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Abstract

Nonlinear least squares (NLS) problems arise in many applications. The common solvers
require to compute and store the corresponding Jacobian matrix explicitly, which is too expensive
for large problems. In this paper, we propose an effective Jacobian free method especially for
large NLS problems because of the novel combination of using automatic differentiation for J(x)v
and JT (x)v along with the preconditioning ideas that do not require forming the Jacobian matrix
J(x) explicitly. Together they yield a new and effective three-level iterative approach. In the
outer level, the dogleg/trust region method is employed to solve the NLS problem. At each
iteration of the dogleg method, we adopt the iterative linear least squares (LLS) solvers, CGLS
or BA-GMRES method, to solve the LLS problem generated at each step of the dogleg method
as the middle iteration. In order to accelerate the convergence of the iterative LLS solver, we
propose an inner iteration preconditioner based on the weighted Jacobi method. Compared to the
common dogleg solver and truncated Newton method, our proposed three level method need not
compute the gradient or Jacobian matrix explicitly, and is efficient in computational complexity
and memory storage. Furthermore, our method does not rely on the sparsity or structure pattern
of the Jacobian, gradient or Hessian matrix. Thus, it can be applied to solve any large general
NLS problem. Numerical experiments show that our proposed method is much superior to the
common trust region method and truncated Newton method.

Key words: nonlinear least squares problem, Newton’s method, automatic differentiation, CGLS
method, BA-GMRES method, weighted Jacobi method, trust region method.
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1 Introduction

Nonlinear least squares (NLS) problems arise in numerous areas of applications, such as imaging,
tomography, geophysics and economics. The general form of the NLS problem can be expressed as

min
x∈Rn

1

2
∥F(x)∥22, (1.1)

where F(x) ≡ (F1(x), · · · , Fm(x))T is a mapping from Rn to Rm (usually, m ≥ n) and twice differ-
entiable. Denote the objective function in (1.1) as f(x), i.e., f(x) ≡ 1

2∥F(x)∥
2
2. Then, the solution

of (1.1) is equivalent to the solution of the following nonlinear equations,

∇f(x) = JT (x)F(x) = 0,

where∇f(x) is the gradient of f(x) and J(x) is the Jacobian matrix of F(x). Thus, the corresponding
iterative process of Newton’s method can be written as

xk+1 = xk + λkdk,

where λk is a parameter for the length of the step and dk = −(∇2f(xk))
−1∇f(xk) and ∇2f(xk) is

the second derivatives of function f(x), i.e., the Hessian matrix of f(x), which is given by

H(x) ≡ ∇2f(x) = JT (x)J(x) +
m∑
i=1

Fi(x)∇2Fi(x). (1.2)

In the case where x is close to the solution, the Hessian matrix H(x) can be approximated by the
first term, thus avoiding a rather lengthy calculation in the second term. This approximation leads
to the Gauss-Newton (G-N) method [7] for the NLS problem. In this method, the following linear
least squares problem is required to be solved at each iteration of the G-N method,

min
dk

∥J(xk)dk + F(xk)∥2. (1.3)

Another well known method to solve the nonlinear least squares problem (1.1) is the Levenberg-
Marquardt (L-M) method [7] which approximates the Hessian matrix H(x) in (1.2) by JT (x)J(x) +
µI, where µ is called the damping parameter updated at each iteration. Correspondingly, an expanded
linear least squares problem, rather than (1.3), is required to be solved, that is

min
dk

∥∥∥∥[ J(xk)√
µI

]
dk +

[
F(x)
0

]∥∥∥∥
2

. (1.4)

After the direction vector dk is obtained from (1.3) or (1.4), some optimization schemes, such as line
search [7], can be employed to determine the parameter λk at each iteration. Although both G-N and
L-M methods avoid calculating the second term in (1.2), they still require to calculate the Jacobian
matrix J(x) for each Newton iteration, which is expensive in computational time and storage.

In fact, Jacobian-free Newton’s methods are popular in solving nonlinear equations in many real ap-
plications [6, 16, 29]. In solving nonlinear equations when m = n, a linear system J(xk)dk = −F(xk),
rather than an LS problem, has to be solved at each iteration. Thus, some iterative methods, such
as the GMRES [12, 23], and IDR methods[25] can be employed to solve the linear system without
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forming the Jacobian matrix explicitly while the Jacobian-vector multiplication can be estimated by
the finite difference as

J(x)v ≈ F(x+ ϵv)− F(x)

ϵ
.

In order to accelerate the convergence of the iterative method, some preconditioner construction
techniques were also proposed [16, 8, 10, 3, 28]. However, all these techniques require some part of
the Jacobian matrix or the structure of the Jacobian matrix in advance. Thus, these Jacobin-free
methods are usually problem dependent. On the other hand, although the LS problem (1.3) is equiv-
alent to the normal equation JT

k Jkdk = −JT
k F(xk), the finite difference method can only estimate

J(x)v, rather than JT (x)v. Thus, these Jacobian-free techniques cannot be applied to solve the LS
problem (1.3) or (1.4) without forming J(x) itself.

The truncated Newton method is another category of iterative methods for solving optimization
problem [19]. In the Newton’s framework, it employs the iterative methods, say CG and GMRES
methods, to solve the linear system for each Newton iteration with the first and second derivatives
of the objective function. Usually, it assumes that the gradient of the objective function is available.
Then, finite differencing is employed to estimate Hessian-vector multiplication so that the linear sys-
tem can be solved without forming the Hessian matrix. In order to accelerate the convergence of
the iterative method, some preconditioner construction techniques were also proposed in [18]. Un-
fortunately, just like the Jacobian-free method [6, 16] for solving nonlinear equations, most of these
techniques still require some or the whole part of the Hessian matrix itself. A diagonal scaling pre-
conditioner, which is the only effective preconditioner without forming the Hessian matrix itself in
[18], can be constructed through the BFGS formula in the quasi-Newton method. In 1989, Dixon
and Price combined the truncated Newton method with AD and proposed a Hessian truncated New-
ton method solving optimization problems with sparse Hessian matrices without the requirement of
the gradient[9]. In fact, they just replaced the finite difference method with AD to calculate the
Hessian-vector multiplication. No preconditioner construction is mentioned in [9]. Thus, the trun-
cated Newton method converges quite slow in some cases without preconditioners.

The automatic differentiation(AD) was first proposed in the 1970’s [2, 11] for computing the deriva-
tives in machine precision via the chain rule. There are two modes to compute the derivatives, the
forward mode and the reverse mode. The forward mode can compute the product J(x)v with any
given vector v in the same cost as one function evaluation while the reverse mode estimates the
product wTJ . There are quite a few AD packages available on [1] supporting various programming
languages such as C/C++, Fortran, Matlab and so on. In this paper, we adopt both modes to
construct the preconditioner and solve the LS problem (1.3) or (1.4) without forming J(x) explicitly.

