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MODULUS-TYPE INNER OUTER ITERATIVE METHODS FOR
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NING ZHENG† , KEN HAYAMI‡ , AND JUN-FENG YIN§

Abstract. For the solution of large sparse nonnegative constrained least squares (NNLS) prob-
lems, a new iterative method is proposed by using conjugate gradient least squares (CGLS) method
for inner iterations and the modulus-type iterative method in the outer iterations for the solution
of linear complementarity problem (LCP) resulting from Karush-Kuhn-Tucker (KKT) conditions of
the NNLS problem. Theoretical convergence analysis including the optimal choice of the parameter
matrix is presented for the proposed method. Numerical experiments show the efficiency of the
proposed method compared to projection-type methods with less iteration steps and CPU time.

Key words. least squares problems, nonnegative constraints, convergence, linear complemen-
tarity problem, CGLS method
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1. Introduction. Consider the nonnegative constrained linear least squares prob-
lem [5], abbreviated as NNLS,

(1.1) min
x∈Rn

∥Ax− b∥2, subject to x ≥ 0,

where A ∈ Rm×n, b ∈ Rm×1, m ≥ n or m < n, and the inequalities are to be
interpreted componentwise. The rank-deficient case is allowed, when the equality in
rankA ≤ min(m,n) does not hold. Not only do the NNLS problems arise in many
scientific computing and engineering applications, e.g., reconstruction problems in
geodesy and tomography, contact problems for mechanical systems, and the modeling
of ocean circulation, but it is even argued that any minimization problem is only
realistic when its variables are constrained within meaningful intervals [4].

Algorithms for the solution of unconstrained linear least squares problem

(1.2) min
x∈Rn

∥Ax− b∥2

fall into two classes: direct methods, which are usually based on some matrix factor-
izations and may not be so practical when matrix A is large and sparse, and iterative
methods, among which the (preconditioned) CGLS method, which is mathematically
equivalent to the conjugate gradient (CG) method applied to the normal equation

(1.3) ATAx = ATb, m ≥ n,

and the CGNE method equivalent to CG applied to the normal equation

(1.4) AATy = b, x = ATy, m ≤ n,
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and (preconditioned) GMRES type methods by Hayami, Yin and Morikuni [11, 12]
play important roles. However, the approximate solutions determined by the above
methods are not guaranteed to satisfy the nonnegative constraints in (1.1). Therefore,
special techniques must be added to the algorithms that handles the status of variables
with respect to their nonnegativity.

A class of inner outer iterative methods is widely discussed for the solution of
NNLS problems, where a series of unconstrained least squares problems are solved
in the inner iteration, and the obtained solution is updated to satisfy the nonnega-
tive constraints, and then the outer iteration is restarted until convergence. Remark
that the inner outer iteration methods contain two tasks including how to update
the solution of the unconstrained least squares problem when some of its components
violate the bounds, and when to terminate the inner iteration and restart the outer
iteration. For example, by restricting the step size in each CG iteration to satisfy
constraints, O’Leary [16] proposed a generalized CG method for solving general box
constrained quadratic programming problems with a symmetric positive definite ma-
trix, which can be naturally applied for solving NNLS problems. Similar algorithm
called restricted LSQR method was presented by Lötstedt [13], where LSQR is a
stabilized version of CGLS, and Bierlaire, Toint and Tuyttens [4] introduced a vari-
ant of the algorithm. In addition, instead of shrinking the step size, some researchers
considered so-called projection-type methods, which orthogonally project the iterated
solution into the feasible region. For example, the projected Landweber method, and
the projected steepest descent method with a suitable preconditioner are proposed by
Bertero and Boccacci [2], and Nagy et al. [15], respectively. Bierlaire et al. [4] also
discuss projected gradient methods with active set strategy. However, the disadvan-
tage is that the iteration in the inner iteration is terminated as soon as a component
of a computed iterate violates a constraint, which forces frequent restart of the outer
iteration and thus slows down convergence. Another undesirable feature is that the
active set type algorithm allows only one variable to leave a bound at a given outer
iteration, which allows to add or delete one index from the active set at a time. This
is a very inefficient feature when the number of variables is large.

In order to avoid these disadvantages, Calvetti et al. [6] proposed a projected
restarted iteration method for nonnegative constrained ill-posed problems by allowing
more consecutive iterations in the inner iteration. The algorithm is given as follows.

Algorithm 1.1. Projected Restarted Iteration Method
1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.
2. For k = 0, 1, 2, . . . until convergence

3. Compute an approximate solution wk by an iterative method

min
w∈Rn

∥Aw − rk∥2.

4. Compute x̂k+1 = xk +wk and project it on the nonnegative region

xk+1
j =

{
0, x̂k+1

j < 0;

x̂k+1
j , x̂k+1

j ≥ 0.
j = 1, 2, ..., n.

5. Compute rk+1 = b−Axk+1.

6. Endfor
Here, the unconstrained least squares problem for each loop is solved with CGLS,

GMRES and RRGMRES iterative methods until the stopping criterion is satisfied.
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In addition, Morigi et al. [14] proposed an active set restarted projected CG method
for general box constrained ill-posed problems, which can be applied to nonnegative
constrained problems, where the components of the solution that equal their bounds
are referred to as the active set and identified in the outer iteration, and the reduced
unconstrained least squares problem is solved in the inner iteration by keeping the
identified components fixed. The nonnegative constrained version of the algorithm is
given as follows.

Algorithm 1.2. Active Set Projected Restarted Iteration Method
1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.
2. For k = 0, 1, 2, . . . until convergence

3. Define Lagrange multipliers λk = −ATrk.
4. Define active set B and free variable set F

B = {j : xk
j = 0, λk

j ≥ 0}, F = {1, 2, ..., n}\B.

5. Compute an approximate solution wk by an iterative method

min
w∈Rň

∥AFw − rk∥2.

6. Compute

x̂k+1
F = xk

F +wk, x̂k+1
B = xk

B,

and project it on the nonnegative region

xk+1
j =

{
0, x̂k+1

j < 0;

x̂k+1
j , x̂k+1

j ≥ 0.
j = 1, 2, ..., n.

