
 

 

ISSN 1346-5597

 

NII Technical Report 

 

Improvements to the Cluster Newton Method 
for Underdetermined Inverse Problems    

               
               
               

 
Philippe J. Gaudreau, Ken Hayami, Yasunori Aoki,  

Hassan Safouhi, and Akihiko Konagaya     
               
               
               

 
NII-2013-002E  
Nov. 2013  
 



Improvements to the Cluster Newton Method
for Underdetermined Inverse Problems

Gaudreau, P.1), Hayami, K.2) 1, Aoki, Y.3), Safouhi, H.4) and Konagaya, A.5)

1) University of Alberta
2) National Institute of Informatics

3) Uppsala University
4) University of Alberta / Campus Saint-Jean

5) Tokyo Institute of Technology

Abstract

The Cluster Newton method (CN method) has proved to be very e�cient at �nding
multiple solutions to underdetermined inverse problems. In the case of pharmacokinetics,
underdetermined inverse problems are often given extra constraints to restrain the variety
of solutions. In this paper, we propose an algorithm based on the two parameters of the
Beta distribution to �nd families of solution near a solution of interest. This allows for
a much greater control of the variety of solutions that can be obtained with the CN
method. In addition, this algorithm facilitates the task of obtaining pharmacologically
feasible parameters. Moreover, we also make some improvements to the original CN
method including an adaptive margin of error for the perturbation of the target values
and the use of an analytical Jacobian in the resolution of the forward problem.

Keywords. Cluster Newton method; Underdetermined inverse problem; Beta distribution; Phar-
macokinetics

1 Introduction

In the �eld of pharmacokinetics, underdetermined inverse problems occur frequently. This is not
surprising considering that the data that can be collected does not often explain the complex me-
chanics of the human body. Through mathematical models, we are able to simulate these complex
behaviors and gain valuable insight into the body's pharmacokinetics. Moreover, since the quanti-
tative data that can be collected is generally far less than the number of parameters that govern its
behavior, these problems are deemed underdetermined. In [1], Aoki et al. constructed a new algo-
rithm, which they have coined the Cluster Newton method (CN method), capable of �nding multiple
solutions of an underdetermined inverse problem. They use the CN method to investigate Arikuma
et al.'s pharmacokinetics model [2] for the anti-cancer drug CPT-11. The CN method proved to be
signi�cantly more robust and e�cient than the Levenberg-Marquardt method [3] for solving sepa-
rate inverse problems with di�erent initial iterates. As is the case for pharmacokinetics, constraints
are often given to restrict the variety of solutions that can be obtained for underdetermined inverse
problems. As robust and e�cient as the CN method proved to be, there was a need for improvement
when it came to seeking speci�c sets of solutions given such constraints. For a complete review of
the analysis performed on Arikuma et al.'s model, we refer the readers to [4].

1Corresponding author: hayami@nii.ac.jp
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In this paper, we present several improvements to the CN method that increase its overall perfor-
mance. In addition, we develop a new component to the algorithm that allows for complete control
of the variety of solutions that can be obtained. This extension to the method greatly facilitates
the task of obtaining pharmacologically feasible parameters. As case examples, we will consider two
models concerning the anti-cancer drug CPT-11: Arikuma et al.'s pharmacokinetics model treated
in [1] and Yoshida et al.'s model treated in [5].

2 Statement of the General Underdetermined Inverse Problem

We will now give a description of the underdetermined inverse problem that we are considering
in this paper. Find x such that:

f (x ) = y∗, (1)

where y∗ is a given constant vector in Rn, f is a vector valued function from X ⊂ Rm to Rn with
m > n, and the solution of (1) is not unique. We assume the following properties concerning this
inverse problem:

• The evaluation of f (solving the forward problem) is computationally expensive. Thus, we
would like to minimize the number of function evaluations.

• The Jacobian of f is not explicitly known.

We denote the subset X ∗
ϵ ⊂ X to be the set containing all values of X that approximatively satisfy

(1) in the sense that the maximum norm relative residual is less than ϵ, i.e.,

X ∗
ϵ := {x ∈ X ⊂ Rm : max

i=1,...,n
|(fi (x )− y∗i )/y

∗
i | < ϵ}. (2)

The set X ∗
ϵ is often in�nite and unbounded. However, we are only interested in a subset of this set

X ∗
ϵ , namely the subset that is relevant in the context of the problem, and corresponds to a range of

reasonable physiological parameters. We assume that we know the following regarding the relevant
values of x ∈ X :

• A rough lower bound and upper bound of x is known. We will denote these quantities as xL

and xU , respectively.

