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CONVERGENCE OF INNER-ITERATION GMRES METHODS
FOR LEAST SQUARES PROBLEMS∗

KEIICHI MORIKUNI† AND KEN HAYAMI‡

Abstract. We develop a general convergence theory for the generalized minimal residual method
preconditioned by inner iterations for solving least squares problems. The inner iterations are per-
formed by stationary iterative methods. We also present theoretical justifications for using specific
inner iterations such as the Jacobi and SOR-type methods. The theory improves previous work [K.
Morikuni and K. Hayami, SIAM J. Matrix Appl. Anal., 34 (2013), pp. 1–22], particularly in the
rank-deficient case. We also characterize the spectrum of the preconditioned coefficient matrix by
the spectral radius of the iteration matrix for the inner iterations, and give a convergence bound for
the proposed methods. Finally, numerical experiments show that the proposed methods are more
robust and efficient compared to previous methods for some rank-deficient problems.
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1. Introduction. Consider solving least squares problems

min
x∈Rn

‖b−Ax‖2, (1.1)

where A ∈ Rm×n is not necessarily of full rank and b ∈ Rm is not necessarily in
R(A), the range space of A. The least squares problem (1.1) is equivalent to the
normal equations

ATAx = ATb, (1.2)

and in general has an infinite number of solutions. If b ∈ R(A), the problem

min
x∈S

‖x‖2, S = {x ∈ Rn : Ax = b} (1.3)

has a unique solution called the minimum-norm solution and is equivalent to the
normal equations of the second kind

x = ATu subject to AATu = b. (1.4)

By applying B ∈ Rn×m, we may transform the problem (1.1) to equivalent prob-
lems.

Theorem 1.1 ([14, Theorem 3.1]). min
x∈Rn

‖b−Ax‖2 = min
z∈Rm

‖b−ABz‖2 holds

for all b ∈ Rm if and only if R(AB) = R(A).
Theorem 1.2 ([14, Theorem 3.11]). min

x∈Rn
‖b−Ax‖2 and min

x∈Rn
‖Bb−BAx‖2

are equivalent for all b ∈ Rm if and only if R(BTBA) = R(A).

∗This work was supported by the Grants-in-Aid for Scientific Research (C) of the Ministry of

Education, Culture, Sports, Science and Technology, Japan.
†National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

(morikuni@nii.ac.jp).
‡National Institute of Informatics, and Department of Informatics, School of Multidisciplinary

Sciences, The Graduate University for Advanced Studies (Sokendai), 2-1-2 Hitotsubashi, Chiyoda-
ku, Tokyo 101-8430, Japan (hayami@nii.ac.jp).

1



2 KEIICHI MORIKUNI AND KEN HAYAMI

Thus, the original problem (1.1) may be reduced to least squares problems with
a square matrix AB or BA. Based on these transformations, the generalized minimal
residual method (GMRES) [24] was applied to solve least squares problems (1.1) in
[14]. The right- and left-preconditioned GMRES for least squares problems were called
AB- and BA-GMRES, respectively. Sufficient conditions under which these methods
determine a least squares solution for arbitrary b were shown.

In [19], these methods were preconditioned by several iterations of stationary
iterative methods such as variants of the Jacobi overrelaxation (JOR) and successive
overrelaxation (SOR) methods, which may be considered as inner iterations. In [20],
we assumed that A should be of full-column rank for the convergence theory for
BA-GMRES with the Cimmino-NR (Normal Residual) and NR-SOR inner iterations,
but numerical experiments showed that these methods actually converge also for rank-
deficient problems. In this paper, we give theoretical justifications for the convergence
also in the rank-deficient case, for which only few preconditioners such as diagonal
scaling and the Greville’s method [6] were known to work.

The outline of the paper is as follows. In section 2, we give a convergence condi-
tion for GMRES, which will be used later. In section 3, we introduce BA-GMRES,
correct its convergence theorem in [14], analyze the spectrum of the preconditioned
matrix, and give a convergence bound for BA-GMRES. In section 4, we introduce
inner-iteration preconditioning for BA-GMRES, and give main results on sufficient
conditions for convergence in terms of the inner iterations. We also give a conver-
gence bound for the method. In section 5, we introduce AB-GMRES, extend its
convergence theorem in [14], and give a convergence theory also for AB-GMRES pre-
conditioned by inner iterations. In section 6, we show numerical results comparing
these methods with previous methods. In section 7, we conclude the paper.

Throughout this paper, we use bold letters for column vectors. ej denotes the jth
column of the identity matrix. We denote quantities related to the kth inner iteration
by using a superscript with brackets, e.g., x(k), and the kth outer iteration by using
a subscript without brackets, e.g., xk. (a, b) denotes the inner product aTb between
real vectors a and b. N (A) denotes the null space of A. S⊥ denotes the orthogonal
complement of a subspace S.

2. GMRES method on linear systems including the singular case. We
first explain GMRES applied to the linear system Ãx̃ = b̃ with initial approximate
solution x̃0 ∈ RN , where Ã ∈ RN×N is not necessarily nonsingular. GMRES deter-
mines the kth approximate solution x̃k in x̃0+Kk(Ã, r̃0) which minimizes ‖b̃−Ãx̃k‖2,
where

Kk(Ã, r̃0) = span{r̃0, Ãr̃0, . . . , Ãk−1r̃0}

is the Krylov subspace of order k and r̃0 = b̃− Ãx̃0 is the initial residual.
We next present the convergence condition for GMRES for the linear system

Ãx̃ = b̃, independent of any particular implementation of the algorithm. Note that,
in general, dim ÃKk(Ã, r̃0) ≤ dimKk(Ã, r̃0) ≤ k holds for each k.

Definition 2.1 ([4, p. 38]). GMRES is said to break down at some step k if

dimÃKk(Ã, r̃0) < dimKk(Ã, r̃0) or dimKk(Ã, r̃0) < k.

Theorem 2.2. GMRES determines a solution of Ãx̃ = b̃ without breakdown for
all b̃ ∈ R(Ã) and for all x̃0 ∈ RN if and only if R(Ã) ∩N (Ã) = {0}.
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Proof. The sufficiency was shown in [4, Theorem 2.6]. Now we show the necessity.
AssumeR(Ã)∩N (Ã) �= {0}, or equivalently let Ã11 be singular, where Ã11 = Q̃T

1 ÃQ̃1,
R(Q̃1) = R(Ã), Q̃T

1 Q̃1 = Ir, and Ir is the identity matrix of size r = rankA [13,
Theorem 2.3]. Then, there exists s1 �= 0 such that Ã11s

1 = 0. Let b̃ = Q̃1s
1+ Ãx̃0 ∈

R(Ã). Then, r̃0 = Q̃1s
1 �= 0.

In step k = 1, x̃1 = x̃0 + cr̃0, c ∈ R and r̃1 = b̃ − Ãx̃1 = r̃0 − cÃr̃0. Let

Q̃2 ∈ RN×(N−r) such that R(Q̃2) = R(Ã)⊥ and Q̃T
2 Q̃2 = IN−r, and Q̃ =

[
Q̃1, Q̃2

]
.

Since

Q̃Tr̃1 = Q̃Tr̃0 − c(Q̃TÃQ̃)Q̃Tr̃0 = Q̃Tr̃0 − c

[
Ã11 Ã12

0 0

] [
s1

0

]
= Q̃Tr̃0

and r̃1 = r̃0 �= 0, x1 is not a solution of Ãx̃ = b̃. Moreover, since dimÃK1(Ã, r̃0) =
0 < dimK1(Ã, r̃0) = 1, GMRES breaks down at the first step.

This theorem is similar to [13, Theorem 2.8], which was for the standard GM-
RES method using Gram-Schmidt orthogonalization, whose breakdown was defined
as Definition A.3. Here, we have generalized [13, Theorem 2.8] by using the more
general definition of breakdown given in Definition 2.1. We give a discussion on the
relation between the two breakdowns in Appendix A.

3. BA-GMRES method. Consider solving (1.1). BA-GMRES [14] applies
GMRES to min

x∈Rn
‖Bb − BAx‖2 and works in a smaller n-dimensional space than

the m-dimensional space for AB-GMRES in the overdetermined case m > n. The
algorithm of BA-GMRES with the modified Gram-Schmidt orthogonalization is given
as follows.

Algorithm 3.1. BA-GMRES method.
1. Let x0 be the initial approximate solution and r0 := b−Ax0.
2. z0 := Br0, β := ‖z0‖2, v1 := z0/β
3. For k = 1, 2, . . . until convergence, Do
4. wk := BAvk

5. For i = 1, 2, . . . , k, Do
6. hi,k := (wk,vi), wk := wk − hi,kvi

7. EndDo
8. hk+1,k := ‖wk‖2, vk+1 := wk/hk+1,k

9. EndDo
10. yk := arg min

y∈Rk
‖βe1 − H̄ky‖2, xk := x0 + [v1,v2, . . . ,vk]yk

Here, H̄k = {hi,j} ∈ R(k+1)×k.
We say that BA-GMRES breaks down at some step k if dimBAKk(BA,Br0) <

dimKk(BA,Br0) or dimKk(BA,Br0) < k (cf. Definition 2.1). Applying Theorem
2.2 to BA-GMRES gives the following.