As known, it is not necessary to treat the nonlinear LS problem as a general optimization problem,
since computing a Hessian matrix is quite expensive. In this paper, we first adopt the dogleg/trust-
region method to solve the NLS problem. Then, the popular LS iteration solvers, CGLS [5, 13, 24]
and BA-GMRES [17] methods, can be applied to solve (1.3) and (1.4) without forming J(x) explic-
itly. Thus, the automatic differentiation (AD), instead of the finite difference method, is employed to
calculate J(x)v and JT (x)v. Compared to the finite difference method, AD can estimate both J(x)v
and JT (x)v in machine precision with almost the same cost as one function evaluation. In order to
accelerate the convergence of these solvers, we propose an inner iteration preconditioner based on a
weighted Jacobi method. In our proposed three-level trust-region method, all the required informa-
tion is the objective function F(x) itself in (1.1). There is no request for the sparsity of the Jacobian
matrix of F(x) or the gradient of 1

2∥F(x)∥
2
2. In other words, our method can solve the NLS problems
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no matter whether the Jacobian matrix is dense, sparse or structured as long as the Jacobian matrix
is full rank. In all these three-level iterations, only the Jacobian matrix-vector multiplication J(x)v
and JT (x)v are required, which can be computed by AD through the forward mode and reverse
mode, respectively. Thus, the Jacobian matrix J(x) never needs to be stored explicitly and the
structure of the Jacobian matrix is never needed. Compared to other preconditioner techniques for
sequence of matrices [8, 10, 3], our inner iteration preconditioner is cheap and does not rely on the
sparsity or structure of J(x). Thus, theoretically, our proposed three-level method can be applied
to any nonlinear LS problems as long as its Jacobian matrix is full rank. As a special case, when
m = n, our method is also applicable for solving nonlinear equations. Although we only focus on the
trust region method in this paper, our technique is applicable to the L-M method as well, since the
expanded LS problem (1.4) can be treated as a special case of (1.3).

The rest of the paper is organized as follows. In Section 2, we give the algorithm of the Jacobian
free trust region method. The method is described under the generic dogleg/trust-region framework.
Since the dominant part of the dogleg method is to solve LS problems, we only focus on how to solve
the LS problem (1.3) via the iterative method. Then, the inner-iteration preconditioner construction
is discussed in Section 3. After that, we apply our proposed method to solve some NLS problems from
the optimization test problem set CUTEr [4] and two data fitting problems in Section 4. Compared
to the common dogleg method implementation from immoptibox [20], Matlab built-in NLS solver
lsqnonlin and the truncated Newton method with diagonal scaling preconditioner [19], our proposed
method requires much less storage and computational time, especially when the problem size is large.
Finally, we conclude with some remarks in Section 5.

2 Jacobian free Trust Region Method

One of the popular methods for solving the NLS problems is the dogleg/trust-region method [7, 21].
It solves a subproblem at each iteration to generate a trial step s as

min
s

{
sTJT

k F(xk) +
1

2
sTJT

k Jks, ∥s∥2 ≤ ∆k, s ∈ Pk

}
, (2.5)

where Jk ≡ J(xk), ∆k > 0 is the trust region radius and Pk is the ‘dogleg’ piecewise linear path
connecting xk to the Cauchy point (i.e., the minimizer of the quadratic function (2.5) along the
negative gradient direction −JT

k F(xk)). In other words, the solution of the subproblem (2.5) can
be in two directions. One is the solution of the LS problem (1.3), denoted as dgn

k , a step for the
Gauss-Newton method. The other direction is the steepest decent direction, given by

dsd
k = −JT

k F(xk).

Then, a parameter α is evaluated to determine how far the step is on the steepest decent direction,
that is

α =
∥JT

k F(xk)∥2
∥JkJT

k F(xk)∥2
. (2.6)

Now, we have two candidates for the step to take from the current point xk: a = αdsd
k and b = dgn

k .
Then, the trust region radius ∆ is used to choose the step dk between a and b. In order to make a
proper length on the step, a ratio ρ is calculated to control the radius ∆ of the trust region as

ρ =
f(xk)− f(xk + d)

L(0)− L(d)
,

4



where f(x) = 0.5∥F(x)∥22 and L(d) = 0.5∥F(xk) + Jkd∥2. When the ratio ρ is large, it indicates
that the linear model is good. We can increase ∆ and thereby take a longer step, which is close to
the direction dgn

k . If ρ is small, maybe even negative, ∆ is reduced, indicating smaller steps, which
is close to the steepest decent direction dsd

k . Thus, the algorithm for the dogleg/trust region method
can be summarized as follows.

Algorithm 1 Dogleg/trust region method for solving NLS problems.

1). Given x0, ∆0, ϵ, kmax and nostop = true;
2). k = 0, x = x0, ∆ = ∆0, g = −JT

0 F(x);
3). While k < kmax and nostop
4). k = k + 1, Compute α as (2.6);
5). dsd = αg;
6). Solve LS problem Jkd

gn = −F(xk);
7). if ∥dgn∥ ≤ ∆
8). d = dgn;
9). elseif ∥αdsd∥ ≥ ∆
10). d = (∆/∥dsd∥)dsd;
11). else
12). d = αdsd + β(dgn − αdsd), where β is chosen to satisfy ∥d∥ = ∆;
13). end;
14). if ∥d∥ ≤ ϵ(∥x∥);
15). nonstop = false;
16). else
17). xnew = x+ d;
18). ρ = (f(xk)− f(xk + d))/(L(0)− L(d));
19). if ρ > 0
20). x = xnew, g = −JT

k F(x);
21). end
22). if ρ > 0.75
23). ∆ = max{∆, 3∥d∥};
24). elseif
25). ∆ = ∆/2;
26). end
27). end
28). end

As shown, the major part in Algorithm 1 is to solve the LS problem in line 6, which dominated the
computational complexity of the dogleg method. For the solution of the LS problem, we adopt the two
typical iterative methods, CGLS [13, 5] and BA-GMRES [14, 17] methods. Thus, the preconditioned
CGLS (PCGLS) method and BA-GMRES methods to solve the LS problem (1.3) can be described
as follows.

Algorithm 2 PCGLS method for solving the LS problem (1.3).