Consequently, we roughly know that the solutions we are interested in are somewhere near a "box"
X 0 ⊂ X de�ned as follows:

X 0 :=

{
x ∈ X ⊂ Rm : max

i=1,...,m

∣∣∣∣ xi − xLi
xUi − xLi

∣∣∣∣ ≤ 1

}
. (3)

In summary, we seek solutions that are close to this initial box X 0. It is important to mention that
a priori, it could be possible that X 0 ∩ X ∗

ϵ = ∅.
We can now state the problem of interest mathematically. Find a set of l column vectors {x .j}lj=1

such that
x .j ∈ X ∗

ϵ and ||x .j − x (0)
.j ||2 ≈ min

x∈X ∗
ϵ

||x − x (0)
.j ||2, (4)

for j = 1, 2, . . . , l, where x (0)
.j is a randomly chosen point in the box X 0.
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3 The Cluster Newton method

In this section, we will give a brief introduction to the CN method. For a more detailed explanation
of the algorithm and examples of its application, we refer the reader to [1]. The algorithm is as follows:

Algorithm 1 : Cluster Newton method

• 1: Set up the initial points and the target values.

1-1: Randomly choose initial points {x .j}lj=1 in the box X 0. These initial points should be
stored as an m× l matrix X (0) where each column corresponds to a point x .j ∈ Rm.

1-2: Generate randomly perturbed target values {ŷ .j}lj=1 (to maintain well-posedness of
step 2-3) near y∗. We choose each value ŷ .j such that

max
i=1,2,...n

∣∣∣∣ ŷij − y∗i

y∗i

∣∣∣∣ < η, (5)

where η ∈ (0, 1) is a pre-assigned target accuracy. Lastly, we place these perturbed vector ŷ .j

into an n× l matrix Ŷ.

• 2: For k = 0, 1, 2, . . . , K

2-1 : Solve the forward problem for each point (column vector) in X (k) , i.e.,

Y(k) = f (X (k)), (6)

where each column vector of Y(k) corresponds to the solution of the function f at each column
vector of the matrix X (k), that is:

y
(k)
.j = f (x

(k)
.j ), for j = 1, 2, . . . l. (7)

2-2 : Construct a linear approximation of f , i.e.,

f (x ) ≈ A(k)x + y (k)
o , (8)

by �tting a hyperplane to Y(k). The slope matrix A(k) and the constant vector y (k)
o can be

found as a least squares solution of an over-determined system of linear equations:

min
A(k)∈Rn×m ,y

(k)
o ∈Rn

||Y(k) − (A(k)X (k) +Y (k)
o )||F, (9)

where Y (k)
o is an n× l matrix whose columns are all y (k)

o .

2-3 : Find the update vector s .j for all columns of X (k) using the linear approximation,
i.e., �nd a column vector s .j such that:

ŷ .j = A(k)(x
(k)
.j + s

(k)
.j ) + y (k)

o , for j = 1, 2, . . . , l. (10)

It is clear from the structure of this problem that A will be a rectangular matrix with more
columns than rows. Hence, the equations prescribed by (10) represent an underdetermined
system of linear equations. Therefore, we cannot uniquely determine the vectors s(k).j that
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satisfy equation (10). To restrict our solutions to a unique solution, we choose the vectors s (k).j

with the shortest scaled length as follows. The vector s (k).j written as a matrix S(k) are chosen
as the solution to the following minimum norm solution of an underdetermined system of linear
equations:

min
S
(k)∈Rm×l

||(diag (x̂ ))−1S(k)||F, (11)

such that Ŷ = A(k)(X(k) + S(k)) +Y(k)
o . (12)

In equation (11), we use x̂ = 1
2
(xL + xU).

The scaling is used in equation (11) since the order of magnitudes of the values in the vector
s
(k)
.j are di�erent.

2-4 : Find new points approximating the solution manifold X ∗
ϵ by updating X(k). If it is

necessary, we shrink the length of the vector s(k).j until the point (x (k)
.j + s

(k)
.j ) is in the domain

of the function f , i.e. ,
For j = 1, 2, . . . , l

While (x
(k)
.j + s

(k)
.j ) /∈ X ,

s
(k)
.j =

1

2
s
(k)
.j (13)

End while
End for

X(k+1) = X(k) + S(k) (14)

End for

Now, we will de�ne three quantities used by Aoki et al. [1] to measure the overall performance of
the CN method. These quantities can be calculated at each iteration of the CN method.