Theorem 3.2. Assume R(BT) = R(A). Then, BA-GMRES determines a solu-
tion of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ Rm and for all x0 ∈ Rn if and

only if R(B) ∩N (A) = {0}.
Proof. Substitute BA, x, and Bb into Ã, x̃, and b̃, respectively, in Theorem 2.2.

R(BT) = R(A) gives N (BA) = R(ATBT)⊥ = R(ATA)⊥ = R(AT)⊥ = N (A) and
R(BA) = R(BBT) = R(B) Hence, “for all Bb ∈ R(BA) = R(B)” is equivalent to
“for all b ∈ Rm”. R(BT) = R(A) also gives R(BTBA) = R(BTB) = R(BT) = R(A).
Therefore, Theorem 1.2 completes the proof.

This theorem corrects [14, Theorem 3.18].
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3.1. Spectrum of the preconditioned matrix. Next, we analyze the spec-
trum of the preconditioned matrix BA. Assume R(BT) = R(A). Then, Bb ∈
R (BA) = R(B) holds, and min

x∈Rn
‖Bb − BAx‖2 is equivalent to BAx = Bb. Let

r = rankA, Q1 ∈ Rn×r such that R(Q1) = R(BA), Q2 ∈ Rn×(n−r) such that
R(Q2) = R(BA)⊥, and Q = [Q1, Q2], where the columns of Q are orthonormal.
Then, GMRES applied to BAx = Bb is equivalent to GMRES applied to[

A11 A12

0 0

] [
x1

x2

]
=

[
b1

b2

]
,

where A11 = QT
1(BA)Q1 ∈ Rr×r, A12 = QT

1(BA)Q2 ∈ Rr×(n−r), x1 = QT
1x, x

2 =
QT

2x, b
1 = QT

1Bb, and b2 = QT
2Bb = 0 since Bb ∈ R(BA). As shown in [13], if

x0 ∈ R(BA) = R(B), then the R(BA) component of GMRES applied to BAx = Bb,
is equivalent to GMRES applied to A11x

1 = b1. On the other hand, in the R(BA)⊥

component, x2
k = x2

0 for all iterates xk.
Now note the following.
Theorem 3.3. A11 is nonsingular if and only if R(BA) ∩N (BA) = {0}.
Proof. See [13, Theorem 2.3].
Theorem 3.4. Assume R(BA) ∩ N (BA) = {0}. Then, λ �= 0 is an eigenvalue

of BA if and only if λ �= 0 is an eigenvalue of A11.
Proof. Let Q = [Q1, Q2] ∈ Rn×n be as given above. Then,

det(BA− λ I) = detQT det(BA− λ I) detQ = det
(
QTBAQ− λ I

)
= det

([
A11 − λ Ir A12

0 λ In−r

])
= (−λ)n−r det(A11 − λ Ir)

Hence, Theorem 3.3 completes the proof.

3.2. Convergence bound for BA-GMRES. Next, we give a convergence
bound for (BA-)GMRES.

Theorem 3.5. Let zk = B(b − Axk) be the kth residual for GMRES applied
to BAx = Bb and T be the Jordan basis of BA. Assume R(BT) = R(A), R(B) ∩
N (A) = {0}, x0 ∈ R(B), and that all the nonzero eigenvalues of BA are located in a
disk in the open right (left) half plane with center c and radius a, excluding the origin.
Then, we have

‖zk‖2 ≤ κ(T )

(
a

|c|
)k τ(k,d)∑

i=0

(
k

i

)
a−i‖z0‖2 (3.1)

for all x0 ∈ Rn and for all b ∈ Rm, where κ(T ) = ‖T‖2‖T−1‖2, d is the size of
the largest Jordan block of BA corresponding to a nonzero eigenvalue of BA, and
τ(k, d) = min{k, d− 1}.

Proof. Theorem 3.2 ensures that GMRES determines a solution of BAx = Bb
without breakdown for all b ∈ Rn and for all x0 ∈ Rn. From [2, Theorem 1], we have

‖zk‖2 = min
p∈Pk
p(0)=1

‖p(BA)z0‖2 ≤ κ(T )

(
min
p∈Pk
p(0)=1

max
1≤i≤M

‖p(Ji)‖2
)
‖z0‖2,

where Pk is the set of all polynomials of degree not exceeding k and Ji is a Jordan block
of BA corresponding to a nonzero eigenvalue, i = 1, 2, . . . ,M . From [2, Theorems 2,
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5], the second factor is bounded as

min
p∈Pk
p(0)=1

max
1≤i≤M

‖p(Ji)‖2 ≤
(

a

|c|
)k τ(k,d)∑

i=0

(
k

i

)
a−i.

This gives (3.1).
The particular spectrum of BA assumed in this theorem is satisfied for inner-

iteration preconditioning (see Theorem 4.9). We will use this theorem in section 4.3.
Note that the residual ‖zk‖2 does not necessarily depend only on the eigenvalues of
BA when κ(T ) is large [12], [1], [27]. A similar argument can be applied to AB-
GMRES.

4. BA-GMRES preconditioned by stationary iterative methods as in-
ner iterations. Instead of applying B explicitly as in Algorithm 3.1, consider using
inner iterations as follows [20].

Algorithm 4.1. BA-GMRES method preconditioned by inner iterations.
1. Let x0 be the initial approximate solution and r0 := b−Ax0.
2. Apply � steps of a stationary iterative method to ATAz = ATr0 to obtain

z0 := B(�)r0.
3. β := ‖z0‖2, v1 := z0/β
4. For k = 1, 2, . . . until convergence, Do
5. uk := Avk

6. Apply � steps of a stationary iterative method to ATAz = ATuk to obtain
zk := B(�)uk.

7. For i = 1, 2, . . . , k, Do
8. hi,k := (zk,vi), zk := zk − hi,kvi

9. EndDo
10. hk+1,k := ‖zk‖2, vk+1 := zk/hk+1,k

11. EndDo
12. yk := arg min

y∈Rk
‖βe1 − H̄ky‖2, xk := x0 + [v1,v2, . . . ,vk]yk

Here, B(�) denotes the preconditioning matrix for � inner iterations.
In lines 2 and 6 in Algorithm 4.1, stationary iterative methods are applied to

the normal equations. We now introduce a stationary iterative method for the nor-
mal equations ATAz = ATc. Consider the splitting ATA = M − N , where M is
nonsingular. Then, consider a class of iterative methods of the form

z(�) = M−1Nz(�−1) +M−1ATc.

Let H = M−1N = I−M−1ATA be the iteration matrix. In practice, there is no
need to form ATA, M−1, and N explicitly, as will be seen in the Richardson-NR,
Cimmino-NR, NR-SOR, and NR-SSOR methods [23] in section 4.1.

Here, we define the following, e.g., [18].
Definition 4.2. A matrix C is called semi-convergent if lim

i→∞
Ci exists.

The semi-convergence is algebraically characterized by the following.
Theorem 4.3 ([15], [21, Theorem 1], [26, Theorem 2]). The following are equiv-

alent.
1. C is semi-convergent.
2. For any eigenvalue λ of C, either

(a) |λ| < 1 or
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(b) λ = 1 and index(I−C) = 1
holds.

Here, index(C) denotes the smallest nonnegative integer i such that R(Ci) =
R(Ci+1). Thus, index(C) is equal to the size of the largest Jordan block corresponding
to the zero eigenvalue of C.

This property has been used for analyzing the convergence of stationary itera-
tive methods for singular linear systems [17], [26], [18], [9], and it will also play an
important role in analyzing the convergence of our methods.

4.1. Convergence theory. The convergence analysis of BA-GMRES precon-
ditioned by specific inner iterations in [20] was incomplete, especially in the rank-
deficient case. The following convergence analysis for general inner iterations leads to
a better understanding of our methods.

We first give an explicit expression for the preconditioned matrix B(�)A for BA-
GMRES with � inner iterations. Assume that the initial approximate solution for the
inner iteration is z(0) = 0. Then, the �th iterate for the inner iteration is

z(�) = Hz(�−1) +M−1ATc =

�−1∑
i=0

HiM−1ATc. (4.1)

Hence, if we define the preconditioning matrix by

B(�) =

�−1∑
i=0

HiM−1AT, (4.2)

we have z(�) = B(�)c. If C(�) =

�−1∑
i=0

HiM−1, then B(�) = C(�)AT. Hence, the

preconditioned matrix is expressed as

B(�)A = C(�)ATA =

�−1∑
i=0

Hi(I−H) = I−H�. (4.3)

We prepare the following.
Lemma 4.4. Let C ∈ Rn×n. Then, index(C) ≤ 1 is equivalent to R(C)∩N (C) =

{0}.
Proof. Let u ∈ R(C) ∩ N (C). Then, there exits a w ∈ Rn such that Cw = u.