7. Compute rk+1 = b−Axk+1.

8. Endfor
Here, ň denotes the number of elements in set F , and AF denotes the submatrix of

A consisting of the columns of A whose indices belong to F . These methods are shown
to require low storage requirement and are easy to implement, and numerical examples
arising from constrained linear ill-posed problems as well as image restoration indicate
their fairly rapid convergence. However, there is no theoretical analysis to guarantee
the convergence, and the norm of consecutively generated residual vectors might not
be monotonically decreasing.

In this paper, instead of using shrinking step size or the projection techniques,
we apply a modulus transformation to constrain the nonnegativity of the variable,
and the solution of NNLS problem (1.1) can be replaced by the solution of a sequence
of unconstrained least squares problems, for which numerous efficient solvers can be
exploited. Therefore, a new class of inner outer iterative methods is proposed by using
CGLS method for inner iterations and the modulus-based iterative method in the
outer iterations for the solution of LCP (Linear Complementarity Problem) resulting
from KKT (Karush-Kuhn-Tucker) conditions of the NNLS. Theoretical convergence
analysis is presented, and the choice of the parameter matrix is discussed for the
proposed method. Numerical experiments show the efficiency of the proposed method
compared to projection-type methods with less iteration steps and CPU time.

The rest of the paper is organized as follows. In Section 2, the modulus itera-
tive method and the corresponding active set modulus method are proposed for the
solution of the NNLS problem. In Section 3, the convergence analysis of the pro-
posed methods are presented, and the choice of the parameter matrix is discussed. In
Section 4, numerical results are presented, and Section 5 concludes the paper.
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2. Modulus Iterative Methods. In this section, we show that the solution of
the NNLS problem can be transformed to a series of unconstrained least squares prob-
lems by applying a modulus transformation on the variables. First, the equivalence
between the nonnegative constrained quadratic programming and the linear comple-
mentarity problem (LCP) is shown in the following theorem, when the coefficient
matrix is symmetric positive semidefinite.

Theorem 2.1. The nonnegative constrained quadratic programming NNQP(B, c)

(2.1) min
x∈Rn

(
1

2
xTBx+ cTx

)
, subject to x ≥ 0

is equivalent to the linear complementarity problem LCP(B, c)

(2.2) x ≥ 0, Bx+ c ≥ 0, and xT(Bx+ c) = 0,

provided that B is a symmetric positive semidefinite matrix.
Proof. If x∗ is a solution of LCP(B, c), then it holds that

x∗ ≥ 0, Bx∗ + c ≥ 0, and (x∗)T(Bx∗ + c) = 0.

It is observed that for any x ≥ 0,

1

2
xTBx+ cTx−

(
1

2
(x∗)TBx∗ + cTx∗

)
=

1

2
(x− x∗)TB(x− x∗) + xT(Bx∗ + c)− (x∗)T(Bx∗ + c)

=
1

2
(x− x∗)TB(x− x∗) + xT(Bx∗ + c) ≥ 0.

The last inequality holds by the fact that B is symmetric positive semidefinite. Hence,
we have

1

2
xTBx+ cTx ≥ 1

2
(x∗)TBx∗ + cTx∗,

which indicates that x∗ is a minimization solution of NNQP(B, c).
If x∗ is a solution of NNQP(B, c), then x∗ satisfies the necessary KKT conditions

as follows.
Stationarity

∇
(
1

2
xTBx+ cTx− fTx

)
= Bx+ c− f = 0,

Primal and Dual feasibility

x ≥ 0, f ≥ 0,

Complementarity slackness

xTf = 0.

By collecting the KKT conditions above, it is derived that x∗ satisfies LCP(B, c). �
Corollary 2.2. If matrix B is symmetric positive definite, then both NNQP(B, c)

and LCP(B, c) have the same unique solution.
Corollary 2.3. The NNLS problem (1.1) is equivalent to LCP(ATA,−ATb)

(2.3) x ≥ 0, w ≡ ATAx−ATb ≥ 0, and xTw = 0.
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Proof. Set B = ATA and c = −ATb in Theorem 2.1. �
Furthermore, the following theorem, where the proof can be easily obtained by

Theorem 2.1 in [1], implies that LCP(ATA,−ATb) is equivalent to the implicit fixed-
point equation

(2.4) (Ω +ATA)z = (Ω−ATA)|z|+ATb

with modulus transformation x = z + |z|, where Ω is a positive diagonal parameter
matrix. Hence, it is equivalent to solve the implicit fixed-point equation (2.4) for the
solution of (1.1) by Corollary 2.3.

Theorem 2.4. Let Ω be an n×n positive diagonal matrix. For the LCP(ATA,−ATb),
the following statements hold:
(i) if (x,w) is a solution of the LCP(ATA,−ATb), then z = (x− Ω−1w)/2 satisfies

the implicit fixed-point equation (2.4);
(ii) if z satisfies the implicit fixed-point equation (2.4), then

x = |z|+ z and w = Ω(|z| − z)

is a solution of the LCP(ATA,−ATb).
Based on the equivalence in Theorem 2.4, the modulus-type iterative scheme

(2.5) (Ω +ATA)zk+1 = (Ω−ATA)|zk|+ATb

is naturally derived for the solution of the fixed-point equation (2.4). If z∗ is a fixed
point of (2.5), then by Theorems 2.1 and 2.4, the solution of the NNLS problem (1.1)
can be obtained straightforwardly by x∗ = z∗ + |z∗|. Therefore, the solution of the
NNLS problem (1.1) is transformed to the solution of a series of fixed-point equations
(2.5), which can be solved directly by matrix decompositions, or by iterative methods,
such as the preconditioned conjugate gradient (PCG) method.

The modulus restarted iterative method for NNLS problem (1.1) is described as
follows.

Algorithm 2.5. Modulus Restarted Iteration Method
1. Choose an initial approximate solution z0 and a parameter matrix Ω.
2. Compute x0 = z0 + |z0|.
3. For k = 0, 1, 2, . . . until convergence

4. Compute a solution zk+1 by solving the fixed-point equation (2.5).
5. Compute xk+1 = zk+1 + |zk+1|.
6. Endfor

We remark that the modulus method derived from (2.4) is not only a special
case of accelerated modulus-based matrix splitting methods when M1 = M2 = ATA
and N1 = N2 = 0 in [21], but also includes the original modulus method [19, 20],
the modified modulus method [8], and the extrapolated modulus method [10] when
Ω = I, αI and (1/α)I with α > 0, respectively. For more numerical methods of LCP,
see [21] and the references therein.