De�nition 1. The number of points that are in the domain of f is de�ned by the cardinality of the
following set:

Ld = {j = 1, 2, . . . l | x.j ∈ X ⊂ Rm} . (15)

Otherwise stated, the number of elements in the set Ld, |Ld|, represents the number of points that
are in the domain of f.

De�nition 2. The number of acceptable sets of parameters x.j generated by the CN method is
de�ned by the cardinality of the following set:

La = {j ∈ Ld | x.j ∈ X ∗
ϵ } . (16)

Otherwise stated, the number of elements in the set La, |La|, represents the number of column vectors
x.j, for which f (x.j) is within ϵ error of the target value y∗.

For the remainder of this paper, we will use ϵ = 10%. It is also obvious from the the de�nition
of these sets that |La| ≤ |Ld| ≤ l.

4



De�nition 3. The residual associated with the points x.j that are pharmacologically feasible and
generated by the CN method is de�ned by the Euclidean norm of the relative error between Y.j and
y∗:

rj =

(
n∑

i=1

∣∣∣∣yij − y∗i
y∗i

∣∣∣∣2
)1/2

, j ∈ Ld. (17)

The mean residual for the CN method denoted by r̂, is simply de�ned as the average of all residuals
rj for points that are pharmacologically feasible:

r̂ =

∑
j∈Ld

rj

|Ld|
=

∑
j∈Ld

(
n∑

i=1

∣∣∣∣yij − y∗i
y∗i

∣∣∣∣2
)1/2

|Ld|
. (18)

4 PBPK models

In this paper, we will apply our algorithm to two di�erent Physiologically Based Pharmacokinetic
(PBPK) models concerning the pharmacokinetic e�ects of the drug CPT-11 in the hope of deter-
mining which model is better suited to reproduce the given experimental data. The �rst model,
introduced by Arikuma et al. [2] is displayed in Figure 1. Here, GI stands for gastro-intestine. This
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Figure 1: Arikuma et al.'s PBPK model.

particular model has four di�erent types of pathways: the i.v. drip pathways, the blood �ow path-
ways, the metabolic pathways, and the excretion pathways. These pathways quantitatively describe
the �ow rate of the compounds CPT-11, SN-38, SN-38G, NPC and APC in units of [mg/min]. They
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are represented by the orange, blue and teal-green arrows labeled {li}55i=1 in Figure 1. There are in
total 60 pharmacokinetic parameters {xi}60i=1 associated with these pathways. Moreover, this phar-
macokinetic model can be represented by the following sti� nonlinear system of di�erential equation:

du
dt

= F(u, t, x ), u(0; x ) = 0, (19)

where x ∈ R60 are the pharmacokinetic parameters we wish to estimate, t ∈ R+ is time and u(t; x ) ∈
R25 are the concentration amounts of the compounds CPT-11, SN-28, SN-38G, NPC and APC in
di�erent regions of the body at any time t when given a patient's pharmacokinetic pro�le x . For
instance, the ODE model for the concentration of SN-38G in Liver can be written as follows:

du18

dt
=

 ∑
i∈{18,38,44}

li −
∑

i∈{13,53}

li

 /x57

=

(
x53 · u3(t) +

x52

x8

· u13(t) +
x45 · x50 · x57

x40·x12

x22·u17(t)
+ 1

)
/x57

−
(
x52 + x53

x13

· u18(t) +
x33 · x23

x13

· u18(t)

)
/x57. (20)

The concentrations ui are represented by the orange and blue boxes in Figure 1. For a more detailed
explanation on the signi�cance of each parameter and the general form of the function F(u, t, x ), we
refer the reader to [1, 2]. The �rst �ve given values of y∗ ∈ R10 in equation (1) correspond to the
accumulated concentrations in time of CPT-11, NPC, APC, SN-38 and SN-38G in Urine. The last
5 remaining entries correspond to the accumulated concentrations in time of CPT-11, NPC, APC,
SN-38 and SN-38G in Bile and Feces. These excretion values are represented by the teal-green boxes
in Figure 1. Moreover, these accumulated concentrations are given by the following expressions:

fi(x ) =

{∫∞
0

xi+25 xi+20 ui(s, x )ds for i = 1, . . . 5,∫∞
0
(xi+25xi+15)/xi+5 ui+10(s, x )ds for i = 6, . . . 10.