1). Let d0 be the initial solution of the LS problem (1.3);
2). Compute r0 = −F(xk)− J(xk)d0;
3). s0 = JT

k r0, z0 = P−1s0, p0 = z0, γ0 = (s0, z0);
4). for j = 1, 2, · · · do

5



5). qj = Jkpj ;
6). αj = γ0/(qj , qj);
7). dj+1 = dj + αjpj ;
8). rj+1 = rj − αjqj ;
9). sj+1 = JT

k rj+1;
10). if ∥sj+1∥ < ϵ∥s0∥, then stop;
11). Compute zj+1 = P−1sj+1;
12). γj+1 = (sj+1, zj+1);
13). βj = γj+1/γj ;
14). pj+1 = zj+1 + βjpj ;
15). end

The lines 3 and 11 in Algorithm 2 require to compute the product of preconditioner P−1 with a vector
JT
k rj so that the CGLS method can converge fast. Some preconditioner construction technique for

sequence of matrices [3, 8, 10] and the incomplete LU factorization [12] may be used to determine the
preconditioner in line 3 and 11 in Algorithm 2. However, since the Jacobian matrix is updated at each
iteration of Algorithm 1, all these techniques require the information of some part of the Jacobian
matrix or the sparsity pattern. Unfortunately, all these information are not available if we do not form
the Jacobian matrix explicitly. Thus, we will employ inner-iterations to construct the preconditioner
implicitly as in [17]. The idea behind the inner-iteration is like this. The preconditioner P is
constructed as a close approximation of the parameter matrix JT

k Jk so that P−1 is an approximation
of (JT

k Jk)
−1. It implies that the product P−1JT

k F(xk) is an approximate solution of the normal
equation, JT

k Jkz = JT
k F(xk). In other words, since the explicit form of P is not necessary in

Algorithm 2, but P−1(JT
k F(xk)) only, we can employ a simple iterative method to solve the normal

equation approximately in a fixed number of iterations. The returned solution from the simple
iterative method can be treated as P−1(JT

k F(xk)) in the lines 3 and 11. The same idea is also
applicable to the BA-GMRES method [14, 17].

Algorithm 3 BA-GMRES iteration scheme to solve the LS problem (1.3).

1). Let d0 be the initial solution of the LS problem (1.3);
2). r0 = −F(x0)− Jkd0;
3). s0 = JT

k r0, z0 = P−1s0;
4). β = ∥z0∥2, v1 = z0/β;
5). for j = 1, 2, · · · m
6). uj = Jkvj , zj = P−1JT

k uj ;
7). for i = 1, 2 · · · , j
8). hi,j = (zj , vi);
9). zj = zj − hi,jvi

10). end
11). hj+1,j = ∥wj∥2, vj+1 = zj/hj+1,j ;
12). Find yj ∈ Rj that minimizes ∥βe1 − H̄yj∥ = ∥JT

k rj∥2
13). dj = d0 + [v1, v2, · · · ,vj ]yj ;
14). end
15). Return dm;

In fact, there are two preconditioner construction techniques proposed in this paper. One is the di-
agonal scaling while the other is the inner preconditioner based on the weighted Jacobi method. The

6



preconditioner P−1 should approximate (JT
k Jk)

−1. Thus, in the first approach, we take P−1 as an
approximation of the diagonal of (JT

k Jk)
−1. As shown in [26], the diagonal scaling preconditioner is

nearly optimal in some circumstances. Based on this approximated diagonal, we can further solve the
normal equation JT

k Jkz0 = JT
k r0 approximately, by the weighted Jacobi method with matrix-vector

multiplications JT
k w and Jkv, instead of forming P−1 explicitly. Thus, it leads to the inner-iteration

preconditioner in Section 3.

3 Preconditioner Construction

In this section, we propose two preconditioner strategies to accelerate the convergence of the precon-
ditioned CGLS and BA-GMRES method in the middle iteration. As we mentioned in Section 2, the
preconditioner vector product P−1JT

k rj can be defined as an approximate solution, z, of the normal
equation,

JT
k Jkz = JT

k rj . (3.7)

The first approach is to construct P as the estimated diagonal of JT
k Jk explicitly. Since Jk is not

calculated explicitly, we adopt the approximation of Jk in [27] to estimate the diagonal of JT
k Jk.

Then, based on this estimated diagonal, we can apply the weighted Jacobi method [15] to solve (3.7)
approximately to obtain the product P−1JT

k F(xk). For the sake of analysis, we can also construct
the explicit form of the preconditioner P based on the weighted Jacobi method. Its property is also
presented at the end of this section.

3.1 Diagonal Scaling Preconditioner

The diagonal scaling technique is commonly used as preconditioners in solving nonlinear minimization
problems. Theoretical evidence indicates that the diagonal scaling technique is an effective way to
accelerate the convergence of the iterative method in solving normal equations [18, 26]. In this
subsection, a sample scaling strategy based on the quasi-Newton method for the NLS problem [27]
is described. In [27], a BFGS rank one update formula was proposed to approximate the Jacobian
matrix Jk+1 as

Bk+1 = Bk +
(yk −Bkdk)d

T
k

dT
k dk

,

where dk = xk+1 − xk and yk = F(xk+1)−F(xk). Then, the product of JT
k+1Jk+1 can be estimated

by

BT
k+1Bk+1 =

(
Bk +

(yk −Bkdk)d
T
k

dT
k dk

)T (
Bk +

(yk −Bkdk)d
T
k

dT
k dk

)
= BT

k Bk +
BT

k ykd
T
k + gkd

T
k + dky

T
k Bk + dkg

T
k

dT
k dk

(3.8)

+
yT
k yk − dT

kB
T
k yk − yT

k Bkdk − dT
k gk

(dT
k dk)2

dkd
T
k ,

since BT
k Bkdk = −gk in the secant algorithm in [27]. Since Bk is an approximation of Jk, the product

BT
k yk can be estimated by JT

k yk. Then, the diagonal of the preconditioner Pk+1 for the (k + 1)th
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outer iteration can be estimated by the diagonal of (3.8), that is

diag(Pk+1) = diag(Pk) +
2

dT
k dk

(dk. ∗ uk + gk. ∗ dk) +
yT
k yk − 2dT

k uk − dT
k gk

dT
k dk

dk. ∗ dk, (3.9)

where uk = JT
k yk, ‘.∗’ represents the entry-wise multiplication of two vectors, and P0 = diag(1, 1, · · · , 1).

The main advantage of this preconditioner construction is its low cost. It only requires one extra
function evaluation at each outer iteration. However, the diagonal entries on Pk+1 cannot be guar-
anteed to be positive in (3.9) since BT

k yk is only an approximation of JT
k yk. If some diagonal entries

are nonpositive, we will force them to be 1 to guarantee the positiveness so that the diagonal scaling
matrix Pk+1 can also be a proper preconditioner for the CGLS method. As for the BA-GRMES
method, the preconditioner is constructed as P−1

k+1J
T
k so that the BA-GMRES method returns the

solution of the LS problem (1.3).

