the cumulative distribution function
FX of FX achieves p uniquely at the distance value w > 0. If in addition for all
FY ∈ Y, IDFX

(0) and IDFY
(0) exist, and FX and FY are positive everywhere

except at distance zero, then the hubness of FX relative to Y and p equals

NH(FX,Y, p) =
1

|Y|
∑
FY∈Y

GFX,0,w(ry)

(
p/FY(w)

GFY,0,w(ry)

) IDFX
(0)

IDFY
(0)

.

Proof We may apply Theorem 6 to the definition of hubness of distributions,
obtaining

NH(FX,Y, p) =
1

p · |Y|
∑
FY∈Y

FX

(
F−1Y (p)

)
=

1

p · |Y|
∑
FY∈Y

FX(ry)

=
FX(w)

p · |Y|
∑
FY∈Y

GFX,0,w(ry) ·
(ry
w

)IDFX
(0)

=
1

|Y|
∑
FY∈Y

GFX,0,w(ry) ·
(

FY(ry)

FY(w) ·GFY,0,w(ry)

) IDFX
(0)

IDFY
(0)

=
1

|Y|
∑
FY∈Y

GFX,0,w(ry) ·
(

p/FY(w)

GFY,0,w(ry)

) IDFX
(0)

IDFY
(0)

as required. ut
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In the established notion of the hubness of a data set, as the data sample
size n grows, the proportion of points k/n in the neighborhoods tends to zero.
For the hubness of distributions, this is analogous to the tail probability p
tending to zero. Asymptotically, then, as p → 0, Theorem 7 implies that the
hubness of FX relative to Y and p converges as:

lim
p→0

NH(FX,Y, p) = lim
p→0

1

|Y|
∑
FY∈Y

(
p

FY

(
F−1X (p)

))
IDFX

(0)

IDFY
(0)

.

The contribution to the hubness due to distribution FY ∈ Y thus depends
on both the relative intrinsic dimensionality with respect to FX, and the rel-
ative density with respect to FX. If FX simultaneously has a higher ID than
FY (that is, if IDFX

(0) > IDFY
(0)), and a higher local density within distance

w = F−1X (p) (that is, if p > FY(w)), then the contribution of FY to the hub-
ness score is greater than 1. On the other hand, if the ID and local density
of FX are both smaller than that of FY, the contribution is less than 1. Dis-
tributions FX of high hubness thus tend to have an intrinsic dimensionality
and a local neighborhood density that is higher than is typical for the distri-
butions in Y. This theoretical explanation is in accordance with the empirical
assessment of [63], who observed that hubness of data tends to increase with
the intrinsic dimensionality of the subspace containing data clusters, and with
proximity to cluster centers.

6 Conclusion

The theory presented in this paper constitutes a step towards the develop-
ment of an overall theory of data mining: under the statistical framework of
extreme value theory, it formally unites the notions of similarity measure, data
density, data discriminability, intrinsic dimensionality, local inlierness (cluster
membership) and outlierness, and hubness.

To realize the full practical potential of this theory of intrinsic dimensional-
ity, efficient and accurate estimators are needed. Although existing estimators
for the first-order EVT index can be used as is for first-order ID [4,32,42],
no estimators seem to have yet been developed for the second-order inlier-
ness/outlierness measure proposed in Section 3.3.

One quite promising direction for future work is that of density-based ap-
proaches to data mining, particularly for those applications in which subspaces
are explicitly or implicitly explored (such as clustering and outlier detection,
or subspace identification). The ID model presented in this paper can be re-
garded as a normalization of density information by (intrinsic) dimensional
information, allowing for both influences to be accounted for in a natural way.
Future work in this area should involve the design and testing of ID-based
criteria for density-based data mining applications.

Another important direction is that of feature selection and metric learning.
The ID model provides a natural measure of data discriminability that could in
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principle be used to guide the selection of features, or the learning of similarity
measures.
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30. Hausdorff, F.: Dimension und äußeres Maß. Mathematische Annalen 79(1–2), 157–179
(1919)

31. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS 2005. MIT
Press (2005)

32. Hill, B.M.: A simple general approach to inference about the tail of a distribution.
Annals of Statistics 3(5), 1163–1174 (1975)

33. Hinneburg, A., Gabriel, H.H.: DENCLUE 2.0: Fast clustering based on kernel density
estimation. In: Proc. 7th Int. Conf. on Intelligent Data Analysis, IDA’07, pp. 70–80
(2007)

34. Houle, M.E.: Dimensionality, discriminability, density & distance distributions. In:
Proceedings of the 13th IEEE International Conference on Data Mining Workshops
(ICDMW), pp. 468–473 (2013)

35. Houle, M.E., Kashima, H., Nett, M.: Generalized expansion dimension. In: Proceedings
of the 12th IEEE International Conference on Data Mining Workshops (ICDMW), pp.
587–594 (2012)
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