Finally, it is noted that the iterative scheme (2.5) can be reorganized as the normal
equations

(2.6) ÃTÃzk+1 = ÃTb̃
k
,

of the unconstrained least squares problem

(2.7) min
zk+1∈Rn

∥Ãzk+1 − b̃
k
∥2
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for any fixed k = 0, 1, 2, ..., where

Ã =

[
A

Ω
1
2

]
and b̃

k
=

[
−A|zk|+ b

Ω
1
2 |zk|

]
,

Therefore, the solution of the NNLS problem (1.1) is transformed to the solution of
a series of unconstrained least squares problems (2.7), which can be solved efficiently
by CGLS or GMRES type methods [11] with various preconditioning techniques [12].

The modulus-type inner outer iterative method for NNLS problem (1.1) is de-
scribed as follows.

Algorithm 2.6. Modulus-Type Inner Outer Iteration Method
1. Choose an initial approximate solution z0 and a parameter matrix Ω.

2. Set Ã = [AT, Ω1/2]T and b̃
0
= [(−A|z0|+ b)T, (Ω1/2|z0|)T]T.

3. Compute x0 = z0 + |z0| and r0 = b−Ax0.

4. Compute r̃0 = [(r0)T, (Ω1/2(|z0| − z0))T]T(= b̃
0
− Ãz0).

5. For k = 0, 1, 2, . . . until convergence

6. Compute an approximate solution wk by solving

(2.8) min
w∈Rn

∥Ãw − r̃k∥2.

7. Compute zk+1 = zk +wk.
8. Compute xk+1 = zk+1 + |zk+1| and rk+1 = b−Axk+1.

9. Set b̃
k+1

= [(−A|zk+1|+ b)T, (Ω1/2|zk+1|)T]T.
10. Compute r̃k+1 = [(rk+1)T, (Ω1/2(|zk+1|−zk+1))T]T(= b̃

k+1
−Ãzk+1).

11. Endfor
Here, the iterative solution of the unconstrained least squares problems (2.8) for

each k = 0, 1, 2, ... is referred to as the inner iteration of the algorithm, while the for
loop is referred to as the outer iteration. Note that Algorithm 2.5 is a special version
of Algorithm 2.6 when the inner linear least squares problems (2.8) are solved based
on their normal equations (2.5).

Similar to [14], the corresponding active set version of modulus iterative algorithm
is given as follows.

Algorithm 2.7. Active Set Modulus-Type Inner Outer Iteration Method
1. Choose an initial approximate solution z0 and a parameter matrix Ω.

2. Set Ã = [AT, Ω1/2]T and b̃
0
= [(−A|z0|+ b)T, (Ω1/2|z0|)T]T.

3. Compute x0 = z0 + |z0| and r0 = b−Ax0.

4. Compute r̃0 = [(r0)T, (Ω1/2(|z0| − z0))T]T(= b̃
0
− Ãz0).

5. For k = 0, 1, 2, . . . until convergence

6. Define Lagrange multipliers λk = −ATrk.
7. Define active set B and free variable set F

B = {j : xk
j = 0, λk

j ≥ 0}, F = {1, 2, ..., n}\B.

8. Compute an approximate solution wk by an iterative method

min
w∈Rň

∥ÃFw − r̃k∥2.

9. Compute zk+1
F = zk

F +wk, zk+1
B = zk

B.

10. Set b̃
k+1

= [(−A|zk+1|+ b)T, (Ω1/2|zk+1|)T]T.
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11. Compute xk+1 = zk+1 + |zk+1| and rk+1 = b−Axk+1.

12. Compute r̃k+1 = [(rk+1)T, (Ω1/2(|zk+1|−zk+1))T]T(= b̃
k+1

−Ãzk+1).
13. Endfor

Here, ň denotes the number of elements in set F , and ÃF denotes the submatrix
of Ã consisting of the columns of Ã whose indices belong to F .

3. Convergence Analysis. In this section, we establish the convergence theory
of the Algorithm 2.5 in which the inner unconstrained least squares problems (2.8)
are solved based on the normal equations (2.5). Specifically, we would discuss the
cases when the inner systems are solved exactly or inexactly, respectively, as well as
the theoretically optimal choice of the iteration parameter matrix Ω.

Assume that z∗ ∈ Rn is a solution of implicit fixed-point equation (2.5)

(3.1) (Ω +ATA)z∗ = (Ω−ATA)|z∗|+ATb,

and zk+1 is calculated exactly from zk by (2.5). After subtracting (3.1) from (2.5),
we obtain

(3.2) zk+1 − z∗ = (Ω +ATA)−1(Ω−ATA)(|zk| − |z∗|),

provided that Ω + ATA is nonsingular. The error relationship (3.2) is the basis for
us to establish convergence theorems about Algorithm 2.5. The following analysis
is based on the condition that A is of full column rank and thus ATA is symmetric
positive definite.

3.1. Scalar matrix case. Consider the case when Ω = ωI with ω > 0, it follows
from taking vector norm ∥ · ∥2 of both sides of (3.2) that

∥zk+1 − z∗∥2 ≤ ∥(ωI +ATA)−1(ωI −ATA)∥2∥|zk| − |z∗|∥2
≤ ∥(ωI +ATA)−1(ωI −ATA)∥2∥zk − z∗∥2

By simple calculations, it can be easily obtained that (ωI + ATA)−1(ωI − ATA) is
symmetric. Therefore,

∥(ωI +ATA)−1(ωI −ATA)∥2 = max
λi∈σ(ATA)

∣∣∣∣ω − λi

ω + λi

∣∣∣∣ ,
where σ(ATA) denotes the set of all eigenvalues of ATA. As A is of full column rank,
it follows that λi > 0 and ∣∣∣∣ω − λi

ω + λi

∣∣∣∣ < 1,

for any i, and thus

∥(ωI +ATA)−1(ωI −ATA)∥2 < 1.