(21)

Equation (21) corresponds to the function f in equation (1), although, for numerical purposes, the
integration is performed from 0 to 13050 minutes. The domain for the function f : X ⊂ R60 → R10

is given by the following:

X =

{
x ∈ R60

∣∣ x > 0 and
58∑

j=55

xj < 1000

}
, (22)

where the inequality x > 0 is taken entrywise.

The second PBPK model concerning the pharmacokinetics e�ects of the drug CPT-11 was intro-
duced by Yoshida et al.'s in [5]. The model structure is slightly di�erent from Arikuma et al.'s model,
but some aspects remain the same. For example, in Yoshida et al.'s model, there is a return pathway
between the intestines and the liver. This pathway is not included in Arikuma et al.'s model. The
model still relies on four di�erent types of pathways: the i.v. drip pathways, the blood �ow pathways,
the metabolic pathways and the excretion pathways. Similarly, these pathways quantitatively de-
scribe the �ow rate of the compounds CPT-11, SN-38, SN-38G, NPC and APC in units of [mg/min].
On the other hand, there are in total 56 pharmacokinetic parameters {xi}56i=1 associated with these
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Figure 2: Yoshida et al.'s PBPK model.

pathways. The labeling of these parameters has no relation to the parameters in Arikuma et al.'s
model. The model structure is presented in Figure 2. Similarly to Arikuma et al.'s model, Yoshida
et al.'s model can also be represented by a sti� system of di�erential equation of the form:

du
dt

= G(u, t, x ), u(0; x ) = 0, (23)

where x ∈ R56 are the pharmacokinetic parameters we wish to estimate, t ∈ R+ is time and u(t; x ) ∈
R40 are the concentration amounts of the compounds CPT-11, SN-38, SN-38G, NPC and APC in
di�erent regions of the body at any time t given a patient's pharmacokinetic pro�le x . Unlike
Arikuma et al.'s model, the function G is linear in u. The concentrations u, corresponds to the
orange and blue boxes in Figure 2. For a more detailed explanation on the signi�cance of each
parameter and the general form of the function G(u, t, x ), we refer the reader to [5]. The �rst 5
given values of y∗ ∈ R9 in equation (1) correspond to the accumulated concentrations in time of
CPT-11, NPC, APC, SN-38 and SN-38G in Urine. The last 4 remaining entries correspond to the
accumulated concentrations in time of CPT-11, NPC, APC and the mixture of SN-38 and SN-38G
in Feces. These excretion values are represented by the teal-green boxes in Figure 2. Moreover, these
excretion values are given by the following expressions:

fi(x ) =


∫∞
0

x5+i ui(s, x )ds for i = 1, . . . 5∫∞
0

x21 u51(s, x )ds for i = 6∫∞
0
{x22 u52(s, x ) + x23 u53(s, x )}ds for i = 7∫∞

0
x16+i u46+i(s, x )ds for i = 8, 9.

(24)

Equation (24) corresponds to the function f in equation (1), although, for numerical purposes, the
integration is performed from 0 to 13050 minutes. The domain for the function f : X ⊂ R56 → R9
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is given by the following:
X =

{
x ∈ R56

∣∣ x > 0
}
, (25)

where the inequality x > 0 is taken entrywise.

5 The Beta Algorithm

In this section, we will present our Beta algorithm for �nding multiple solutions near a solution
of interest utilizing the two parameters of the Beta distribution and the CN method. First, we will
de�ne the beta distribution and explain its implication in the CN method. Secondly, we will discuss
how to utilize the two parameters of the Beta distribution and the CN method to �nd solutions near
a solution of interest.

5.1 The Beta distribution

To implement the CN method, one has to �rst distribute l column vectors {x .j}lj=1 inside the
initial box X 0 de�ned by equation (3). The initial distribution of these points has a dramatic impact
on the type of output solutions of the CN method. In [1], Aoki distributed these points using a
uniform distribution. Although proving to be quite successful at �nding a variety of solutions, the
uniform distribution is not successful in treating extra constraints added to the problem. In practice,
these added constraints often concern �tting experimental data with regard to the behavior of the
function u(x , t) in equation (33) described below. With this in mind, the Beta distribution is an
excellent candidate as an initial distribution since it is an extension which allows for a non-uniform
distribution. Now, we will give a short de�nition of the Beta distribution.

De�nition 4. The Beta distribution denoted by Beta(α, β) is de�ned by the following probability
density function:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, x ∈ [0, 1], α, β > 0, (26)

where the normalization constant B(α, β) is the Beta function. The Beta function is naturally de�ned
by the following integral:

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx

=
Γ(α)Γ(β)

Γ(α + β)
, (27)

where Γ(x) is the Gamma function.