3.2 Weighted Jacobi Inner Iteration

Given the linear system
JT
k Jkdk = −JT

k F(xk),

its weighted Jacobi iteration [15] to solve this normal equation can be rewritten as

d
(j+1)
k = d

(j)
k + ωD−1(−JT

k F(xk)− JT
k Jkd

(j)
k ), (3.10)

where D can be any positive diagonal matrix and ω is the weight. As shown in (3.10), the cost for

each weighted Jacobi iteration is two function evaluations to calculate JT
k Jkd

(j)
k . Thus, in our inner

iteration preconditioner construction, we just run the weighted Jacobi method a few steps, say one or
two iterations to get an approximate solution for the normal equation. The parameter matrix JT

k Jk
can be split into

JT
k Jk =

1

ω
D︸︷︷︸ −

(
1

ω
D − JT

k Jk

)
︸ ︷︷ ︸ = M −N.

M N

Thus, the iteration matrix for the weighted Jacobi method is

H = M−1N = ωD−1

(
1

ω
D − JT

k Jk

)
= I − ωD−1JT

k Jk.

Thus, we have
H = I − ωD−1JT

k Jk = D− 1
2 (I − ωD− 1

2 JT
k JkD

− 1
2 )D

1
2

= D− 1
2V (I − ωΣTΣ)V TD

1
2 ,

where the singular value decomposition of JkD
− 1

2 is JkD
− 1

2 = UΣV T . Assume that Jk is full column
rank, then the spectrum of H is

ρ(H) = max
i

(|1− ωσ2
i |), i = 1, 2, ..., n,

where σ1 ≥ σ2 ≥ ... ≥ σn > 0 are the singular values of JkD
− 1

2 . Set ρ(H) < 1, then

|1− ωσ2
i | < 1, i = 1, 2, ..., n ⇒ 0 < ω <

2

σ2
1

.
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Suppose that the weighted Jacobi method runs l steps for the preconditioner in the inner iteration

with initial value d
(0)
k = 0. Then, we have

d
(l)
k = ω

l−1∑
j=0

h
(j)
k ,

where
h
(j)
k = D−1(−JT

k F(xk)− JT
k Jkd

(j)
k ) = D−1JT

k r
(j)
k .

Note that

r
(j)
k = −F(xk)− Jkd

(j)
k = r

(j−1)
k − ωJkh

(j−1)
k

= (I − ωJkD
−1JT

k )r
(j−1)
k = −(I − ωJkD

−1JT
k )jF(xk),

thus
h
(j)
k = −(I − ωD−1JT

k Jk)
jD−1JT

k F(xk).

Let B(l) be

B(l) = ω
l−1∑
j=0

(I − ωD−1JT
k Jk)

jD−1JT
k ,

then d
(l)
k = −B(l)F(xk), and

C(l) = ω
l−1∑
j=0

(I − ωD−1JT
k Jk)

jD−1.

Note that B(l) can act as B in BA-GMRES of Algorithm 3 for R(B(l)) = R(JT
k ). Since D is an

approximation of the diagonal of JT
k Jk and each diagonal entry of D is positive, then C(l) can be

rewritten as

C(l) = ωD− 1
2 [

l−1∑
j=0

(I − ωD− 1
2 JT

k JkD
− 1

2 )j ]D− 1
2

= ωD− 1
2V [

l−1∑
j=0

(I − ωΣTΣ)j ]V TD− 1
2

= D− 1
2V diag(σ̃1, · · · , σ̃n)(D

− 1
2V )T ,

where σ̃i =
1−(1−ωσ2

j )
l

σj
, i = 1, 2, ..., n. Thus, we obtain the following theorem.

Theorem 3.1

ω < 0 =⇒ C(l) is negative definite;

0 < ω <
2

σ2
1

=⇒ C(l) is positive definite;

ω ≥ 2

σ2
1

=⇒
{

C(l) is negative definite when l is even,
C(l) is not definite when l is odd.
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As for the L-M method, the outer iteration is similar to Algorithm 1. Its dominant part is to
solve an expanded LS problem (1.4), instead of (1.3). For the expanded LS problem (1.4), the
corresponding normal equation is

(JT
k Jk + µI)z = −JT

k F(xk).

Thus, the iteration matrix for the weighted Jacobi method can be expressed as

H ≡ M−1N = I − ωµD−1 − ωD−1JT
k Jk.

With similar analysis as in Theorem 3.1, we can show that the spectrum of H is less than 1 when
0 < ω < 2

µ+σ2
1
. The corresponding preconditioning matrix for the weighted Jacobi method is

C(l) = ω
l−1∑
i=0

(I − ωµD−1 − ωD−1JT
k Jk)

i.

We can also show that C(l) is symmetric positive definite when 0 < ω < 1/(µ + σ2
1), which implies

that matrix C(l) is a suitable preconditioner for the CGLS method when solving the expanded LS
problem (1.4) when 0 < ω < 1/(µ + σ2

1). In other words, the weighted Jacobi method can also be
applied in the inner-iteration as an implicit preconditioner for the L-M method.

4 Numerical Experiments

In this section, we compare our proposed methods with the common dogleg implementation in im-
moptibox [20], MATLAB built-in NLS solver lsqnonlin, which is implemented by the dogleg/trust
region method and the truncated Newton method with diagonal scaling preconidtioner [19]. All ex-
periments are carried on a machine with Intel Core Duo 3.16GHz CPU, 8GB RAM and 500GB hard
driver. The machine is running MATLAB 2013b under Windows 7 Professional.

Here, two sets of problems are taken for the experiment. The first set of problems is from the
Constrained and Unconstrained Testing Environment (CUTEr) [4]. We choose four unconstrained
NLS problems from this set. The size of all these problems varies from 2000 to 15000. The other
problem set is two data fitting problems. The performance of nine methods is compared on all
these testing problems. We first run the dogleg method (DL) in immoptibox to solve these prob-
lems, where the Jacobian matrix Jk is evaluated by the AD at each iteration and the LS problem
is solved by the ‘backslash’ built in Matlab. Then, the CGLS method is embedded into the dogleg
method without a preconiditioner, i.e., dogleg with CGLS method (DL-CG), to solve the LS problem
(1.3). After that, we try our proposed Jacobian-free dogleg method with different preconditioner
techniques. In these methods, we take the dogleg framework for the outer iteration, preconditioned
CGLS and BA-GMRES methods for the middle iteration with different preconditioner strategies.
Thus, these methods include dogleg with diagonal scaling preconditioner strategy, i.e., DL-CG-DS
and DL-BA-DS, and with the weighted Jacobi method as the inner preconditioner, i.e., DL-CG-R(1)
and DL-BA-R(i), where the number i in the parenthesis represents how many steps in the weighted
Jacobi matrix are taken for the inner weighted Jacobi method. Usually, we set i to be 1 or 2, that
is only one or two steps of weighted Jacobi method are run for the inner preconditioner. Due to
Theorem 3.1, C(l) is only positive definite for ω > 1/σ2

1 when l is odd. Thus, based on our determi-
nation of ω, C(1) is positive definite so that it is suitable as a preconditioner for the CGLS method.
Finally, we solve the NLS problem by the function lsqnonlin in the optimization toolbox in Matlab
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(MATLAB) and the truncated Newton method with preconditioner proposed in [19] (TNewton).