Consequently, the iteration sequence {zk}+∞
k=0 generated by (2.5) converges to the

unique solution z∗ for any initial vector.
Let λmin and λmax be the minimum and maximum eigenvalues of ATA, respec-

tively. It can be easily calculated that the optimal ω∗ is

ω∗ ≡ argmin
ω

{
max

λmin≤λ≤λmax

∣∣∣∣ω − λ

ω + λ

∣∣∣∣} =
√

λminλmax
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and

∥(ω∗I +ATA)−1(ω∗I −ATA)∥2 =

√
λmax −

√
λmin√

λmax +
√
λmin

=

√
κ(ATA)− 1√
κ(ATA) + 1

,

where κ(ATA) denotes the spectral condition number of matrix ATA.

3.2. General positive diagonal matrix case. Consider the general case when
Ω is a positive diagonal matrix. We define a norm that is useful in the sequel discus-
sions. For all x ∈ Rn, ∥x∥P ≡

√
xTPxT and ∥x∥P,q ≡ ∥Px∥q define vector norms

on Rn, where P ∈ Rn×n is an arbitrary nonsingular matrix; see [1, 17]. Moveover, if
X ∈ Rn×n, then ∥X∥P,q ≡ ∥PXP−1∥q. It follows from taking vector norm ∥ · ∥Ω1/2,2

of both sides of (3.2) that

(3.3) ∥zk+1 − z∗∥Ω1/2,2 ≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥|zk| − |z∗|∥Ω1/2,2.

Note that

∥zk+1 − z∗∥Ω1/2,2 = ∥Ω1/2(zk+1 − z∗)∥2 = ∥zk+1 − z∗∥Ω

and

∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2

= ∥Ω−1/2(I + (AΩ−1/2)T(AΩ−1/2))−1Ω−1/2Ω1/2(I − (AΩ−1/2)T(AΩ−1/2))Ω1/2∥Ω1/2,2

= ∥(I + (AΩ−1/2)T(AΩ−1/2))−1(I − (AΩ−1/2)T(AΩ−1/2))∥2
≡ ∥(I + ÂTÂ)−1(I − ÂTÂ)∥2,

where Â ≡ AΩ−1/2. Therefore, (3.3) gives

∥zk+1 − z∗∥Ω ≤ ∥(I + ÂTÂ)−1(I − ÂTÂ)∥2∥|zk| − |z∗|∥Ω
≤ ∥(I + ÂTÂ)−1(I − ÂTÂ)∥2∥zk − z∗∥Ω.

Notice that Â ≡ AΩ−1/2 is of full column rank as A is of full column rank and Ω is a
positive diagonal matrix. Hence ÂTÂ is symmetric positive definite and

∥(I + ÂTÂ)−1(I − ÂTÂ)∥2 = max
λ̂i∈σ(ÂTÂ)

∣∣∣∣∣1− λ̂i

1 + λ̂i

∣∣∣∣∣ < 1.

Consequently, the iteration sequence {zk}+∞
k=0 generated by (2.5) converges to the

unique solution z∗ for any initial vector.
Next, the choice of the parameter matrix Ω is discussed. Set Ω = ω̄D, where

D ≡ diag(ATA) denotes the diagonal part of ATA and ω̄ is a positive scalar parameter.

Then Â = ω̄−1/2AD−1/2 ≡ ω̄−1/2Ā and

∥(I + ÂTÂ)−1(I − ÂTÂ)∥2
= ∥(I + ω̄−1ĀTĀ)−1(I − ω̄−1ĀTĀ)∥2
= ∥(ω̄I + ĀTĀ)−1(ω̄I − ĀTĀ)∥2.

Similar to the previous analysis, the optimal parameter can be obtained by

ω̄∗ =
√
λ̄minλ̄max,
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where λ̄min and λ̄max are the minimum and maximum eigenvalues of ĀTĀ, respectively.
In addition,

∥(ω̄∗I + ĀTĀ)−1(ω̄∗I − ĀTĀ)∥2 =

√
λ̄max −

√
λ̄min√

λ̄max +
√
λ̄min

=

√
κ(ĀTĀ)− 1√
κ(ĀTĀ) + 1

,

where κ(ĀTĀ) denotes the spectral condition number of matrix ĀTĀ.
Remark that ĀTĀ = D−1/2ATAD−1/2 can be regarded as a symmetric diagonal

scaling preconditioning of ATA. Hence, it may be more efficient to choose Ω = ωD
than to choose Ω = ωI in the modulus iteration Algorithm 2.5.

3.3. Convergence of inexact inner iteration. Finally, the convergence anal-
ysis based on the inexact solution of the implicit fixed-point equation (2.5) is consid-
ered. Suppose zk has already been computed. Then, zk+1 is computed by applying
iterative methods, such as the PCG method, to (2.5). Thus, we have

(3.4) (Ω +ATA)zk+1 = (Ω−ATA)|zk|+ATb+ ek.

In addition, we define

εk = (Ω +ATA)zk − (Ω−ATA)|zk| −ATb.

Note that if εk = 0 for some fixed k, then x∗ = xk is an exact solution of the
fixed-point equation (2.4).

Assume that ∥ek∥ ≤ γk∥εk∥. Then it follows by subtracting (3.1) from (3.4) that

∥zk+1 − z∗∥Ω
= ∥(Ω +ATA)−1(Ω−ATA)(|zk| − |z∗|) + (Ω +ATA)−1ek∥Ω
≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥|zk| − |z∗|∥Ω + ∥(Ω +ATA)−1∥Ω1/2,2∥ek∥Ω
≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω + γk∥(Ω +ATA)−1∥Ω1/2,2∥εk∥Ω
= ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω
+ γk∥(Ω +ATA)−1∥Ω1/2,2∥(Ω +ATA)zk − (Ω−ATA)|zk| −ATb∥Ω
= ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω
+ γk∥(Ω +ATA)−1∥Ω1/2,2∥(Ω +ATA)(zk − z∗)− (Ω−ATA)(|zk| − |z∗|)∥Ω
≤ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2∥zk − z∗∥Ω
+ γk∥(Ω +ATA)−1∥Ω1/2,2(∥Ω+ATA∥Ω1/2,2 + ∥Ω−ATA∥Ω1/2,2)∥zk − z∗∥Ω
=: Lk∥zk − z∗∥Ω.

Hence, we only need to verify that Lk ≤ θ < 1, where θ is a scalar constant indepen-
dent of k.

Set

κ ≡ κ(Ω +ATA) = ∥(Ω +ATA)−1∥Ω1/2,2∥Ω+ATA∥Ω1/2,2,

δ ≡ ∥(Ω +ATA)−1(Ω−ATA)∥Ω1/2,2,

µ ≡ ∥(Ω +ATA)−1∥Ω1/2,2∥Ω−ATA∥Ω1/2,2.