Incidentally, if α = β = 1, we recover the uniform distribution on the interval [0, 1]. In Figure 3,
we plot the Beta probability density function given by equation (26) for di�erent values of α and β.
The value of x for which the Beta probability density function (shown in equation (26)) attains its
maximum value (otherwise known as the Mode) is given by:

Mode(Beta(α, β)) =
α− 1

α + β − 2
, for α, β ≥ 1 and (α, β) ̸= (1, 1). (28)
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Figure 3: Di�erent shapes of the Beta distribution for di�erent values of α and β

The mean squared deviation from the mode (MSDM) of a Beta distribution is given by :

MSDM(Beta(α, β)) = E
[
(Beta(α, β)−Mode(Beta(α, β)))2

]
=

∫ 1

0

(
x− α− 1

α + β − 2

)2

f(x;α, β)dx

=
α2(β + 1) + α− 6αβ + β + β2(α + 1)

(α + β) (α + β + 1) (α + β − 2)2
. (29)

As stated in step 1-1 of the CN method shown in section 3, we �rst need to randomly distribute
the points x .j inside the box X 0 described in equation (3). In [1], the points x .j were selected in
the following way. First, an m× l random matrix whose entries are chosen uniformly on the interval
[0, 1] is created. We shall denote this matrix by U (0, 1). Secondly, using this matrix, the matrix
X (0) as described in step 1-1 is created as follows:

X (0) = xL11×l + diag (xU − xL)U (0, 1), (30)

where 11×l is a row vector of dimension 1× l with all entries being 1. Since the Beta distribution is
simply an extension of the uniform distribution, we propose the following initial distribution for the
points x .j. First, we similarly create an m× l random matrix whose entries are chosen according to
a Beta(α, β) on the interval [0, 1] with α ≥ 1 and β ≥ 1. We shall denote this matrix by Beta(α, β).
Hence, our matrix X (0) can be constructed in a similar fashion:

X (0) = xL11×l + diag (xU − xL)Beta(α, β). (31)
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Since the Beta distribution is de�ned on the interval [0, 1], we can see that each point x .j is still
bounded by xL and xU . The parameters α and β introduce some bias within this range and cluster
the points around the mode of the Beta distribution given by equation (28). Further, if we allow the
Beta distribution for each parameter xi, i = 1, 2, . . . ,m to be di�erent, we have

X (0) = xL11×l + diag (xU − xL)


Beta(α1, β1)
Beta(α2, β2)

...
Beta(αm, βm)

 , (32)

where now Beta(αi, βi), i = 1, 2, . . . ,m, is a random row vector of length l where entries are chosen
according to the distribution Beta(αi, βi). It would be convenient to have an algorithm capable of
obtaining the optimal value of αi and βi for each parameter xi. In the following subsection, we will
present an algorithm for obtaining the best value of αi and βi when an extra constraint is provided.

5.1.1 Finding a suitable initial distribution

Many models including Arikuma et al.'s model [2] and Yoshida et al.'s model [5] can be expressed
by the following system of ordinary di�erential equations:

du
dt

= K(u, t, x ), u(0; x ) = 0, (33)

where u(t, x ) ∈ Rd, t ∈ R, x ∈ X ⊂ Rm and K : (Rd × R × X ) → Rd. Moreover, the function f in
equation (1) is often given by a general equation of the form:

f (x ) = lim
t→a

g(t, x ,u), (34)

for some well de�ned vector valued function g : R+ ×X × Rd → Rn.

Often, one can obtain experimental data concerning u(t, x ) in equation (33) at di�erent times
{ti}pi=1. Suppose we are given a set of mean values ĥi ∈ Rq along with standard deviations si ∈ Rq

at each time ti, i = 1, 2, . . . , p.