From the definition of the index, we have N (I) = N (C) or N (C) = N (C2). Since
C2w = Cu = 0, w ∈ N (C2) = N (C). Therefore, u = 0. The converse is also true.

Lemma 4.5. Let A ∈ Rm×n and B(�) be given by (4.2). Assume that H is
semi-convergent. Then, index(B(�)A) ≤ 1 for all � ≥ 1.

Proof. Let J = S−1(I−H)S be the Jordan canonical form of (I−H). Assume
that H is semi-convergent. Then, from Theorem 4.3, index(I−H) = index(J) ≤ 1.
Without loss of generality, we denote J by J = diag(J̃ , 0n−r) ∈ Cn×n, where r =
rankA, J̃ has no eigenvalues equal to zero, and 0n−r is the zero matrix of size n− r.
Using (4.3), we have

B(�)A = S

[
Ir −

(
Ir −J̃

)�

0

0 0n−r

]
S−1
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for all � ≥ 1. Let νi be an eigenvalue of H such that |νi| < 1, and λi = 1 − νi
be a corresponding nonzero eigenvalue of (I−H). Since |1 − λi| = |νi| < 1, the
corresponding eigenvalue of Ir −(Ir −J̃)� is μi = 1− (1− λi)

� for all � ≥ 1. If μi = 0,
then (1− λi)

� = 1 for all � ≥ 1, which contradicts |1− λi| < 1. Hence, Ir −(Ir −J̃)� is
nonsingular for all � ≥ 1. Therefore, index(B(�)A) ≤ 1 for all � ≥ 1.

Lemma 4.6. Using the notations and the assumption of Lemma 4.5,

R
(
B(�)T

)
= R(A) holds for all � ≥ 1.

Proof. If C(�) is nonsingular, then R
(
B(�)T

)
= R

(
AC(�)T

)
= R(A). Hence, we

show that C(�) is nonsingular
Assume that H is semi-convergent. Then, we have

C(�) =

�−1∑
i=0

(I−SJS−1)iM−1 = S

⎡
⎣
[
Ir −

(
Ir −J̃

)�
]
J̃−1 0

0 � In−r

⎤
⎦S−1M−1.

As in Lemma 4.5,
[
Ir −(Ir −J̃)�

]
is nonsingular. Hence, C(�) is nonsingular for all

� ≥ 1. Therefore, we have R
(
B(�)T

)
= R(A) for all � ≥ 1.

Hence, we obtain the main result.
Theorem 4.7. Assume that H is semi-convergent. Then, BA-GMRES with the

inner-iteration preconditioning of the form (4.1) determines a least squares solution
of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ Rm and for all x0 ∈ Rn.

Proof. Assume that H is semi-convergent. Then, from Lemmas 4.4 and 4.5, we
have index(B(�)A) ≤ 1, or equivalently R(B(�)A)∩N (B(�)A) = {0}. Moreover, since

R
(
B(�)T

)
= R(A) from Lemma 4.6, we have R(B(�)A) = R

(
B(�)B(�)T

)
= R(B(�))

and N (B(�)A) = R
(
ATB(�)T

)⊥
= R (

ATA
)⊥

= R(AT)⊥ = N (A). Hence, Theorem

3.2 completes the proof.
We remark that this theorem holds whether A is of full rank or rank-deficient, and

whether A is overdetermined or underdetermined, i.e., unconditionally with respect
to A.

Now, we consider applying Theorem 4.7 to BA-GMRES preconditioned by specific
inner-iteration methods as follows. The inner-iteration preconditioning matrices for
the Richardson-NR, Cimmino-NR, NR-SOR, and NR-SSOR methods are respectively
obtained from (4.2) by setting

M =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ωI : Richardson-NR,

ωD : Cimmino-NR,
1
ω (D + ωL) : NR-SOR,

ω−1(2− ω)−1(D + ωL)D−1(D + ωLT) : NR-SSOR,

(4.4)

where ATA = L + D + LT , L is a strictly lower triangular matrix, D is a diagonal
matrix, and ω is the relaxation parameter. Note that M is nonsingular in the last
three cases if A has no zero columns. Cimmino-NR is mathematically equivalent to
JOR applied to ATAx = ATb. NR-SOR is mathematically equivalent to SOR applied
to ATAx = ATb [23], [3], [20]. NR-SSOR is a symmetric version of NR-SOR. These
methods can be implemented without explicitly forming ATA. See Appendix B for
the algorithms of the methods.
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According to [9], the iteration matrix H for⎧⎪⎪⎨
⎪⎪⎩

Richardson-NR with 0 < ω < 2/ρ(ATA)
Cimmino-NR with 0 < ω < 2/ρ(D−1/2ATAD−1/2)
NR-SOR with 0 < ω < 2
NR-SSOR with 0 < ω < 2

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

is semi-convergent, where ρ(C) is the spectral radius of C. Here, we assume that A has
no zero columns. Hence, from Theorem 4.7, we obtain the following theorem which
guarantees that these methods can serve as the inner iterations for BA-GMRES.

Theorem 4.8. BA-GMRES preconditioned by inner iterations (4.5) respectively
determines a solution of min

x∈Rn
‖b − Ax‖2 without breakdown for all b ∈ Rm and for

all x0 ∈ Rn.

4.2. Spectrum of the matrix preconditioned by inner iterations. Next,
we analyze the spectrum of the matrix preconditioned by � inner iterations.

Theorem 4.9. Let r = rankA. Assume that H is semi-convergent. Then, there
exist r eigenvalues of B(�)A in a disk with center at 1 and radius ρ(H)� < 1, and the
remaining n− r eigenvalues are zero.

Proof. If ν is an eigenvalue of H, then from (4.3), B(�)A has an eigenvalue
μ = 1 − ν�. Assume that H is semi-convergent. Then, from Theorem 4.3, H has r
eigenvalues such that |ν| < 1 and n − r eigenvalues such that ν = 1. For ν = 1, we
have μ = 0. For |ν| < 1, we obtain |μ− 1| = |ν|� ≤ ρ(H)� < 1.

This theorem shows that if H is semi-convergent, then B(�)A satisfies the condi-
tion for the spectrum in Theorem 3.5, and that the r nonzero eigenvalues of B(�)A
approach 1 as � increases.

We illustrate this observation for a test matrix

A = U

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0
0.9 0.9

. . .
. . .

0.1 0.1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
V T ∈ R100×20, (4.6)

where U and V are orthogonal matrices computed with the QR factorization of ran-
dommatrices. Hence, A is rank-deficient. The computations were done usingMatlab
2011b. Figure 4.1 shows the spectrum of the preconditioned matrix B(�)A with the
NR-SOR inner iterations for � = 1, 2, 4, and 8. The relaxation parameter was set
to ω = 1. Hence, the iteration matrix H is semi-convergent (4.5). The circles with
radius ρ(H)� with center at 1 are also plotted. As the number of inner iterations �
increases, the eigenvalues of B(�)A approaches 1.

Next, we use a matrix arising in an application, called Maragal 3 [7] of size
1,690 × 860, number of nonzero elements 18,391, nonzero density 1.27%, and rank
613. Figure 4.2 shows the spectrum of the preconditioned matrix B(k)A with the
NR-SOR inner iterations for k = 1, 2, 4, and 8. Here also, the eigenvalues tend to
approach 1, as � increases.

4.3. Convergence bound. Next, we give a convergence bound for BA-GMRES
preconditioned by inner iterations.

Theorem 4.10. Let rk be the kth residual of BA-GMRES preconditioned by �
inner iterations B(�) (4.2) and T be the Jordan basis of B(�)A. Assume that H is
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Fig. 4.1. Spectrum of the preconditioned matrix B(�)A with NR-SOR inner iterations for the
matrix defined in (4.6). � is the number of inner iterations.

semi-convergent and x0 ∈ R(B(�)). Then, we have

‖B(�)rk‖2 ≤ κ(T )

τ(k,d)∑
i=0

(
k

i

)
ρ(H)k�−i‖B(�)r0‖2.

for all x0 ∈ Rn and for all b ∈ Rm, where d is the size of the largest Jordan block of
B(�)A corresponding to a nonzero eigenvalue of B(�)A, and κ(T ) = ‖T‖2‖T−1‖2.

Proof. The theorem is a direct consequence of Theorems 3.5, 4.7, and 4.9.
Note that the convergence of ‖B(�)rk‖2 is not necessarily governed only by the

eigenvalues of B(�)A when κ(T ) is large [12], [1], [27].