By the fact that δ < 1, we have

θ ≡ α+ (1− α)δ < 1,
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where α ∈ [0, 1). If there exists an integer k0 such that for all k ≥ k0,

Lk = δ + γk(κ+ µ) ≤ θ ⇒ γk ≤ α(1− δ)

κ+ µ
,

then it follows that for k ≥ k0, Lk ≤ θ < 1, which guarantees the convergence of
the iteration sequence {zk}+∞

k=0 generated by inexact modulus iteration for any initial
vector.

Combining the analysis above, we have the following theorem.

Theorem 3.1. If A is of full column rank, then the iteration sequence {xk}∞k=0

generated by modulus-type inner outer iteration Algorithm 2.6 converges to the unique
solution x∗ for any initial vector when

• the inner system is solved exactly;
• or the inner system is solved iteratively with

∥ek∥Ω ≤ γk∥εk∥Ω with γk ≤ α(1− δ)

κ+ µ
,

for k ≥ k0, where k0 is an integer and α ∈ [0, 1).

4. Numerical Experiments. Finally, numerical experiment results are pre-
sented to show the performance of modulus-type inner outer iteration methods. We
compare them to the projection-type inner outer iteration methods for overdetermined
problems. All of the computation are run on a personal computer with 2.20 GHz CPU
and 2 GB memory. The programming language is Matlab 7.8 with machine precision
ϵ = 1.1× 10−16.

In addition, all initial vectors for outer and inner iteration are chosen to be x0 =
[0, 0, ..., 0]T ∈ Rn, and the parameter matrix Ω = ωI and Ω = ωdiag(ATA) are chosen
for modulus iteration methods, respectively, where ω is a positive parameter. The
inner least squares problems (2.8) are solved by either backslash in Matlab or CGLS
method. We define the residual as

(4.1) Res(xk) ≡ ∥min(ATAxk −ATb,xk)∥2,

set the relative residual

(4.2)
Res(xk)

Res(x0)
< tol

to be the stopping criterion for the outer iteration, and set

(4.3)
∥AT(b−Axk)∥2
∥AT(b−Ax0)∥2

< tolin ≡ 10−2/k

to be the stopping criterion for the inner iteration. Hence, the inner systems (2.8)
are solved more and more accurately as k increases. Note that (4.2) is also frequently
used as a stopping criterion of LCPs [21], and Res(xk) = 0 if and only if xk is a
solution of the NNLS problem (1.1) by Corollary 2.3. In order to perform a fair
comparison among different methods, we use the same stopping criterion, and the
maximum number k of outer iteration steps (20000), for all methods.
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Fig. 1. Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.8, (c) ρ = 0.6 and (d) ρ = 0.4
with σn = 0.01 (κ(A) = 100).

4.1. Dense full rank case. First, we show how the condition number and the
distribution of singular values of A influence the convergence of the modulus-type
and projection-type methods with a class of dense matrices of the form A = UΣV T,
where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices obtained from the QR
decomposition of random matrices, and Σ ∈ Rm×n is a rectangular diagonal matrix
with diagonal entries σ1 > σ2 > ... > σn, where the ith smallest singular value is

σn−i+1 = σn +
i− 1

n− 1
(σ1 − σn)ρ

n−i, i = 1, ..., n,

with the parameter ρ ∈ (0, 1]. Note that when ρ decreases, the singular values are
tightly clustered towards the smallest singular value σn and are far apart towards the
largest singular value σ1. The idea of generating this kind of matrices is from [9, 11].

In our numerical experiments, we set m = 200, n = 100, σ1 = 1, σn = 0.01 or
0.0001, ρ = 1, 0.8, 0.6, 0.4, and form inconsistent NNLS problems where the elements
of vector b are generated randomly following the normal distribution with mean zero
and variance 1, using the Matlab function randn(m, 1). The same b is used for all the
cases.

When the inner unconstrained least squares problems (2.8) are solved by backslash
“\” in Matlab, we compare the four testing methods, projected method (denoted by
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Fig. 2. Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.8, (c) ρ = 0.6 and (d) ρ = 0.4
with σn = 0.0001 (κ(A) = 104).

“Projected”), active set projected method (denoted by “AS-Projected”), modulus
method with Ω = ωI (denoted by “Modulus1”), and modulus method with Ω =
ωdiag(ATA) (denoted by “Modulus2”). The optimal ω was chosen by changing it
from 0.1 to 2 with an interval of 0.1, so that it gives the minimum number of outer
iterations.

In Figures 1 and 2, we depict the curves of the relative residual Res(xk)/Res(x0)
of the testing methods versus the number of outer iteration steps with σn = 0.01 and
σn = 0.0001, respectively. In each figure, there are four diagrams denoted by (a), (b),
(c) and (d) corresponding to ρ = 1, 0.8, 0.6 and 0.4, respectively.

From Figure 1, it is observed that the active set projected method outperforms
other iterative methods for the case when the singular values are uniform distributed
with ρ = 1, while fails to converge when the singular values cluster towards the
smallest singular value in (b), (c) and (d). The projected method fails to converge for
any ρ. In addition, the relative residual of the Modulus2 method declines much more
rapidly than any other iterative methods as the iteration steps increase except for the
case ρ = 1 in (a). This shows that the choice of Ω = ωdiag(ATA) in Modulus2 is
more efficient than the choice of Ω = ωI in Modulus1, which confirms our convergence
analysis.
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Table 1
Comparison of the iterative methods (full rank and inconsistent problem).