Moreover, suppose we can model these values by a function h(ti, x ,u) where h : R+ × X ×
Rd → Rq is a vector valued function depending on u(t, x ). The explicit form for the function
h(ti, x ,u) for Arikuma et al.'s model and Yoshida et al.'s model are given by equation (51) and (52),
respectively. Given this extra information, we wish to maximize the number of vectors x such that
we approximatively cover the entire range:

ĥi − si ≤ h(ti, x ,u) ≤ ĥi + si. (35)

In this way, we can obtain an interval for all the elements of the vector x . These intervals will
correspond to the solution manifold given this extra constraint. After running the CN method of
Algorithm 1 for K steps starting from a uniform distribution with the initial points {x .j}lj=1, one
obtains |Ld| ≤ l new points x̃ .j, j = 1, 2, . . . , |Ld|. From these |Ld| new points, we can determine
the new range for each parameter xi, i = 1, 2, . . . ,m. Let x̃ .j = (x̃1,j, . . . , x̃m,j)

T . The new lower and
upper bounds can be determined by the following expressions:

x̃Li = min
j∈Ld

{x̃ij}, i = 1, . . .m, (36)
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x̃Ui = max
j∈Ld

{x̃ij}, i = 1, . . .m, (37)

where x̃Li , x̃
U
i are the new lower bound and upper bound for each parameter xi, respectively. In other

words, the CN method moves the initial box to a new location.

X 0 =

{
x ∈ X ⊂ Rm : max

i=1,...,m

∣∣∣∣ xi − xLi
xUi − xLi

∣∣∣∣ ≤ 1

}
CN Method ⇓

X̃ =

{
x̃ ∈ X ⊂ Rm : max

i=1,...,m

∣∣∣∣ x̃i − x̃Li

x̃Ui − x̃Li

∣∣∣∣ ≤ 1

}
.

As an example, in Figure 4 we have shown visually through the use of a histogram how the range
of parameter x32 in Arikuma et al.'s model changes after an implementation of the CN method.
Furthermore, within the set of newly obtained points {x̃ .j}|Ld|

j=1, we can �nd a column vector x ⋆ with

Figure 4: Initial and Final distribution of parameter x32 using an initial uniform distribution. The
green columns correspond to the initial distribution of points before the implementation of the CN
method. The blue columns correspond to the distribution of x32 after the implementation of the CN
method.

the lowest weighted absolute norm of the error with respect to this experimental data. We de�ne the
weighted absolute norm of the error with respect to this experimental data simply as the weighted
Euclidean norm of the di�erence between simulated and experimental data:

ρj =

 p∑
i=1

q∑
k=1

∣∣∣∣∣hk(ti, x .j,u)− ĥi,k

si,k

∣∣∣∣∣
2
1/2

, j ∈ Ld. (38)
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Hence, the column vector x ⋆ with the lowest weighted absolute norm of the error with respect to
this experimental data is given by:

x ⋆ = argmin
j∈Ld

ρj. (39)

We can now apply the CN method a second time with our new initial box:

X̃ =

{
x̃ ∈ X ⊂ Rm : max

i=1,...,m

∣∣∣∣ x̃i − x̃Li

x̃Ui − x̃Li

∣∣∣∣ ≤ 1

}
. (40)

Within this box, we will set the value x ⋆ to be the mode of the new initial distribution. In this way,
we can �nd a variety of solutions around the best �t solution x ⋆. We can set x ⋆ to be the mode of
the new initial distribution by using the expression for the mode of the Beta distribution given in
equation (28):

x⋆
i = x̃Li + (x̃Ui − x̃Li )

(
αi − 1

αi + βi − 2

)
, i = 1, . . .m. (41)

Here, we have two unknowns αi and βi. If we constrain our problem to

αi + βi = D, i = 1, . . . ,m, (42)

where D > 2 is a constant, we have:

αi = 1 +

(
x⋆
i − x̃Li

x̃Ui − x̃Li

)
(D − 2) , i = 1, . . .m (43)

βi = D − αi, i = 1, . . .m. (44)

To recapitulate, after applying this procedure, each parameter xi, i = 1, . . . ,m will have the following
properties:

• xi ∼ x̃Li + (x̃Ui − x̃Li )Beta(αi, D − αi), i = 1, . . . ,m, (D > 2),

with αi = 1 +

(
x⋆
i − x̃Li

x̃Ui − x̃Li

)
(D − 2).

• Mode (xi) = x⋆
i , i = 1, . . . ,m,

where x⋆
i is the i

th entry of the vector x ⋆ which corresponds the lowest weighted absolute error
norm de�ned in equation (38).

The choice of the constant D has an enormous e�ect on the distribution of points around the mode.
The mean squared deviation from the mode (MSDM) of a Beta distribution given by equation (29) is
a good indicator of concentration of points around the mode of a Beta distribution . It is important
to note that letting D = 2 in equations (43) and (44), we return to the uniform distribution where
there is no mode. It would then be wise to select a value of D that would allow for some control over
the MSDM. We will illustrate the e�ect of this value D on the MSDM by the following theorem.