5. AB-GMRES method. Consider solving (1.3). AB-GMRES [14] applies
GMRES to min

u∈Rm
‖b − ABu‖2 with x = Bu, and works in a smaller m-dimensional

space than the n-dimensional space for BA-GMRES in the underdetermined case m <
n. The algorithm of AB-GMRES with the modified Gram-Schmidt orthogonalization
is given as follows.

Algorithm 5.1. AB-GMRES method.
1. Let x0 be the initial approximate solution and r0 := b−Ax0.
2. β := ‖r0‖2, v1 := r0/β
3. For k = 1, 2, . . . until convergence, Do
4. wk := ABvk

5. For i = 1, 2, . . . , k, Do
6. hi,k := (wk,vi), wk := wk − hi,kvi
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Fig. 4.2. Spectrum of the preconditioned matrix B(�)A with NR-SOR inner iterations for
Maragal 3. � is the number of inner iterations.

7. EndDo
8. hk+1,k := ‖wk‖2, vk+1 := wk/hk+1,k

9. EndDo
10. yk := arg min

y∈Rk
‖βe1 − H̄ky‖2, xk := x0 +B [v1,v2, . . . ,vk]yk

We say that AB-GMRES breaks down at some step k if dimABKk(AB, r0) <
dimKk(AB, r0) or dimKk(AB, r0) < k (cf. Definition 2.1). We have the following.

Theorem 5.2. Assume R(B) = R(AT). Then, AB-GMRES determines the
minimum-norm solution of Ax = b without breakdown for all b ∈ R(A) and for all
x0 ∈ Rn if and only if R(A) ∩N (B) = {0}.

Proof. Let û be a solution of ABu = b. Then x̂ = Bû ∈ R(AT) = N (A)⊥ is a
solution of Ax = b. Any solution of Ax = b is given by x = x̂+ t, t ∈ N (A). Since

x̂ ⊥ N (A) and ‖x‖22 = ‖x̂‖22 + ‖t‖22, x̂ is the unique solution of Ax = b, whose
Euclidean-norm is minimum.

Next, substitute AB, u, and b into Ã, x̃, and b̃, respectively, in Theorem 2.2.
R(B) = R(AT) gives R(AB) = R(AAT) = R(A) and N (AB) = R(BTAT)⊥ =
R(BTB)⊥ = R(BT)⊥ = N (B). Theorem 1.1 completes the proof.

This theorem extends [14, Theorem 3.7] to the consistent case.

5.1. AB-GMRES preconditioned by stationary iterative methods as in-
ner iterations. Similarly to obtaining Algorithm 4.1 from Algorithm 3.1, we obtain
the algorithm of AB-GMRES preconditioned by inner iterations as follows.

Algorithm 5.3. AB-GMRES method preconditioned by inner iterations.
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1. Let x0 be the initial approximate solution and r0 := b−Ax0.
2. β := ‖r0‖2, v1 := r0/β
3. For k = 1, 2, . . . until convergence, Do
4. Apply � steps of a stationary iterative method to AATy = vk, z = ATy to

obtain zk := B(�)vk.
5. wk := Azk

6. For i = 1, 2, . . . , k, Do
7. hi,k := (wk,vi), wk := wk − hi,kvi

8. EndDo
9. hk+1,k := ‖wk‖2, vk+1 := wk/hk+1,k

10. EndDo
11. yk := arg min

y∈Rk
‖βe1 − H̄ky‖2, uk = [v1,v2, . . . ,vk]yk

12. Apply � steps of a stationary iterative method to AATy = uk, z = ATy to obtain
z′ := B(�)uk

13. xk := x0 + z′

The preconditioning matrix with � inner iterations for AB-GMRES is given by

B(�) = AT
�−1∑
i=0

ĤiM̂−1, (5.1)

where AAT = M̂−N̂ , M̂ is nonsingular, and Ĥ = M̂−1N̂ is the inner-iteration matrix.
From Theorem 5.2, we obtain the following lemmas.

Lemma 5.4. Let B(�) be given by (5.1). Assume that Ĥ is semi-convergent.
Then, index(AB(�)) ≤ 1 for all � ≥ 1.

Lemma 5.5. Using the notations and the assumption of Lemma 5.4, R(B(�)) =
R (

AT
)
holds for all � ≥ 1.

Hence, we obtain the following theorems.
Theorem 5.6. Assume that Ĥ is semi-convergent. Then, AB-GMRES with

the inner-iteration preconditioning (5.1) determines the minimum-norm solution of
Ax = b without breakdown for all b ∈ R(A) and for all x0 ∈ Rn.

Theorem 5.7. AB-GMRES preconditioned by⎧⎪⎪⎨
⎪⎪⎩

Richardson-NE inner iterations with 0 < ω < 2/ρ(AAT)

Cimmino-NE inner iterations with 0 < ω < 2/ρ(D̂−1/2AATD̂−1/2)
NE-SOR inner iterations with 0 < ω < 2
NE-SSOR inner iterations with 0 < ω < 2

⎫⎪⎪⎬
⎪⎪⎭

respectively determines the minimum-norm solution of Ax = b without breakdown for
all b ∈ R(A) and for all x0 ∈ Rn, where D̂ = diag(AAT).

The Cimmino-NE method is mathematically equivalent to JOR applied to
AATu = b with x = ATu. The normal-error (NE-)SOR method is mathematically
equivalent to SOR applied to AATu = b with x = ATu [23], [3]. See Appendix B for
the algorithms of the methods.

6. Numerical experiments. We compare the proposed methods BA- and AB-
GMRES preconditioned by the NR- and NE-SOR inner iterations with previous meth-
ods in terms of the CPU time by numerical experiments on overdetermined and under-
determined problems, respectively. We omit results on the Richardson and Cimmino-
type inner-iteration preconditioning since they were not as efficient as the SOR-type
ones. However, the Richardson-type inner-iteration preconditioning can potentially
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be useful for problems for which the quantity ‖aj‖2 cannot not be efficiently com-
puted.1 The Cimmino-type inner-iteration preconditioning can potentially be useful
for parallel implementations.

The proposed methods require two preconditioning parameters: the number of
inner iterations � and the relaxation parameter ω. Since CPU time for the proposed
method vary with the values of these parameters, it is desirable to determine the
values automatically for any given problem. In order to determine these parameters,
we perform the following procedure using the NR- and or NE-SOR iterations alone
before starting the outer iterations [20]:

Procedure 6.1. Automatic parameter tuning.
1. Set ω := 1.
2. Starting from � := 0, find the minimum � that satisfies

‖z(�−1) − z(�)‖∞ ≤ 10−1‖z(�)‖∞.

3. Find ω which first minimizes ‖r(�)‖2, searching ω = 1.9, 1.8, . . . , 0.1 in this
order.

In NR-SOR, the approximate residual r(�) is given in the algorithm. In NE-SOR,
r(�) = c−Az(�) is explicitly evaluated since it is not given in the algorithm.

Table 6.1 gives information on the test matrices from [7], including the number
of rows m, the number of columns n, the number of nonzero elements nnz, and the
density of the nonzero elements, the rank, and the condition number κ(A) which is
the ratio of the largest singular value of the matrices to the smallest positive one.
These matrices were appropriately transposed to form overdetermined and under-
mined problems, i.e., m > n and m < n, respectively. The name of a matrix is
denoted by using T if the matrix is transposed. Table 6.1 shows the effective size of
the matrices after removing all zero columns and zero rows. (If A has a zero column
(row), then the diagonal scaling D = diag(ATA) (D̂ = diag(AAT)) and the splitting
matrix M of NR-SOR (NE-SOR) are singular.) The condition number was computed
by dividing the largest singular value by the smallest nonzero one, where the singular
values were computed by using the MATLAB function svd and the number of nonzero
singular values was determined by using the MATLAB function spnrank [11]. (The
rank and condition number of Maragal 8 could not be computed on our computer due
to insufficient memory.)

For all the CPU times, an average was taken over ten measurements. The initial
solution for the inner and outer iterations was set to zero. No restarts were used for
the GMRES-type methods.

All computations were done on a PC workstation with an Intel Xeon X5492 3.4
GHz CPU, 16 GB RAM, Scientific Linux version 6.4, and double precision floating-

Table 6.1
Information of the matrices.

Name m n nnz density [%] rank κ(A)
landmark 71,952 2,673 1,146,848 0.596 2,671 1.02·108
lp cre a 3,428 7,248 18,168 0.073 3,423 2.11·104
lp dfl001 6,071 12,230 35,632 0.048 6,058 3.49·102
Maragal 6 21,251 10,144 537,694 0.249 8,331 2.91·106
Maragal 7 46,845 26,525 1,200,537 0.096 20,843 8.98·106
Maragal 8 33,093 60,845 1,308,415 0.065 – –

1Private communication with Dr. Wei Xu of Tongji University.
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point arithmetic. All programs for the iterative methods in our tests were coded
in Fortran 95 and compiled by Intel Fortran version 13.1.0. For reproducibility, the
compiler options we used were -fp-model precise -fimf-arch-consistency=true,
i.e., IEEE 754 standard binary64 with no compiler optimization affecting accuracy.
For the direct methods, we used Matlab 2013b and SuiteSparseQR version 1.3.1 [8].