(ρ, σn, tol) AS-PCGLS MCGLS1 AS-MCGLS1 MCGLS2 AS-MCGLS2

(1, 10−2, 10−10) 6(13.00) 39(8.62) 45(5.20) 38(9.03) 45(7.07)
175 790 604 801 772
∗0.00 0.03 0.02 0.02 0.03

(0.8, 10−2, 10−10) − 9,262(6.18) 9,790(3.81) 433(45.30) 904(24.86)
142,269 103,975 40,526 47,665
2.22 2.70 ∗0.62 0.69

(0.6, 10−2, 10−10) − 10,167(4.53) 10,167(3.33) 497(37.77) 1,210(25.97)
122,636 98,184 39,036 66,469
1.95 2.68 ∗0.59 0.95

(0.4, 10−2, 10−10) − 10,386(5.67) 10,386(2.97) 552(33.54) 1,226(28.10)
148,999 92,933 38,687 72,585
2.34 2.70 ∗0.59 1.03

(1, 10−4, 10−10) 6(13.17) 40(8.70) 47(5.17) 40(9.15) 49(6.67)
177 817 628 853 802
∗0.00 0.02 0.02 0.03 0.02

(0.8, 10−4, 10−3) − − − 669(42.39) 765(33.07)
58,732 52,900
0.89 ∗0.80

(0.6, 10−4, 10−3) − − − 392(43.44) 547(34.28)
35,237 39,148
∗0.58 0.59

(0.4, 10−4, 10−2) − 179(4.26) 176(3.24) 25(32.96) 16(26.63)
2,062 1,669 1,724 901
0.05 0.06 0.03 ∗0.02

First row: number of outer iterations (IT) and average inner iterations (Inner).
Second row: number of matrix vector multiplication (MV).

Third row: computational time in seconds (CPU).

Figure 2 shows similar convergence phenomena as in Figure 1. As the iteration
steps increase, the relative residual of the active set projected method decreases much
more rapidly than any other iterative methods for the case ρ = 1 in (a), while the
Modulus2 method is most efficient when the singular values cluster towards the small-
est singular value in (b), (c) and (d). Note that the convergence behavior of all four
methods deteriorate as the condition number of the matrix A increases, as can be
seen by comparing Figures 1 and 2.

The optimal ω used for the Modulus1 and the Modulus2 methods in diagram (a)
of Figure 1 were 0.2 and 0.6, respectively. For the other diagrams in Figure 1, the
optimal ω was 0.1. The optimal ω for Figure 2 were the same as in Figure 1 for all
the corresponding modulus-type methods.

When the inner least squares problems (2.8) are solved by the CGLS method,
in Table 1 we compare the six testing methods, projected CGLS method (denoted
by “PCGLS”), modulus method with Ω = ωI (denoted by “MCGLS1”), modulus
method with Ω = ωdiag(ATA) (denoted by “MCGLS2”), and their corresponding
active set methods (denoted by “AS-PCGLS”, “AS-MCGLS1” and “AS-MCGLS2”),
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Table 2
Comparison of the iterative methods (full rank and inconsistent problem).

Problem PCGLS AS-PCGLS MCGLS2 AS-MCGLS2

Randn 1 IT(Inner) − 3(13.33) 16(13.81) 16(12.00)
MV 90 491 433
CPU ∗0.03 0.23 0.16
ω 0.7 0.7

Randn 2 IT(Inner) − − 68(69.90) 102(34.91)
MV 9,711 7,429
CPU 4.10 ∗2.34
ω 0.2 0.3

Randn 3 IT(Inner) − − 333(211.92) 338(122.67)
MV 142,136 83,941
CPU 60.70 ∗25.85
ω 0.1 0.1

Randn 4 IT(Inner) − − 4,784(102.46) 4,785(67.55)
MV 994,647 660,784
CPU 431.94 ∗210.13
ω 0.1 0.1

Randn 5 IT(Inner) − − 588(185.13) 592(111.88)
MV 219,483 134,239
CPU 94.38 ∗41.42
ω 0.4 0.4

Randn 6 IT(Inner) − − 886(200.98) 890(85.72)
MV 358,803 155,255
CPU 154.47 ∗48.50
ω 0.3 0.3

Randn 7 IT(Inner) − − 975(157.57) 650(103.79)
MV 310,182 136,875
CPU 133.32 ∗42.68
ω 0.3 0.2

Randn 8 IT(Inner) − − 530(271.40) 265(140.48)
MV 289,275 75,250
CPU 123.91 ∗23.38
ω 0.2 0.1

Res(xk)/Res(x0) < 10−5.

from the aspects of outer iteration steps (denoted by “IT”), average inner iteration
steps (denoted by “Inner”), the number of matrix vector multiplications (denoted by
“MV”), and CPU time in seconds (denoted by “CPU”). The optimal ω was used in the
modulus-type methods, which minimized the number of matrix vector multiplications.
The stopping criteria for outer and inner iteration were chosen as (4.2) and as (4.3)
with tolin = 10−2/k, respectively.

In Table 1, we list the numerical results for each method. The numerical results
for PCGLS is not shown here since it did not converge within the maximum iteration
steps for all the cases. The symbol “−” indicates that the iterative method failed
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Fig. 3. Number of outer iterations, inner iterations and matrix vector multiplication vs. ω for
MCGLS2 method in Randn 2.

to converge within the maximum iteration steps, and “∗” denotes the most efficient
method with least CPU time among all the testing methods. For all the methods,

(4.4) MV = 2IT(Inner + 1) + 1

holds, which is the relation between number of matrix vector multiplications with the
number of inner and outer iterations.

From Table 1, it is observed that AS-PCGLS method is more efficient than other
iterative methods with less outer iteration, matrix vector multiplication and CPU
time when ρ = 1. For ρ < 1, the projection-type methods including PCGLS and
AS-PCGLS fail to converge, while modulus type methods could obtain the numerical
solution in most cases. Also, the MCGLS2 and AS-MCGLS2 methods outperform
the MCGLS1 and AS-MCGLS1 methods with less computational costs. In addition,
it further confirms that the convergence behavior of the four methods deteriorate as
the condition number of the matrix A increases as shown in the Figures 1 and 2.
This is the reason why we decrease the tol to 10−3 and 10−2 when ρ = 0.8, 0.6, 0.4
with σn = 0.0001, otherwise, all the numerical methods can not converge within the
maximum iteration steps. Note that generally the CPU time show positive correlation
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Table 3
Information on the practical test matrices.

Problem m n nnz dens. [%] rank κ(A)

Maragal 3 1,682 858 18,391 1.27 613 1.10× 103

Maragal 4 1,964 1,027 26,719 1.32 801 9.33× 106

Maragal 5 4,654 3,296 93,091 0.61 2,147 1.19× 105

Maragal 6 21,251 10,144 537,694 0.25 8,331 2.91× 106

Maragal 7 46,845 26,525 1,200,537 0.10 20,843 8.98× 106

Maragal 8 60,845 33,093 1,308,415 0.06 − −

with matrix vector multiplications, since matrix vector multiplication is the main
computational costs in the algorithms. Therefore, the iterative methods with least
CPU time have least number of matrix vector multiplications.