Then, we record the computational times in seconds (time), the number of function evaluations
(fun), the number of iterations for the dogleg method (out) and the total number of iterations for the
preconditioned CGLS and BA-GMRES method solving LS problems (mid) as measurements for the
performance and effectiveness of preconditioners. In all these methods, we set the stop tolerance for
the outer iteration, the dogleg/trust region framework, as 10−6 and the maximum number of outer
iterations as 100. As for the middle iteration, we set the stop tolerance for the PCGLS or BA-GMRES
method as 10−8 and the maximum number of iterations as 300. In the inner iteration, we only run
i steps of the weighted Jacobi method for preconditioning. As analyzed in the previous section,
the parameter ω in the weighted Jacobi method should be less than 2/λmax(D

−1JT
k Jk). Thus, we

estimate λmax(D
−1JT

k Jk) by running three steps of the power method, i.e., λ̃max(D
−1JT

k Jk), then

ω is determined as 2/(λ̃max(D
−1JT

k Jk) + 0.05).

In the first set of problems, we choose four functions from CUTEr. The following are the descriptions
of function F(x) : Rn → Rm for all these four problems.

1. Penalty function I (Penalty I)

(a) n is a variable, m = n+ 1

(b)
yi =

√
α(xi − 1), 1 ≤ i ≤ n

yn+1 =
∑n

j=1 x
2
j − 0.25, where α = 10−5.

2. Variable dimensioned function (VDF)

(a) n is variable, m = n+ 2

(b)

yi = xi − 1, 1 ≤ i ≤ n
yn+1 =

∑n
j=1 j(xj − 1),

yn+2 =
(∑n

j=1 j(xj − 1)2
)2

.

3. Brown almost linear function (BALF)

(a) n is variable, m = n

(b)
yi = xi +

∑n
j=1 xj − (n+ 1) 1 ≤ i < n

yn = (
∏n

j=1 x
2
j )− 1.

4. Linear function-full rank (LFFK)

(a) n is variable, m = 1.25n

(b)
yi = xi − 2

m

(∑n
j=1 xj

)
− 1, 1 ≤ i ≤ n

yi =
(∑n

j=1 xj

)
− 1, n < i ≤ m.

The first two problems, Penalty I and VDF, are two typical unconstrained NLS problems while the
third problem, BALF, is a nonlinear equation problem. The fourth problem, LFFK, can be converted
into a linear LS problem. We choose these four problems with variable sizes to test the performance of
our Jacobian-free methods on different category problems. Next, we show how all these nine methods
perform on these four problems. Table 1 and 2 record the computational times (time) in seconds,
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number of function evaluations(fun), outer iteration numbers(out) and total middle-iteration num-
bers(mid) of all nine methods on solving the first four NLS problems.

The results in Table 1 to 2 show that our Jacobian free method is far more efficient than the
common implementation of dogleg method in immoptibox and Matlab built-in NLS solver lsqnonlin.
The main computational cost in these two methods is dominated by estimating the Jacobian matrix
and solving LS problems. Thus, the Jacobian-free methods can be a good alternative to reduce com-
putational times and storage requirement. As for the VDF problem, only the TNewton, DL-CG-R(1)
and DL methods manage to solve it. Other dogleg methods cannot return the NLS solution while
the Matlab built-in solver, lsqnonlin fails within the maximum number of function valuations, which
is defined as 100 × n by default, either, when the problem size is larger than 6000. Thus, the inner
preconditioner can also increase the accuracy and robustness of the Jacobian-free method.

It also shows that for large problems, say larger than 8000, our methods can return solutions in
seconds while the common dogleg methods requires hours and the truncated Newton method solves
the problems in minutes. In the whole computation, we only require the information of the objective
function F(x), which means that our proposed method do not rely on any sparse format of Jacobian,
gradient and Hessian matrix. Therefore, all these methods can be applied to general NLS problems.
In other words, our method can solve a large variety of NLS problems.

For these selected CUTEr problems, the DL-CG method works pretty well. It only requires only
a few iterations to solve each LS problem in the dogleg framework. Thus, our preconditioned Ja-
cobian free method does not have too many advantages on these problems. However, our proposed
methods have much better performance than the common dogleg implementations and truncated
Newton method.

The second problem set includes two data fitting problems. The data fitting problem can be generally
described as follows. Given data points (x1, y1), · · · , (xm, ym), which satisfies

yi = Ψ(ti) + ϵi, for i = 1, 2, · · · ,m,

where Ψ is the background function and {ϵi} is measured as ‘noise’. Our goal is to find an approx-
imation to Ψ(t) in the domain [a, b] spanned by the data abscissas. Thus, a fitting model can be
defined as M(x, t) with arguments t = (t1, t2, · · · , tm) and parameters x = (x1, · · · , xn). We try to
find x∗ such that M(x∗, t) is the best approximation to Ψ(t). Usually, the number of parameters n
is smaller than the number of data points, m, i.e., n < m.

The first data fitting problem we consider is as follows.