6.1. Overdetermined problems. We first present numerical experiment re-
sults on overdetermined problems (m > n). The proposed BA-GMRES precondi-
tioned by the NR-SOR inner iterations was compared with previous methods: the
preconditioned CGLS, LSMR, and BiCGSTAB-LS methods [16], [10], [28]. We call
the BiCGSTAB method applied to the normal equations the BiCGSTAB-LS method.
The initial dual (or so-called shadow) residual for BiCGSTAB-LS was set to the initial
primal residual. Note that these methods work in n-dimensional space.

We used the diagonal scaling D = diag(ATA) for preconditioning the CGLS,
LSMR, BA-GMRES, and BiCGSTAB-LS methods, i.e., the conjugate gradient (CG)

[16] and MINRES [22] methods were applied to D− 1
2ATAD− 1

2u = D− 1
2ATb, x =

D− 1
2u and GMRES and BiCGSTAB were applied to D−1ATAx = D−1ATb, which

corresponds to B = D−1AT.
On the other hand, we used the NR-SOR inner iterations for preconditioning BA-

GMRES and BiCGSTAB-LS, i.e., GMRES and BiCGSTAB were applied to B(�)Ax =
B(�)b, where B(�) is given by (4.2) and (4.4). We used the NE-SSOR inner iterations
for preconditioning CGLS and LSMR to obtain a symmetric preconditioner. See
Appendix C for their algorithms. BiCGSTAB-LS preconditioned by inner iterations
can be implemented similarly to BA-GMRES preconditioned by inner iterations.

The elements of b were randomly generated using the Fortran built-in subroutine
random_number. Therefore, the test problems were not necessarily consistent, i.e., b
may not be in R(A).

In exact arithmetic, the CGLS, LSMR, BA-GMRES methods with diagonal scal-
ing and preconditioned by the NR-(S)SOR inner iterations with 0 < ω < 2 determine
a solution of min

x∈Rn
‖b − Ax‖2 for all x0 ∈ Rn and for all b ∈ Rm. However, this is

not necessarily the case for the BiCGSTAB-type methods.
The stopping criterion for the kth (outer) iteration was∥∥AT(b−Axk)

∥∥
2
< 10−8

∥∥ATb
∥∥
2
. (6.1)

This means that we explicitly compute the residual 2-norm AT(b−Axk) for the normal
equations (1.2) from xk at each iteration. In the numerical experiments, the CPU
time for checking (6.1) was excluded from the total CPU time. The left-hand side of
(6.1) can converge to zero because of the equivalence between (1.1) and (1.2).

Table 6.2 gives the CPU time in seconds taken by direct methods, namely, the
“backslash” solver in MATLAB and SuiteSparseQR [8], and the resulting relative
residual 2-norm ‖ATr‖2/‖ATb‖2. The ‡ indicates that the direct method did not
achieve the criterion (6.1).

Table 6.3 gives the CPU time in seconds for the iterative methods to achieve
the stopping criterion (6.1) for each problem. Diag stands for the diagonal scaling.
The first column in each cell gives the number of (outer) iterations. The second
column gives the total CPU time including the time to set up the preconditioning
matrix for the diagonal scaling and the parameter tuning time for the NR-SOR inner-
iteration preconditioning for BA-GMRES. The third column gives the number of inner
iterations � which was optimal in terms of the CPU time except for BA-GMRES



14 KEIICHI MORIKUNI AND KEN HAYAMI

Table 6.2
Results of the direct solvers for overdetermined problems.

landmark lp cre aT lp dfl001T
Time Rel. res. Time Rel. res. Time Rel. res.

Backslash 0.405 5.18·10−13 0.017 1.08·10−14 1.214 2.14·10−15

SuiteSparseQR 11.46 5.18·10−13 0.003 1.79·10−15 1.344 1.86·10−15

Maragal 6 Maragal 7 Maragal 8T
Time Rel. res. Time Rel. res. Time Rel. res.

Backslash 384.4 ‡1.26·10−1 329.1 ‡7.98·10−2 72.22 1.28·10−9

SuiteSparseQR 256.0 ‡1.35·10−1 467.3 ‡8.22·10−2 67.08 9.72·10−10

Table 6.3
Results for overdetermined problems.

Solver Precon. landmark lp cre aT lp dfl001T
Iter Time � ω Iter Time � ω Iter Time � ω

CGLS diag 311 2.10 - - 2,288 0.44 - - 411 0.22 - -
NE-SSOR 73 1.00 1 1.3 894 0.29 1 0.6 154 0.13 1 1.1

LSMR diag 290 2.10 - - 2,041 0.38 - - 399 0.20 - -
NE-SSOR 71 *0.99 1 1.3 739 *0.23 1 0.8 151 0.13 1 1.1

BA-GMRES diag 296 2.15 - - 1,190 6.28 - - 388 1.31 - -
NR-SOR 143 1.86 2 1.0 1,931 16.18 10 1.7 57 *0.09 5 1.4

optimal NR-SOR 143 1.82 2 1.0 363 0.88 11 0.6 21 0.07 13 1.8
BiCGSTAB diag † † - - † † - - 328 0.25 - -

-LS NR-SOR 31 4.26 15 1.1 1,006 0.30 1 0.7 30 *0.09 5 1.8

Solver Precon. Maragal 6 Maragal 7 Maragal 8T
Iter Time � ω Iter Time � ω Iter Time � ω

CGLS diag † † - - 15,654 121.5 - - † † - -
NE-SSOR † † 2,088 36.29 1 1.0 † †

LSMR diag † † - - 9,381 72.32 - - † † - -
NE-SSOR 9,940 65.46 1 0.9 1028 31.64 2 1.2 † †

BA-GMRES diag 2,708 101.8 - - 2,491 230.6 - - 6,834 2,041 - -
NR-SOR 515 *8.70 5 1.4 334 *16.21 7 1.5 1,543 *147.1 4 1.3

optimal NR-SOR 430 8.50 7 1.4 359 16.08 6 1.4 952 97.01 10 1.3
BiCGSTAB diag † † - - † † - - † † - -

-LS NR-SOR † † † † † †

preconditioned by the NR-SOR inner iterations. The fourth column gives the value of
the relaxation parameter ω which was optimal among 0.1, 0.2, . . . , 1.9 in terms of the
CPU time except for the proposed BA-GMRES (NR-SOR). For BA-GMRES (NR-
SOR), � and ω were determined using Procedure 6.1. Hence, these comparisons are
advantageous for the optimized preconditioners compared to the proposed method.
The * indicates the fastest method in terms of CPU time for each problem. The †
indicates the case where the method did not satisfy the criterion (6.1) within iterations
equal to the size n of the problem.

For the last four problems, the proposed BA-GMRES preconditioned by NR-
SOR inner iterations with automatically tuned parameters was the fastest. The CPU
time for tuning the parameters was marginal compared to the total CPU time. For
example, the tuning time for Maragal 6 was 0.07 seconds out of the total CPU time
of 8.70 seconds. The total CPU time for the proposed method with automatically
tuned parameters was close to that with optimal parameters as reported in [20],
except for the case lp cre aT. This indicates that fast convergence of inner iterations
may not necessarily give fast convergence of outer iterations (see step 3 in Procedure
6.1). The proposed method gave much more accurate solutions than both the direct
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solvers for Maragal 6 and Maragal 7. LSMR preconditioned by the NE-SSOR inner
iterations broke down with many combinations of the NE-SSOR parameters trying to
take the square root of a negative value corresponding to a theoretically nonnegative
inner product, which was caused by rounding error (see step 8 in Algorithm C.2).
This is not the case for LSMR with diagonal scaling since the preconditioning matrix
can be applied symmetrically as D− 1

2ATAD− 1
2 . The BiCGSTAB-LS methods did

not converge for Maragal 6–8 for all the parameters that were tried. CGLS and
LSMR with reorthogonalization [14], [10] combined with these preconditioners were
also tested, but they were slow to converge.

Figure 6.1 shows the relative residual ‖ATrk‖2/‖ATb‖2 versus the CPU time for
Maragal 6 for each method. The parameter values of the NE-SSOR inner-iteration
preconditioning for CGLS were � = 1 and ω = 1.0, and we used the preconditioning
parameters given in Table 6.3 for the other methods. The convergence curve for the
CGLS-type method are quite oscillatory as explained in [14]. The LSMR and BA-
GMRES-type methods yield smoother convergence curves and the latter gives quicker
convergence.