Although the active set type methods require less average inner iterations than
non-active set type methods, it does not show significant acceleration of convergence
since they require more outer iterations for σn = 0.01.

The optimal ω used for the MCGLS1 and AS-MCGLS1 methods in the case ρ = 1
and σn = 10−2, 10−4 in Table 1 were 0.2, while for the MCGLS2 and AS-MCGLS2
methods the optimal ω were 0.6. For all the other cases, the optimal ω was 0.1.

4.2. Sparse full rank case. Next, we generate a class of sparse full column
rank matrices, abbreviated as “Randn i”, i = 1, 2, 3, 4, 5, 6, 7, 8, using the Matlab
function “sprandn” with m = 30, 000, n = 3, 000, and the ratio of nonzero elements
density= 0.1%. The condition numbers of these matrices are specified as

κ(Randn i) = 10i, i = 1, 2, 3, 4, 5, 6, 7, 8.

The nonzero element values were generated by a random number generator following
the normal distribution, and the pattern of the nonzero elements is also determined
by a random number generator. In these experiments, we form inconsistent NNLS
problems where the elements of the right-hand side vector b are generated randomly
using the Matlab function randn(m, 1). The same b is used for all the cases.

Since the MCGLS2 method was shown to be more efficient than the MCGLS1
method in the previous subsection, in these experiments we only compare the PCGLS,
AS-PCGLS, MCGLS2 and AS-MCGLS2 methods with Ω = ωdiag(ATA). The nu-
merical results are shown in Table 2. The tolerance for the outer iterations was chosen
as tol = 10−5.

Table 2 shows that the PCGLS method fails to converge for all the cases. The AS-
PCGLS method is much faster than modulus-type method for Randn 1 with κ(A) =
10. However, when the condition number is larger, the projection-type methods do
not converge within the maximum iteration numbers while the modulus-type methods
converged. Moreover, the AS-MCGLS2 method was more efficient than the MCGLS2
method with less inner iterations, matrix vector multiplications and CPU time. Hence,
the active set strategy accelerates the convergence behavior of the modulus method
in this full rank inconsistent case. In each cell, the optimal ω is shown in the fourth
row.

Figure 3 shows how the number of outer iteration, inner iterations and matrix
vector multiplication are affected by the choice of the parameter ω for the MCGLS2
method for Randn 2. The parameter ω varies from 0.1 to 2 with an interval of 0.1.
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Table 4
Comparison of the iterative methods (rank-deficient and consistent problem).

Problem PCGLS AS-PCGLS MCGLS AS-MCGLS

Maragal 3 IT(Inner) 2,003(465.24) 35(301.94) 435(26.80) 487(23.62)
MV 1,869,754 21,242 24,618 24,472
CPU 115.49 ∗1.20 1.78 1.78
ω 1.0 1.2

Maragal 4 IT(Inner) 1,479(396.90) 416(506.03) 343(26.00) 358(23.54)
MV 1,178,472 422,263 18,864 17,931
CPU 91.53 28.78 1.72 ∗1.59
ω 0.9 1.1

Maragal 5 IT(Inner) 259(437.24) 22(395.68) 288(29.58) 351(26.99)
MV 227,268 17,477 17,905 20,004
CPU 53.02 ∗3.59 4.56 5.09
ω 1.4 1.8

Maragal 6 IT(Inner) 367(716.96) 24(725.29) 331(28.29) 374(27.47)
MV 527,354 34,887 19,724 21,671
CPU 941.75 59.78 ∗39.27 44.71
ω 1.7 1.9

Maragal 7 IT(Inner) 168(535.28) 18(788.22) 411(26.87) 434(28.57)
MV 180,359 28,431 23,322 26,103
CPU 816.73 116.66 ∗114.72 127.25
ω 1.9 2.2

Maragal 8 IT(Inner) 980(753.88) 17(1,154.12) 251(24.16) 292(22.67)
MV 1,480,543 39,292 12,882 14,115
CPU 7,551.91 182.85 ∗71.25 79.69
ω 2.1 2.6

Res(xk)/Res(x0) < 10−5.

From Figure 3, it is observed that the number of outer iteration decreases at first,
then increases, while the number of inner iteration always decreases as ω increases.
This is because as ω increases, the coefficient matrix Ω + ATA in (2.5) becomes
more diagonally dominant, and the number of inner iterations decreases. As a result,
the optimal parameter with the least number of matrix vector multiplications was
ω∗ = 0.2. It is noted that the dependence of MV on ω is moderate.

4.3. Sparse rank deficient case. In the following, we test a class of rectangular
matrices from the University of Florida Sparse Matrix Collection [7]. We construct the
rank-deficient overdetermined systems by deleting all the zero rows and zero columns.
The resulting number of rows m, column n, nonzero elements nnz, as well as the rank,
are given in Table 3.

For the consistent case, we form NNLS problems where the right-hand side vector
b = Ax∗ and x∗ = [1, 0, 1, 0, ...]T ∈ Rn×1. The numerical results are shown in Table
4, where the tolerance for the outer iteration is chosen to be tol = 10−5.

Table 4 shows that all the testing methods converge for all the cases, although
the PCGLS method requires the most number of iterations and CPU time. For
problems Maragal 3 and Maragal 5, the AS-PCGLS is slightly more efficient than
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Fig. 4. Number of outer iterations, inner iterations and matrix vector multiplication vs. ω for
MCGLS method in Maragal 3.

modulus-type methods. This may be related to the relatively small condition num-
bers κ(A(Maragal 3)) ∼ O(103) and κ(A(Maragal 5)) ∼ O(105) compared to other
problems. As is shown in Section 4.1, the AS-PCGLS method outperforms other
methods if the condition number is small and the singular values are uniformly dis-
tributed. For problem Maragal i, i = 4, 6, 7, 8, the modulus-type methods are more
efficient than projection-type methods. In addition, apart from Maragal 4, the active
set strategy does not show significant acceleration compared to the MCGLS method,
which is different from the sparse full rank case in Section 4.2.

Figure 4 shows the number of outer iterations, inner iterations and matrix vector
multiplications vs. ω for the MCGLS method for Maragal 3.