Theorem 1. Let x follow the following distribution: xL + (xU − xL)Beta(α,D − α), with 1 ≤ α ≤
D− 1, D > 2, xL < xU and , Mode(x) = x⋆ . Then we have the following inequality for the MSDM.

l(D)(xU − xL)2 ≤ E
[
(x− x⋆)2

]
≤ u(D)(xU − xL)2, (45)
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where E(g(x)) =
∫ 1

0
g(x)f(x;α, β)dx and

l(D) =


1

4(D + 1)
, 2 < D ≤ 8

2

D(D + 1)
, D > 8

 and u(D) =


2

D(D + 1)
, 2 < D ≤ 8

1

4(D + 1)
, D > 8

 . (46)

Proof. The proof of this Theorem can be found in the Appendix.

This inequality (45) can be seen visually in Figure 5. As we can see from equation (45), by choosing

Figure 5: This �gure displays the inequality of equation (45) . On the abscissa, we have the values
of D. On the ordinate, we have the scaled MSDM : E

[
(x− x⋆)2

]
/(xU − xL)2

.

a value of D & 2, the distribution for the parameters xi will have a large MSDM with respect to
its interval length squared. Consequently, the distribution of the parameters xi will stray far away
from our best �t solution x⋆

i . In this case, the new solutions found using the CN method with this
new distribution would have a large variety and stray away from the best �t curve concerning the
experimental data which we are trying to approximate. Conversely, if we pick a value of D ≫ 2, the
distribution for the parameters xi will have a small MSDM with respect to its interval length squared.
In turn, the distribution of every parameter xi will stay near our best �t solution x⋆

i . In this case, the
new solutions found using the CN method with this new distribution would have little variety around
the best �t solution concerning the experimental data. The best value for the constant D would then
depend on how much variety is wanted around the best �t solution x ⋆. In summary, we can rewrite
the algorithm to obtain the best possible variety of solutions and range for every parameter xi in the
following way:

Algorithm 2: The Beta algorithm

13



• 1 - Set up the initial conditions.

{x .j}|Ld|
j=1 ← Run CN method with uniform distribution in (47)

a predetermined range (xL, xU)

• 2 - Find the new range for every parameter xi

(x̃L, x̃U)←
(
min
j∈Ld

{x .j},max
j∈Ld

{x .j}
)

(48)

• 3 - Find the best �t solution with respect to experimental data.

x ⋆ = argmin
j∈Ld

ρj. (49)

• 4 - Choose a value for D heuristically based on the solution x ⋆. If the error ρj for x ⋆ is very
large, in other words, if x ⋆ reproduces the experimental data poorly, it is better to choose a
smaller value for D in the hope of obtaining a better approximation during the next run of the
CN method. This will also lead to a larger variety of solutions. On the other hand, if the error
ρj for x ⋆ is very small, in other words, if x ⋆ reproduces the experimental data satisfactorily, it
is better to choose a larger value for D that will maximize the number of solutions satisfying
equation (35).

• 5 - Run the Cluster Newton Method again with Beta distribution:

{ ˜̃x .j}|L̃d|
j=1 ← Implement CN method withBeta(αi, D − αi) (50)

distribution in the range (x̃L, x̃U),

where α
(m)
i = 1 +

(
x⋆
i − x̃Li

x̃Ui − x̃Li

)
(D − 2).

• 6 - If satis�ed, end ; else go to step 2.

It is important to note that the Beta algorithm can be applied multiple times if the number of
solutions within the interval in equation (35) is unsatisfactory to the user. However, if the model
does not reproduce the experimental data adequately, multiple iterations of the Beta algorithm will
not help maximize the number of solutions satisfying equation (35).

6 Numerical Experiments

In this section, we will apply the Beta algorithm to Arikuma et al.'s model as well as Yoshida et
al.'s model. The models were presented in section 4. We solved these ODEs using MATLAB 2012b
sti� ODE solver ODE15s [6]. First, we will present the experimental data that will be used for both
models. This data was obtained by Slatter et al. in [7]. The given values for the entries of the vector
y∗ are given in Table 1. This data can be approximated by equations (21) and (24) for Arikuma et
al.'s model and Yoshida et al.'s model, respectively.
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Table 1: Given value y∗ for Arikuma et al.'s model and Yoshida et al.'s model.