6.2. Underdetermined problems. Next, experiments were done for under-
determined problems (m < n). The proposed AB-GMRES preconditioned by the
NE-SOR inner iterations was compared with previous methods: the preconditioned
CGNE [5], MRNE, and BiCGSTAB-NE methods. We call the MINRES method ap-
plied to the normal equations of the second kind (1.4) the MRNE method. We call
BiCGSTAB applied to the normal equations of the second kind (1.4) the BiCGSTAB-
NE method. The initial dual (or so-called shadow) residual for BiCGSTAB-NE was
set to the initial primal residual. Note that these methods work in m-dimensional
space.

The preconditioned MRNE method can be implemented based on the precondi-
tioned CG method as follows. Let M ∈ Rm×m be symmetric and positive definite.
Then, AATM is symmetric with respect to the M−1-inner product, where the M−1-
inner product of vectors a and b is (a, b)M−1 = (M−1a, b). Hence, MINRES applied
to AATM−1u = b, x = ATM−1u with the M−1-inner product is equivalent to CG
applied to ATM−1Ax = ATM−1b.
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Fig. 6.1. Relative residual vs. CPU time for Maragal 6.
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The diagonal scaling D = diag(AAT) was applied to the CGNE, MRNE, AB-
GMRES, and BiCGSTAB-NE methods, i.e., the conjugate gradient (CG) [16] and

MINRES [22] methods were applied to D− 1
2AATD− 1

2u = D− 1
2 b, x = ATD− 1

2u
and GMRES and BiCGSTAB were applied to AATD−1u = b x = ATD−1u with
B = ATD−1. Since CGNE and MRNE require symmetric preconditioning, the NE-
SSOR inner-iteration preconditioning was applied to CGNE and MRNE. The NE-SOR
inner-iteration preconditioning was applied to AB-GMRES and BiCGSTAB-NE. See
Appendix C for their algorithms. BiCGSTAB-NE preconditioned by inner iterations
can be implemented similarly to AB-GMRES preconditioned by inner iterations.

The vector b was given by b = A [1, 1, . . . , 1]. Therefore, the test problems were
consistent, i.e., b ∈ R(A).

In exact arithmetic, the CGNE, MRNE, AB-GMRES methods with diagonal scal-
ing and preconditioned by the NE-(S)SOR inner iterations with 0 < ω < 2 determine
the minimum-norm solution of Ax = b for all x0 ∈ Rn and for all b ∈ R(A). However,
this is not necessarily the case for the BiCGSTAB-type methods.

The stopping criterion for the kth (outer) iteration was

‖b−Axk‖2 < 10−8 ‖b‖2 . (6.2)

Table 6.4 gives the CPU time in seconds taken by the direct method and the
resulting relative residual 2-norm ‖r‖2/‖b‖2, similar to Table 6.2. (A sparse direct
method for the minimum-norm solution is not implemented in Matlab.) The ‡ indi-
cates that the direct method did not achieve the criterion (6.2).

Table 6.5 gives the CPU time in seconds for the iterative methods to achieve the
stopping criterion (6.2) for each problem, similar to Table 6.3. The proposed method
with automatically tuned parameters was the fastest for Maragal 6T and Maragal 8.
The proposed method gave more accurate solutions than the direct solver landmarkT
and Maragal 8. The BiCGSTAB-NE did not converge for the six problems for all
the parameters that we tried. Although the residual ‖r(k)‖2 = ‖c − Ax(k)‖2 for the
NE-SOR inner iterations was explicitly evaluated in Procedure 6.1, the CPU time
for tuning the parameters was again marginal compared to the total CPU time. For
example, the CPU time for tuning the parameters for Maragal 6T was 0.10 seconds
out of the total CPU time of 7.81 seconds. The total CPU time for the proposed
method with automatically tuned parameters was close to the optimal one except
for lp cre a. CGNE and MRNE with reorthogonalization [14] combined with these
preconditioners were also tested, but they were slow to converge.

Figure 6.2 shows the relative residual ‖rk‖2/‖b‖2 versus the CPU time for Mara-
gal 6T for each method. The convergence curve for CGNE with NE-SSOR is os-
cillatory and slow to converge. The convergence curve for MRNE with NE-SSOR
is smoother than the one for CGNE with NE-SSOR but slower to converge than
AB-GMRES with NE-SOR.

Table 6.4
Results of the direct solver for underdetermined problems.

landmarkT lp cre a lp dfl001
Time Rel. res. Time Rel. res. Time Rel. res.

SuiteSparseQR 0.556 ‡1.09·10155 0.003 0.003·10−17 0.011 2.34·10−16

Maragal 6T Maragal 7T Maragal 8
Time Rel. res. Time Rel. res. Time Rel. res.

SuiteSparseQR 26.30 1.73·10−9 66.50 1.12·10−11 3,635 ‡1.25·10−8
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Table 6.5
Results for underdetermined problems.

Solver Precon. landmarkT lp cre a lp dfl001
Iter Time � ω Iter Time � ω Iter Time � ω

CGNE diag 185 1.26 - - 2,122 0.39 - - 406 0.19 - -
NE-SSOR 56 0.69 1 1.1 823 0.29 1 0.6 154 0.13 1 1.0

MRNE diag 160 1.08 - - 2,347 0.36 - - 398 0.19 - -
NE-SSOR 49 *0.60 1 1.1 781 *0.23 1 0.6 154 *0.12 1 1.0

AB-GMRES diag 158 1.12 - - 1,019 4.61 - - 384 1.27 - -
NE-SOR 26 2.20 11 0.7 1,502 10.68 6 1.5 92 0.18 4 0.9
optimal 77 0.97 2 0.8 315 0.73 12 0.5 26 0.08 10 1.8

BiCGSTAB diag † † - - † † - - † † - -
-NE NE-SOR † † † † † †

Solver Precon. Maragal 6T Maragal 7T Maragal 8
Iter Time � ω Iter Time � ω Iter Time � ω

CGNE diag † † - - 12,916 100.4 - - † † - -
NE-SSOR 8,996 50.38 1 1.2 1,975 33.62 1 1.1 † †

MRNE diag † † - - 6,449 50.93 - - † † - -
NE-SSOR 6,108 33.90 1 1.0 913 *15.81 1 0.9 40,659 829.7 1 1.1

AB-GMRES diag 2,808 109.0 - - 2,637 262.2 - - † † - -
NE-SOR 459 *7.81 5 1.3 429 16.85 4 1.3 1,371 *140.4 7 1.5
optimal 402 7.48 6 1.4 303 13.77 6 1.5 990 101.6 10 1.3

BiCGSTAB diag † † - - † † - - † † - -
-NE NE-SOR † † † † † †
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Fig. 6.2. Relative residual vs. CPU time for Maragal 6T.

7. Conclusions. We considered applying stationary inner-iteration precondi-
tioning to GMRES methods for least squares problems and gave a general convergence
theory for the methods. Theoretical justifications for the convergence were given also
for specific inner-iteration methods like NR-SOR. We have reinforced the previous
theory particularly for the rank-deficient case. The spectrum of the preconditioned
matrix was analyzed and characterized using the spectral radius of the inner-iteration
matrix. Based on this, a convergence bound was obtained for the proposed meth-
ods. Finally, numerical experiments on rank-deficient overdetermined and consistent
underdetermined problems showed that the proposed methods BA-GMRES and AB-
GMRES preconditioned by the NR- and NE-SOR inner iterations, respectively, are
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more robust and efficient compared to previous methods for some problems.

Appendix A. Breakdown of GMRES. The generalized minimal residual
(GMRES) method applied to the system of linear equations

Ax = b, A ∈ Rn×n, b ∈ Rn,

determines the kth approximate solution xk in the subspace x0+Kk(A, r0) minimizing
‖rk‖2, where x0 is the initial approximate solution, rk = b − Axk is the residual at
the kth step, and

Kk(A, r0) = span{r0, Ar0, . . . , Ak−1r0},
is the Krylov subspace of order k.

The convergence of GMRES including the singular case was analyzed in [4].
There, non-breakdown of GMRES was defined as follows.

Definition A.1. We say that GMRES does not break down at the kth step if

dimAKk(A, r0) = k.

This definition was intended to focus on essential breakdown of the method, as
opposed to breakdown associated with any specific implementation of GMRES.

For instance, the algorithm of GMRES with Gram-Schmidt orthogonalization
(GMRES-GS) is given as follows. (Note that, in exact arithmetic, GMRES with
Gram-Schmidt orthogonalization is equivalent to GMRES with modified Gram-
Schmidt orthogonalization (GMRES-mGS).)

Algorithm A.2. GMRES method with Gram-Schmidt orthogonalization
(GMRES-GS).
1. Let x0 be the initial approximate solution.
2. r0 := b−Ax0, β := ‖r0‖2, v1 := r0/β
3. For k = 1, 2, . . . until convergence, Do
4. hi,k := (vi, Avk), i = 1, 2, . . . , k

5. wk := Avk −
k∑

i=1

hi,kvi

6. hk+1,k := ‖wk‖2. If hk+1,k = 0, then go to line 9.
7. vk+1 := wk/hk+1,k

8. EndDo
9. yk := arg min

y∈Rk
‖βe1 − H̄ky‖2, xk := x0 + Vkyk

Here, H̄k = {hi,j} ∈ R(k+1)×k and Vk = [v1,v2, . . . ,vk], where v1,v2, . . . ,vk are
orthonormal. Let Hk = {hij} ∈ Rk×k. Then, we have AVk = VkHk +wke

T
k .