M(x, t) = x1e
x2

ti+x3 + exmin{i,n} ,

where i = 1, 2, · · · ,m and n is the number of entries in x. We assume that there exists an x♯ so that

yi = M(x♯, ti) + ϵi, i = 1, 2, · · · ,m, (4.11)

where the {ϵi} are errors on the data ordinates, assumed to behave like ‘white-noise’. Then, for any
choice of x, we can compute the residuals, F = (f1, f2, · · · , fm)T ,

fi(x) = yi −M(x, ti).
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n = 2000 n = 4000 n = 6000

Method time (s) fun out mid time (s) fun out mid time (s) fun out mid

Penalty I

DL 30.112 44000 14 - 495.18 100000 16 - 1634.39 150000 16 -
DL-CG 0.115 145 14 19 0.124 177 16 24 0.13 177 16 24
TNewton 1.62 2372 12 246 5.34 2489 12 264 5.16 1028 12 105
DL-CG-DS 0.124 232 14 51 0.127 179 16 33 0.152 259 16 65
DL-BA-DS 0.122 165 14 30 0.135 203 16 45 0.148 219 16 45
DL-CG-R(1) 0.128 299 14 42 0.13 258 16 45 0.142 324 16 65
DL-BA-R(1) 0.125 267 14 41 0.131 313 16 50 0.139 322 16 55
DL-BA-R(2) 0.136 385 14 44 0.191 434 16 55 0.156 441 16 60

Matlab 17.35 - - - 0.108 - - - 155.86 - - -

VDF

DL 103.12 50000 25 - 846.97 104000 25 - 2901.37 162000 25 -
DL-CG F F F F F F F F F F F F
TNewton 2.91 2471 21 257 4.175 1699 21 177 15.76 2369 21 245
DL-CG-DS F F F F F F F F F F F F
DL-BA-DS F F F F F F F F F F F F
DL-CG-R(1) 1.27 908 25 204 1.66 994 25 235 1.77 1148 25 306
DL-BA-R(1) F F F F F F F F F F F
DL-BA-R(2) F F F F F F F F F F F F

Matlab 28.94 - - - 149.06 - - - F - - -

BALF

DL F - - - F - - - F - - -
DL-CG 0.175 106 10 19 0.143 115 10 22 0.123 98 8 18
TNewton 0.98 511 9 57 1.46 438 9 45 2.53 346 8 51
DL-CG-DS 0.137 121 10 27 0.12 119 10 26 0.123 102 8 21
DL-BA-DS 0.134 109 10 21 0.117 109 10 21 0.117 94 8 17
DL-CG-R(1) 0.118 101 10 17 0.121 161 10 27 0.122 137 8 21
DL-BA-R(1) 0.1094 89 10 14 0.111 89 10 14 0.127 122 8 16
DL-BA-R(2) 0.114 139 10 15 0.126 221 10 27 0.125 168 8 18

Matlab 31.8 - - - 127.34 - - - 320.18 - - -

LFFK

DL 36 10000 4 - 176.15 20000 4 - 583.38 30000 4 -
DL-CG 0.114 37 4 4 0.126 37 4 4 0.113 37 4 4
TNewton 0.385 41 4 4 0.217 41 4 4 0.451 41 4 4
DL-CG-DS 0.114 41 4 4 0.114 41 4 4 0.115 41 4 4
DL-BA-DS 0.113 41 4 4 0.108 41 4 4 0.112 41 4 4
DL-CG-R(1) 0.108 56 4 4 0.113 56 4 4 0.115 56 4 4
DL-BA-R(1) 0.108 56 4 4 0.112 65 4 4 0.117 65 4 4
DL-BA-R(2) 0.11 81 4 4 0.112 81 4 4 0.114 81 4 4

Matlab 18.344 - - - 146.36 - - - 414.76 - - -

Table 1: Performance of DL, DL-CG, TNewton, DL-CG-DS, DL-CG-DS, DL-CG-R(1), DL-BA-R(i)
methods and Matlab NLS solver lsqnonlin on solving Penalty I, VDF, BALF and LFFK problems
with the size varying from 2000 to 6000 where ‘F’ represents failure of returning the NLS solution.
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n = 8000 n = 12000 n = 15000

Method time (s) fun out mid time (s) fun out mid time (s) fun out mid

Penalty I

DL 407. 163 208000 17 - 12963.54 312000 17 - O.M. O.M. O.M. O.M.
DL-CG 0.125 165 17 26 0.139 165 17 22 0.71 252 17 40
TNewton 21.97 2405 12 241 21.03 1081 12 109 41.25 755 12 76
DL-CG-DS 0.147 253 17 62 0.142 247 17 44 1.23 439 17 135
DL-BA-DS 0.144 219 17 45 0.154 223 17 56 1.06 359 17 95
DL-CG-R(1) 0.143 318 17 62 0.156 312 17 48 1.18 434 17 105
DL-BA-R(1) 0.15 318 17 53 0.178 444 17 55 1.03 355 17 68
DL-BA-R(2) 0.167 464 17 56 0.191 486 17 48 1.15 527 17 67

Matlab 249.97 - - - 19879.39 - - - O.M. O.M. O.M. O.M.

VDF

DL 7043.54 224000 28 - 23445.22 336000 28 - O.M. O.M. O.M. O.M.
DL-CG F F F F F F F F F F F F
TNewton 20.47 2411 21 251 38.95 2024 21 210 20.23 607 21 63
DL-CG-DS F F F F F F F F F F F F
DL-BA-DS F F F F F F F F F F F F
DL-CG-R(1) 2.25 1374 28 413 16.08 2408 28 818 5.27 2370 31 999
DL-BA-R(1) F F F F F F F F F F F F
DL-BA-R(2) F F F F F F F F F F F F

Matlab F - - - F - - - O.M. O.M. O.M. O.M.

BALF

DL F - - - F - - - O.M. O.M. O.M. O.M.
DL-CG 0.122 112 10 21 0.146 112 9 21 0.75 113 9 23
TNewton 5.93 458 9 47 9.84 360 8 38 13.28 274 9 25
DL-CG-DS 0.13 119 10 26 0.134 115 9 19 0.65 95 9 17
DL-BA-DS 0.122 107 10 20 0.126 105 9 19 0.80 102 9 21
DL-CG-R(1) 0.125 159 10 26 0.13 155 9 24 0.84 137 9 21
DL-BA-R(1) 0.114 74 10 14 0.135 125 9 15 0.71 76 9 10
DL-BA-R(2) 0.117 94 10 11 0.146 148 9 12 0.81 98 9 10

Matlab 748.57 - - - 14507.28 - - - O.M. O.M. O.M. O.M.

LFFK

DL 1376.31 40000 4 - 4542.97 60000 4 - O.M. O.M. O.M. O.M.
DL-CG 0.109 37 4 4 0.111 37 4 4 0.24 37 4 4
TNewton 0.88 41 4 4 1.74 41 4 4 2.50 41 4 4
DL-CG-DS 0.115 41 4 4 0.116 41 4 4 0.23 41 4 4
DL-BA-DS 0.11 41 4 4 0.113 41 4 4 0.25 41 4 4
DL-CG-R(1) 0.111 56 4 4 0.116 56 4 4 0.27 56 4 4
DL-BA-R(1) 0.112 65 4 4 0.117 65 4 4 0.30 65 4 4
DL-BA-R(2) 0.117 81 4 4 0.121 81 4 4 0.74 81 4 4

Matlab 475.36 - - - 45189.5 - - - O.M. O.M. O.M. O.M.