As in Figure 3, the number of outer iterations decreases at first, and then increases,
while the number of inner iterations always decreases as ω increases. The optimal
parameter with the least number of matrix vector multiplications was ω∗ = 1.

For the inconsistent case, we form inconsistent NNLS problems where the right-
hand side vector b = [1, 1, ..., 1]T ∈ Rn×1. The numerical results are shown in Table
5, where the tolerance for the outer iterations is chosen to be tol = 10−3.

Table 5 shows that the projection-type methods do not converge for most cases,
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Table 5
Comparison of the iterative methods (rank-deficient and inconsistent problem).

Problem PCGLS AS-PCGLS MCGLS AS-MCGLS

Maragal 3 IT(Inner) − − 261(30.60) 407(17.28)
MV 16,758 15,286
CPU 1.34 ∗1.05
ω 1.0 1.6

Maragal 4 IT(Inner) − 53(425.19) 250(34.92) 464(17.75)
MV 45,230 18,209 17,869
CPU 2.81 1.61 ∗1.42
ω 0.7 1.4

Maragal 5 IT(Inner) − − 262(32.39) 448(21.84)
MV 17,759 20,911
CPU 4.71 ∗4.62
ω 1.3 2.3

Maragal 6 IT(Inner) − − 189(33.16) 296(23.70)
MV 13,104 14,921
CPU 25.79 ∗24.55
ω 1.5 2.3

Maragal 7 IT(Inner) − − 181(28.32) 208(24.84)
MV 10,796 10,959
CPU 52.70 ∗48.89
ω 2.4 2.7

Maragal 8 IT(Inner) − − 2,665(48.16) 652(45.97)
MV 264,694 61,907
CPU 1,464.66 ∗193.86
ω 0.6 0.6

Res(xk)/Res(x0) < 10−3.

which is different from the consistent case in Table 4. For the modulus-type methods,
it requires more iterations and CPU time compared to the consistent case. For prob-
lems Maragal 5, Maragal 6 and Maragal 7, the AS-MCGLS method requires slightly
more matrix vector multiplication than MCGLS method, nevertheless, it requires least
CPU time. This can be explained as in the inner iteration of AS-MCGLS method, a
series of reduced least squares problem is solved which requires reduced size of matrix
vector multiplication. Hence, AS-MCGLS is the most efficient method among all the
testing methods.

4.4. Image restoration. Lastly, we apply the proposed method to the solution
of nonnegative constrained ill-posed problems

(4.5) Ax = b, x ≥ 0,

where A ∈ Rn×n is a matrix with ill-determined rank and has many singular values
of different orders of magnitude close to the origin. In many linear discrete ill-posed
problems that arise in science and engineering, such as the restoration of an image, the
right hand side vector is contaminated by blur and noise [6]. Hence, (4.5) is generally
inconsistent and thus one has to solve a NNLS problem.
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Table 6
Definitions in image restoration.

A blurring operator
x̂ noise- and blur-free image

b̂ = Ax̂ blurred noise-free image
e noise

b = b̂+ e blurred and noisy image

γ = ∥e∥2/∥b̂∥2 noise level

(a) (b)

Fig. 5. Exact image for (a) satellite and (b) variant motion.

We test the numerical methods PCGLS and MCGLS2 on image restoration, where
the data consists of the noise- and blur-free images shown in Figure 5, which come
from Nagy’s Matlab toolbox “RestoreTools” [3]. Some basic definitions in image
restoration are shown in Table 6. Note that the matrix A is determined by the point
spread function. Vector e is generated with normally distributed entries with zero
mean by Matlab. The iteration is terminated when the numerical solution xk satisfies
the discrepancy principle as

(4.6) ∥b−Axk∥2 ≤ ηδ, δ = ∥e∥2 = ∥b− b̂∥2,

where η ≥ 1 is a specified constant, or k reaches the maximal number of iteration
steps, e.g., 10. The noise level δ is set to be 5% and the discrepancy factor η = 1 for
all cases.

In Figures 6 and 7, the medium and large blurred and noisy image, the restored
images of satellite by PCGLS and MCGLS2 are shown, respectively. The relative
error of the image is defined as

Error =
∥xk − x̂∥2

∥x̂∥2
.

The figures show that the MCGLS2 method could obtain more accurate numerical
solutions and thus clearer images compared to the PCGLS method with the same
computational costs.
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Medium Blur Error=0.2230 Error=0.1829

Fig. 6. Medium blurred and noisy image (left), restored image by PCGLS (middle), and restored
image by MCGLS2 (right) of satellite image.

Large Blur Error=0.2564 Error=0.2019

Fig. 7. Large blurred and noisy image (left), restored image by PCGLS (middle), and restored
image by MCGLS2 (right) of satellite image.

In Figures 8 and 9, the medium and large blurred and noisy image, the restored
images of variant motion by PCGLS and MCGLS2 are shown, respectively.

From the figures, the same conclusion can be reached that the MCGLS2 method
could obtain more accurate numerical solutions than the PCGLS method with the
same computational costs.

5. Concluding Remarks. A new class of inner outer iterative methods for
nonnegative constrained least squares (NNLS) problem (1.1) was proposed based
on the modulus transformation on the nonnegative variables. Thus, the solution
of the NNLS problem (1.1) can be transformed into the solution of a sequence of un-
constrained least squares problems. Theoretical convergence analysis was presented
when the inner system is solved either exactly or iteratively, and the choice of the
parameter matrix was discussed for the proposed method. Numerical experiments
showed that the modulus-type methods are feasible for full column rank and rank
deficient overdetermined NNLS problems. In addition, the modulus-type methods
outperform projection-type methods with less iteration steps and CPU time when
the coefficient matrix has ill-determined rank with large condition number and the
singular values cluster near zero. We also applied our methods to nonnegative con-
strained ill-posed image restoration problems, and the numerical results showed that
the proposed method is more accurate than projected method.
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Medium Blur Error=0.2453 Error=0.2375

Fig. 8. Medium blurred and noisy image (left), restored image by PCGLS (middle), and restored
image by MCGLS2 (right) of variant motion image.

Large Blur Error=0.2754 Error=0.2296

Fig. 9. Large blurred and noisy image (left), restored image by PCGLS (middle), and restored
image by MCGLS2 (right) of variant motion image.
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