The breakdown of GMRES-GS was defined as follows.
Definition A.3 ([24], [23], [13]). GMRES-GS is said to break down at the kth

step when hk+1,k = 0.
This definition seems different from Definitions 2.1 or A.1.
The convergence condition for GMRES-GS including the singular case was given

as follows.
Theorem A.4 ([13, Theorems 2.8]). GMRES-GS determines a solution of Ax =

b for all b ∈ R(A) and for all x0 ∈ Rn if and only if R(A) ∩N (A) = {0}.
Based on Theorem A.4, convergence conditions for AB- and BA-GMRES with the

modified Gram-Schmidt orthogonalization were given in [14, Theorem 3.7, Corollary
3.8, Theorem 3.18, Corollary 3.19].

Now, the following question arises:
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Are Definitions A.1, 2.1, and A.3 equivalent for GMRES-GS or not?
We consider this question in the following. Remark that trivially dimAKk ≤ dimKk ≤
k holds for each k, where Kk = Kk(A, r0). Therefore, Definitions 2.1 and A.1 are
equivalent.

First, we use Definition 2.1. Assume that GMRES does not breakdown until the
(k− 1)st step. Then, dimAKk−1 = dimKk−1 = k− 1. Thus, there exists Vk−1. Then,
consider the two cases: dimAKk < dimKk and dimKk < k.

Case i. Assume that GMRES breaks down at the kth step due to dimAKk <
dimKk. Then, dimKk = k. (∵ Assume dimKk ≤ k − 1. Then, dimAKk ≤ k − 2.
However, this contradicts with the assumption dimAKk = k− 1. Hence, dimKk = k.)
Moreover, we have

dimAKk < dimKk = k ⇐⇒ rankAVk < rankVk = k,

=⇒ vi �= 0, i = 1, 2, . . . , k,

hi+1,i = ‖wi‖2 �= 0 for i = 1, 2, . . . , k − 1 in Algorithm A.2, and

rankAVk = rank

(
[Vk,wk]

[
Hk

ek
T

])
= dimR

([
Hk

T, ek

] [
Vk

T

wk
T

])

= dimR
([

Hk
T, ek

] [
Vk

T

wk
T

]
[Vk,wk]

)
= rank

([
Hk

hk+1,k
2ek

T

])
< k,

where hk+1,k = ‖wk‖2 and wk = Avk −
k∑

i=1

hi,kvi. Hence, hk+1,k = 0, since

hk+1,k �= 0 implies rank
([

Hk
T, hk+1,k

2ek

])
= k. This is consistent with Defini-

tion A.3. Therefore, dimAKk < dimKk =⇒ dimKk = k and hk+1,k = 0. Note also
that rankHk = k − 1.

Moreover, since Hk is singular, the problem

min
x∈x0+Kk

‖b−Ax‖2 = min
y∈Rk

‖βe1 −Hky‖2 (A.1)

does not have a unique solution.
Case ii. Assume that GMRES breaks down at the kth step due to dimKk <

k. Then, wk−1 = Avk−1 −
k−1∑
i=1

hi,k−1vi and v1,v2, . . . ,vk−1 are linearly depen-

dent, i.e., there exists c = [c1, c2, . . . , ck]
T �= 0 such that [Vk−1,wk−1] c = 0, or

[Vk−1,wk−1]
T
[Vk−1,wk−1] c = 0. This gives ci = 0, i = 1, 2, . . . k − 1 and ck �= 0.

Hence, hk,k−1 = 0. Note also that dimKk−1 = rankVk−1 = k − 1. Here, vi �= 0, i =
1, 2, . . . , k − 1 and hi+1,i �= 0, i = 1, . . . , k − 2 in Algorithm A.2.

Moreover, we have AVk−1 = Vk−1Hk−1 and

min
x∈x0+Kk−1

‖b−Ax‖2 = min
y∈Rk−1

‖βe1 −Hk−1y‖2 = 0,

since the assumption dimAKk−1 = k − 1 implies k − 1 = rank(AVk−1) = rankHk−1,
i.e., Hk−1 is nonsingular. Finally, if yk−1 = arg min

y∈Rk−1
‖βe1−Hk−1y‖2, then xk−1 =

x0+Vk−1yk−1 is a solution of Ax = b, i.e., GMRES determines a solution of Ax = b
at the (k − 1)st step.
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Conversely, we use Definition A.3. Assume that GMRES does not break down
until the (k − 1)st step, i.e., hi+1,i �= 0, i = 1, 2, . . . , k − 1, and breaks down at the
kth step due to hk+1,k = 0. Then, we have AVk = VkHk. Consider the two cases:
rankHk = k − 1 and k.

Case i’. Assume rankHk = k − 1. Then, since hi+1,i �= 0 for i = 1, 2, . . . , k − 1,

rankHk = dimR
(
Hk

TVk
TVk

)
= rankVkHk = rankAVk < rankVk = k.

This inequality is equivalent to dimAKk < dimKk. Note also that dimAKk−1 = k− 1
holds, since dimAKk−1 = rank(AVk−1) = rank(VkH̄k−1) = k − 1 for hi+1,i �= 0,
i = 1, 2, . . . , k − 1.

Case ii’. Assume rankHk = k, i.e., Hk is nonsingular. Then, we have

min
x∈x0+Kk

‖b−Ax‖2 = min
y∈Rk

‖βe1 −Hky‖2 = 0,

If yk = arg min
y∈Rk

‖βe1 − Hky‖2, then xk = x0 + Vkyk is a solution of Ax = b,

i.e., GMRES determines a solution of Ax = b at the kth step. Moreover, since
hk+1,k = ‖wk‖2 = 0 and vk+1 is not defined, dimKk+1 < k + 1. Note also that
dimAKk = k holds, since dimAKk = rank(AVk) = rank(Vk+1H̄k) = rank(VkHk) = k.

We summarize the above discussion in the following.
Case i dimAKk−1 = k − 1 and dimAKk < dimKk =⇒ hi+1,i �= 0, i = 1, 2, . . . , k − 1,

hk+1,k = 0, and rankHk = k − 1,
Case ii dimAKk−1 = k − 1 and dimKk < k =⇒ hi+1,i �= 0, i = 1, 2, . . . , k − 2,

hk,k−1 = 0, and rankHk−1 = k−1 (GMRES determines a solution of Ax = b
at the (k − 1)st step.),

Case i’ hi+1,i �= 0, i = 1, 2, . . . , k−1, hk+1,k = 0, and rankHk = k−1 =⇒ dimAKk =
k − 1 and dimAKk < dimKk,

Case ii’ hi+1,i �= 0, i = 1, 2, . . . , k−1, hk+1,k = 0, and rankHk = k =⇒ dimAKk = k
and dimKk+1 < k + 1 (GMRES determines a solution of Ax = b at the kth
step.).

This further boils down to the following.
Case I dimAKk−1 = k − 1 and dimAKk < dimKk ⇐⇒ hi+1,i �= 0, i = 1, 2, . . . , k−1,

hk+1,k = 0, and rankHk = k − 1.
Case II dimAKk−1 = k − 1 and dimKk < k ⇐⇒ hi+1,i �= 0 i = 1, 2, . . . , k − 2,

hk,k−1 = 0, and rankHk−1 = k − 1. (GMRES determines a solution of
Ax = b at the (k − 1)st step.)

Therefore, we may say that Definitions 2.1 and A.1 classify two kinds of break-
down with in Definition A.3. See also [25, Propositions 4.2, 4.3] for similar results for
the consistent case b ∈ R(A).

Appendix B. Algorithms of inner-iteration methods. We give the algo-
rithms of the methods for the inner-iteration preconditioning which works on the
normal equations ATAz = ATc. Let aj be the jth column of A.

Algorithm B.1. Richardson-NR method.
1. Let z(0) := 0 and r(0) := c.
2. For k = 1, 2, . . . , �, Do
3. z(k) := z(k−1) + ωATr(k−1), r(k) := c−Az(k)

4. EndDo
Algorithm B.2. Cimmino-NR method.
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1. Let z(0) := 0 and r(0) := c.
2. For k = 1, 2, . . . , �, Do

3. d(k) := D−1ATr(k−1), z(k) := z(k−1) + ωd(k), r(k) := r(k−1) − ωAd(k)

4. EndDo

Algorithm B.3. NR-SOR method.