Table 2: Performance of DL, DL-CG, TNewton, DL-CG-DS, DL-CG-DS, DL-CG-R(1), DL-BA-R(i)
methods and Matlab NLS solver lsqnonlin on solving Penalty I, VDF, BALF and LFFK problems
with the size varying from 8000 to 15000 where ‘F’ represents failure of returning the NLS solution
and ‘O.M.’ represents failure to solving the NLS problem due to running out of memory.
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n = 2000 n = 4000 n = 6000

Method (n) time (s) fun out mid time (s) fun out mid times(s) fun out mid

DL 36.40 14000 6 - 272.68 28000 6 - 889.63 42000 6 -
DL-CG 1.62 568 6 218 1.64 595 6 287 2.01 616 6 278
TNewton 0.932 633 6 86 3.37 745 6 102 7.83 739 6 103
DL-CG-DS 1.26 448 6 201 1.21 428 6 196 1.42 437 6 203
DL-BA-DS 0.98 364 6 150 1.11 348 6 151 1.36 354 6 152
DL-CG-R(1) 1.25 475 6 172 1.30 467 6 178 1.53 475 6 202
DL-BA-R(1) 0.63 241 6 73 0.68 253 6 79 0.82 281 6 80
DL-BA-R(2) 1.07 410 6 66 1.01 366 6 68 1.34 393 6 71

Matlab 6.95 - - - 21.83 - - - 54.32 - - -

Table 3: Performance of DL, DL-CG, TNewton, DL-CG-DS, DL-CG-DS, DL-CG-R(1), DL-BA-R(i)
methods and Matlab NLS solver lsqnonlin on solving data fitting problem with the size varying from
2000 to 6000.

n = 8000 n = 12000 n = 15000

Method time (s) fun out mid time (s) fun out mid time (s) fun out mid

DL 2095.86 56000 6 - 6878.98 84000 6 - O.M. O.M. O.M. O.M.
DL-CG 2.11 596 6 287 3.97 634 6 260 4.54 919 6 395
TNewton 16.75 1047 6 145 25.22 1023 6 147 F F F F
DL-CG-DS 1.61 464 6 209 2.16 492 6 156 3.09 614 6 284
DL-BA-DS 1.61 358 6 156 1.97 360 6 157 2.79 440 6 197
DL-CG-R(1) 1.75 487 6 178 3.72 517 6 183 3.40 661 6 275
DL-BA-R(1) 1.00 285 6 82 1.28 283 6 76 1.65 293 6 95
DL-BA-R(2) 1.55 440 6 76 1.60 356 6 58 2.17 422 6 82

Matlab 98.67 - - - 16113.30 - - - O.M. O.M. O.M. O.M.

Table 4: Performance of DL, DL-CG, TNewton, DL-CG-DS, DL-CG-DS, DL-CG-R(1), DL-BA-R(i)
methods and Matlab NLS solver lsqnonlin on solving data fitting problem with the size varying from
8000 to 15000 where ‘F’ represents failure of returning the NLS solution and ‘O.M.’ represents failure
to solving the NLS problem due to running out of memory.

The least squares fit is to determine a minimizer x∗, such that

∥F(x∗)∥2 = min ∥F(x)∥2.

Here, we use these nine methods to solve such a problem with n varying from 2000 to 15000. The
vector x♯ is chosen as a random vector with the corresponding size and generate the data points via
(4.11). The initial guess, x0, is another random vector equally distributed on interval [0, 1]. The
value of ti is defined as ti = 5 + 45i, i = 1, · · · ,m. In this problem, we assume that the number of
observation data is 1.25 times of the unknowns, that is m = 1.25n. The performance of nine meth-
ods is recorded in Table 3 and 4. It shows that our Jacobian-free methods are much more efficient
than the common dogleg method and Matlab built-in solver. Furthermore, when the problem size
is 15000, the DL and MATLAB methods fail again due to running out of memory. It means that
the estimated Jacobian matrix used up all available memory in Matlab. However, our Jacobian-free
methods do not encounter any memory difficulties since no Jacobian matrix requires to be computed
and stored explicitly. On the other hand, our preconditioner technique works well on this problem.
The inner preconditioner with weighted Jacobi method can accelerate the convergence of the BA-
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Figure 1: Residual of CGLS and BA-GMRES methods of DL-CG, DL-CG-DS, DL-CG-R(1) and
DL-BA-R(i) at the first iteration of the outer level iteration for the data fitting problem.

GMRES method in the middle iteration significantly. As shown in Table 3 and 4, the DL-BA-R(i)
methods make a significant savings on the function evaluations at each iteration of the BA-GMRES
method. Another observation is that running one step of the weighted Jacobi method is enough for
the preconditioning. Although two steps of the weighted Jacobi method can reduce the iterations
for the BA-GMRES method a little bit further, the cost of each BA-GMRES iteration increases
dynamically. Thus, DL-BA-R(2) requires less BA-GMRES iterations, but takes more computational
time than DL-BA-R(1) does.

Figure 1 and 2 plot the residual of the DL-CG, DL-CG-DS, DL-BA-DS, DL-CG-R(1) and DL-
BA-R(i) methods in the middle level iteration solving the LS problem at different steps of outer
iteration for the data fitting problem. Figure 1 plots the first iteration of the outer level iteration
while Figure 2 plots for the fifth iteration. These two figures illustrate that the inner preconditioner
via the weighted Jacobi method provides the best performance in outer iterations with the CGLS
and BA-GMRES method as the LS solver. The diagonal scaling preconditioner does not work well
at the first outer iteration since it is far from the Jacobian matrix. However, its performance is im-
proved at the fifth outer iteration due to its close approximation to the Jacobian matrix. Moreover,
these two figures show that BA-GMRES method converges faster than the CGLS method, especially
when matrix B is chosen as B(l) in Section 3.2 implicitly through the weighted Jacobi method in the
BA-GMRES method.
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Figure 2: Residual of CGLS and BA-GMRES methods of DL-CG, DL-CG-DS, DL-CG-R(1) and
DL-BA-R(i) at the fifth iteration of the outer level iteration for the data fitting problem.

The second data fitting problem is more complicated than the first one. Suppose that there is a
set of data points (ti, yi) on ti ∈ [0, 1], which satisfies

yi = t
S(θ)
i + ϵi,

where S(θ) is a smooth curve of θ on the interval θ ∈ [0, π/2], but the closed form of S(θ) itself
is unknown. Our goal is to calibrate the smooth curve, S(θ) on [0, π/2] from the data set (ti, yi),
i = 1, · · · ,m. A commonly used technique for calibration is to select n knots from [0, π/2], then
build a spline curve through these selected knots as an approximation of S(θ). There are two advan-
tages for this approach. First, due to n smaller than m, the complexity to rebuild the curve is small.
Second, if we compute every Si for each data point (ti, yi), then the constructed curve from {Si},
i = 1, · · · ,m, can be very bumpy, which means {Si} could be overfitted.