1. Let z(0) := 0 and r := c.
2. For k = 1, 2, . . . , �, Do
3. For j := 1, 2, . . . , n, Do

4. d
(k)
j := (r,aj)/‖aj‖22, z(k)j := z

(k−1)
j + ωd

(k)
j , r := r − ωd

(k)
j aj

5. EndDo
6. EndDo

Algorithm B.4. NR-SSOR method.

1. Let z(0) := 0 and r := c.
2. For k = 1, 2, . . . , �, Do
3. For j = 1, 2, . . . , n, Do

4. d
(k− 1

2 )
j := (r,aj)/‖aj‖22, z(k−

1
2 )

j := z
(k−1)
j + ωd

(k− 1
2 )

j , r := r − ωd
(k− 1

2 )
j aj

5. EndDo
6. For j = n, n− 1, . . . , 1, Do

7. d
(k)
j := (r,aj)/‖aj‖22, z(k)j := z

(k− 1
2 )

j + ωd
(k)
j , r := r − ωd

(k)
j aj

8. EndDo
9. EndDo

Next, we give the algorithms of the methods for the inner-iteration precondition-
ing which works on the normal equations of the second kind AATy = c, z = ATy.
Let αi be the ith row of A and ci be the ith component of c ∈ Rm.

Algorithm B.5. Richardson-NE
method.

1. Let z(0) := 0 and r(0) := c.
2. For k = 1, 2, . . . , �, Do
3. z(k) := z(k−1) + ωATr(k−1), r(k) := c−Az(k)

4. EndDo

Algorithm B.6. Cimmino-NE method.

1. Let z(0) := 0 and r(0) := c.
2. For k = 1, 2, . . . , �, Do

3. d(k) := D−1r(k−1), z(k) := z(k−1) + ωATd(k), r(k) := c−Az(k)

4. EndDo

Algorithm B.7. NE-SOR method.

1. Let z(0) := 0 and r := c.
2. For k = 1, 2, . . . , �, Do
3. For i := 1, 2, . . . ,m, Do

4. d
(k)
i :=

[
ci − (αi,x

(k))
]
/‖αi‖22, z(k−1) := z(k−1) + d

(k)
i αi

5. EndDo
6. z(k) := z(k−1)

7. EndDo

Algorithm B.8. NE-SSOR method.

1. Let z(0) := 0 and r := c.
2. For k = 1, 2, . . . , �, Do
3. For i = 1, 2, . . . ,m, Do
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4. d
(k− 1

2 )
i :=

[
ci − (αi,x

(k))
]
/‖αi‖22, z(k−1) := z(k−1) + d

(k− 1
2 )

i αi

5. EndDo
6. For i = m,m− 1, . . . , 1, Do

7. d
(k)
i :=

[
ci − (αi,x

(k))
]
/‖αi‖22, z(k−1) := z(k−1) + d

(k)
i αi

8. EndDo
9. z(k) := z(k−1)

10. EndDo

Appendix C. Algorithms based on CG and MINRES.
We give an algorithm of CGLS preconditioned by inner iterations, which is im-

proved to reduce a matrix vector multiplication per iteration. Note that the improved
method is mathematically equivalent to the original method in [20].

Algorithm C.1. CGLS method preconditioned by inner iterations.
1. Let x0 be the initial approximate solution, r0 := b−Ax0, and s0 := ATr0.
2. Apply � steps of a stationary iterative method to ATAz = s0, y = Az to obtain

z0 := C(�)s0.
3. p0 := z0, γ0 := (s0, z0), q0 := p0

4. For k = 0, 1, 2, . . . until convergence, Do

5. αk := γk/‖qk‖22, xk+1 := xk + αkpk, rk+1 := rk − αkqk, sk+1 := ATrk+1

6. Apply � steps of a stationary iterative method to ATAz = sk+1, y = Az to
obtain zk+1 := C(�)sk+1 and yk+1 := Azk+1.

7. γk+1 := (sk+1, zk+1), βk := γk+1/γk, pk+1 := zk+1 + βkpk,
qk+1 := yk+1 + βkqk

8. EndDo
We give algorithms of other methods preconditioned by inner iterations, which

were used in section 6.
Algorithm C.2. LSMR method preconditioned by inner iterations.

1. Let x0 be the initial approximate solution and r0 := b−Ax0.
2. β1u1 := r0, v̄1 := ATu1 (shorthand for β1 := ‖r0‖2, u1 := r0/β1)
3. Apply � steps of a stationary iterative method to ATAz = v̄1, w = Az to obtain

w1 := AC(�)v̄1.
4. α1 := (u1,w1)

1/2, v̂1 := v̄k/αk, ᾱ1 := α1, ζ̄1 := α1β1, ρ0 := 1, ρ̄0 := 1, c̄0 := 1,

s̄0 := 0, ĥ1 := v̂1,
ˆ̄h0 := 0

5. For k = 1, 2, . . . until convergence, Do
6. βk+1uk+1 := wk/αk − αkuk, v̄k+1 := ATuk+1 − βk+1v̂k.
7. Apply � steps of a stationary iterative method to ATAz = v̄k+1, w = Az to

obtain wk+1 := AC(�)v̄k+1.
8. αk+1 := (uk+1,wk+1)

1/2, v̂k+1 := v̄k+1/αk+1.

9. ρk := (ᾱ2
k + βk+1

2), ck := ᾱk/ρk, sk := βk+1/ρk, θk+1 := sk, ᾱk+1 := ckαk+1

10. θ̄k := s̄k−1ρk, ρ̄k := ((c̄k−1ρk) + θk+1
2)

1
2 , c̄k := c̄k−1ρk/ρ̄k, s̄k := θk+1/ρ̄k,

ζk := c̄k ζ̄k, ζ̄k+1 := −s̄k ζ̄k
11. ˆ̄hk := ĥk − (θ̄kρk/(ρk−1ρ̄k−1))

ˆ̄h′
k−1, wk := wk−1 + (ζk/(ρkρ̄k))ĥk,

ĥk+1 := v̂k+1 − (θk+1/ρk)ĥk

12. EndDo
13. Apply � steps of a stationary iterative method to ATAx = wk to obtain

xk := C(�)wk.

Algorithm C.3. CGNE method preconditioned by inner iterations.
1. Let x0 be the initial approximate solution and r0 := b−Ax0.
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2. Apply � steps of a stationary iterative method to AATz0 = r0 to obtain
z̃0 := C(�)r0.

3. q0 := z̃0, γ0 := (r0, z̃0)
4. For k = 0, 1, 2, . . . until convergence, Do
5. sk := ATqk, αk := γk/(sk, sk), xk+1 := xk + αksk, rk+1 := rk − αkAsk
6. Apply � steps of a stationary iterative method to AATzk+1 = rk+1 to obtain

z̃k+1 := C(�)rk+1.
7. γk+1 := (rk+1, z̃k+1), βk := γk+1/γk, qk+1 := z̃k+1 + βkqk

8. EndDo

Algorithm C.4. MRNE method preconditioned by inner iterations.

1. Let x0 be the initial approximate solution and r0 := b−Ax0.
2. Apply � steps of a stationary iterative method to AATu = r0, s = ATu to

obtain s0 := ATC(�)r0.

3. p0 := s0, γ0 := ‖s0‖22
4. For k = 0, 1, 2, . . . until convergence, Do
5. tk := Apk

6. Apply � steps of a stationary iterative method to AATu = tk, v = ATu to
obtain vk := ATC(�)tk.

7. αk := γk/(vk,pk), xk := xk + αkpk, rk+1 := rk − αktk, sk+1 := sk − αkvk,

γk := ‖sk+1‖22, βk := γk+1/γk, pk+1 := sk + βkpk

8. EndDo
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[3] Å. Björck and T. Elfving, Accelerated projection methods for computing pseudoinverse so-
lutions of systems of linear equations, BIT, 19 (1979), pp. 145–163.

[4] P. N. Brown and H. F. Walker, GMRES on (nearly) singular systems, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 37–51.

[5] E.J. Craig, The n-step iteration procedures, J. Math. Phys., 34 (1955), pp. 64–73.
[6] X. Cui, K. Hayami, and J.-F. Yin, Greville’s method for preconditioning least squares prob-

lems, Adv. Comput. Math., 35 (2011), pp. 243–269.
[7] T. Davis, The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/

research/sparse/matrices/.
[8] T. A. Davis, Algorithm 915, suiteSparseQR: Multifrontal multithreaded rank-revealing sparse

QR factorization, ACM Trans. Math. Software, 38 (2011).
[9] A. Dax, The convergece of linear stationary iterative processes for solving singular unstructured

systems of linear equations, SIAM Review, 32 (1990), pp. 611–635.
[10] D. C.-L. Fong and M. Saunders, LSMR: An iterative algorithm for sparse least-squares

problems, SIAM J. Sci. Comput., 33 (2011), pp. 2950–2971.
[11] L. Foster, San Jose State University Singular Matrix Database, http://www.math.sjsu.edu/

singular/matrices/.
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