In this example, we assume that S(θ) = sin θ, θ ∈ [0, π/2], and the interval [0, π/2] is evenly
divided into m subintervals. For each subinterval knots, we compute Si = sin(θi), θi = πi/2 and
yi = tSi

i + ϵi, where ti = i/m, i = 1, · · · ,m and ϵi is a random noise of 10−2 ·N(0, 1) and N(0, 1) is
the standard normal distribution. In order to calibrate this curve, we take n+1 knots on the interval
[0, π/2], xj , j = 0, · · · , n and xj = jπ/2n. Then, we try to find the spline curve through all these
n+ 1 knots, xj , such that the curve is the solution of the following NLS problem,

min
zj

1

2

m∑
i=1

∥tSP (xj ,zj ,ti)
i − yi∥22,

where SP (xj , zj , ti) represents the spline curve value with knots {xj , zj} at point ti. In this example,
we consider the number of data points, m, varies from 2000 to 15000. Then, we only consider n evenly
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m = 2000 m = 4000 m = 6000

Method (n) time (s) fun out mid time (s) fun out mid times(s) fun out mid

DL 45.10 1800 9 86.84 3200 8 169.22 4800 8
DL-CG 24.87 746 9 334 27.07 804 8 377 30.32 771 8 344
TNewton 86.32 2897 9 310 84.31 3173 8 379 157.97 4672 8 431
DL-CG-DS 22.55 684 9 313 28.00 835 8 391 31.13 391 8 369
DL-BA-DS 18.74 554 9 248 20.50 607 8 277 24.46 617 8 282
DL-CG-R(1) 21.55 650 9 281 24.21 727 8 322 29.04 753 8 323
DL-BA-R(1) 17.21 518 9 209 17.45 521 8 213 21.10 541 8 223
DL-BA-R(2) 26.32 798 9 171 28.67 857 8 187 31.22 805 8 174

Matlab 41.98 - - - 94.53 - - - 220.44 - - -

Table 5: Performance of DL, DL-CG, TNewton, DL-CG-DS, DL-CG-DS, DL-CG-R(1), DL-BA-R(i)
methods and Matlab NLS solver lsqnonlin on solving curve calibration problem with the size varying
from 2000 to 6000.

m = 8000 m = 12000 m = 15000

Method time (s) fun out mid time (s) fun out mid time (s) fun out mid

DL 299.06 6400 8 - 903.81 12000 10 - 1192.86 13500 9 -
DL-CG 46.50 915 8 392 85.42 1072 10 441 230.00 2130 9 995
TNewton 267.09 5123 8 487 630.34 8893 10 763 932.89 12023 9 1101
DL-CG-DS 53.10 1041 8 494 106.17 1323 10 628 227.82 2103 9 1021
DL-BA-DS 35.00 695 8 321 67.94 843 10 388 121.69 1123 9 531
DL-CG-R(1) 44.52 879 8 375 84.12 1063 10 478 174.41 1616 9 760
DL-BA-R(1) 29.43 585 8 245 53.85 695 10 287 98.77 937 9 414
DL-BA-R(2) 48.48 957 8 212 86.23 1099 10 240 165.69 1553 9 357

Matlab 442.78 - - - 928.73 - - - 1379.88 - - -

Table 6: Performance of DL, DL-CG, TNewton, DL-CG-DS, DL-CG-DS, DL-CG-R(1), DL-BA-R(i)
methods and Matlab NLS solver lsqnonlin on solving curve calibration problem with the size varying
from 8000 to 15000.

distributed points on interval [0, π/2] to build the spline curve, where n = m/10. Table 5 and 6 record
all the performance results of these nine methods. The inner preconditioner works much better than
the diagonal scaling one, especially for the BA-GMRES method. The DL-BA-R(2) requires much
less iteration steps to solve the LS problems than DL-BA-R(1), but it requires much more function
evaluations. Thus, from the efficiency point of view, DL-BA-R(1) is the most cost efficient method.
Although TNewton method does not compute the Hessian matrix explicitly, the cost of computing a
Hessian-vector product is much higher than computing a Jacobian-vector product. Thus, it still takes
much more time than the Jacobian-free methods. In this curve calibration problem, the TNewton
requires almost the same number of function evaluations as the DL method, which constructs the
Jacobian matrix explicitly. Therefore, it does not have a big saving in computational times.

Figure 3 and 4 plot the convergence of all dogleg methods in solving the curve calibration prob-
lem with the first outer iteration and fifth outer iteration, respectively. Just as we observed in the
previous data fitting problem, the dogleg with BA-GMRES method provides the fastest convergence,
especially when we take the weighted Jacobi method as preconditioner.
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Figure 3: Residual of CGLS and BA-GMRES methods of DL-CG, DL-CG-DS, DL-CG-R(1) and
DL-BA-R(i) at the first iteration of the outer level iteration for the curve calibration problem.
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Figure 4: Residual of CGLS and BA-GMRES methods of DL-CG, DL-CG-DS, DL-CG-R(1) and
DL-BA-R(i) at the fifth iteration of the outer level iteration for the curve calibration problem.
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5 Conclusion

In this paper, we proposed an effective three-level Jacobian free method for solving general NLS
problems based on the novel combination of AD and inner-iterative preconditioning ideas. In the
outer level, we employ the dogleg/trust region framework for the NLS problem. At each iteration in
the outer level, the main cost is to solve a linear LS (LLS) problem. Thus, we adopt the iterative
linear LS solver, CGLS or BA-GMRES method, to build up a middle iteration. In order to accelerate
the convergence of the iterative LLS solver, we propose an inner iteration preconditioner based on the
weighted Jacobi method. Since the Jacobian matrix Jk is not computed and stored explicitly in each
outer iteration, the diagonal of JT

k Jk can be approximated by the formula in [27]. Then, the weighted
Jacobi method can be used as an inner preconditioner for the CGLS or BA-GMRES method. Also,
the convergence of the weighted Jacobi method is analyzed. Finally, we compare our method with
the common dogleg method implementations in Matlab optimization toolbox and immoptibox and
the truncated Newton method with the diagonal scaling preconditioner. Numerical results show the
superiority of our proposed methods. Due to no Jacobian matrix computed or stored explicitly, our
methods can reduce both the computational times and memory requirement significantly. Further-
more, our methods do not rely on the sparsity or structure of Jacobian, gradient and Hessian matrix
in the computation. Thus, our methods is applicable to solving any NLS problems. On the other
hand, we note that our Jacobian-free method can also be extended to solve nonlinear systems as well.
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