Arikuma et al.'s model y∗ Yoshida et al.'s model y∗

CPT-11 in Urine 426.99 CPT-11 in Urine 426.99
SN-38 in Urine 8.19 SN-38 in Urine 8.19
SN-38G in Urine 57.56 SN-38G in Urine 57.56
NPC in Urine 2.66 NPC in Urine 2.66
APC in Urine 42.50 APC in Urine 42.50

CPT-11 in Bile/Feces 615.89 CPT-11 in Bile/Feces 615.89
SN-38 in Bile/Feces 157.07 SN-38 + SN-38G in Bile/Feces 162.21
SN-38G in Bile/Feces 5.14
NPC in Bile/Feces 25.92 NPC in Bile/Feces 25.92
APC in Bile/Feces 158.02 APC in Bile/Feces 158.02

The additional experimental data provided for both models concerns the time course data of the
total excretion pro�le of all compounds in Urine and in Bile/Feces. These mean values and standard
deviations were also found in Slatter et al.'s work [7]. In the formalism of equation (35), we will
denote the total excretion pro�le of all compounds in Urine at time ti by ĥi,1, and its standard
deviation error by si,1. Similarly, we will denote the total excretion pro�le of all compounds in
Bile/Feces at time ti by ĥi,2, and its standard deviation error by si,2. The data provided for both
models are presented in Table 2. The data provided in Table 2 can be approximated by the following

Table 2: Experimental data provided for both Arikuma et al. and Yoshida et al.'s models.

ti ĥi,1 si,1 ĥi,2 si,2
90 100.00 66.66
210 203.70 70.36
330 255.55 85.18
570 325.92 81.48
810 374.07 92.59
1530 425.92 96.29 114.81 196.29
2250 455.55 99.99
2970 466.66 107.40 359.25 444.44
3690 474.07 111.11
4410 481.48 107.40 651.85 351.85
5130 488.88 103.70
5850 488.88 107.40 785.18 377.77
7290 492.59 111.11 833.33 374.07
8730 496.29 111.11 877.77 318.51
10170 503.70 107.40 977.77 118.51
11610 996.29 107.40
13050 996.29 107.40
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functions h(ti, x ,u) in the formalism of section 5.1.1.

In Arikuma et al.'s model, the function h(ti, x ,u) in equation (35) is given by the following:

h(ti, x ,u) =


∫ ti

0

5∑
j=1

xj+25 xj+20 uj(s, x )ds∫ ti

0

10∑
j=6

(xj+25xj+15)/xj+5 uj+10(s, x )ds

 . (51)

In Yoshida et al.'s model, the function h(ti, x ,u) in equation (35) is given by the following:

h(ti, x ,u) =


∫ ti

0

5∑
j=1

x5+j uj(s, x )ds∫ ti

0

10∑
j=6

x15+j u45+j(s, x )ds

 . (52)

On a side note, the domains for the function f (x ) in equation (1) is given by equation (22) and
(25) for Arikuma et al.'s and Yoshida et al.'s model, respectively. As we can see, both models are
constrained to the condition that every parameter be positive i.e. x > 0. With this in mind, we
applied the change of variable :

xi = exp(x̂i) > 0 i = 1, . . . ,m, (53)

to both models and used the CN method to �nd the parameters {x̂i}mi=1 instead, as in [1]. After
the implementation of the CN method, we simply have to apply the exponential function to the
parameters {x̂i}mi=1. This simple change of variable eliminates the need for this constraint in both
models.

Although some information about the impact of the parameter D in the initial distribution of our
parameters x was demonstrated in Theorem 1, we have not been able to �nd a method for �nding
the optimal value given the output of the Cluster Newton Method. However, we found heuristically
that D = 15 gave the best results.

In the following �gures, we will display the results of our Beta algorithm to both models. Figure 6
displays the results obtained by applying the Cluster Newton Method with a uniform distribution to
Arikuma et al.'s model. The two �gures on the left correspond to the functions h1(t, x .j,u), j ∈ Ld

and h2(t, x .j,u), j ∈ Ld from equation (51). The �gures on the right correspond to the three solutions
that satis�ed the lowest error with respect to experimental data de�ned in equation (38). We
displayed the statistics from equations (15),(16),(17),(18) for this implementation of the CN method
with uniform distribution in Table 3, where ϵ was set to 0.1 in (2).

As we can see from Table 3, the CN method with a uniform distribution applied to Arikuma et
al.'s model yields very good approximations of its target values y∗ with small residual values rj
and r̂. In addition, we can see from Figure 6 that Arikuma et al.'s model can reproduce the total
excretion of compounds in Urine quite well but fails to reproduce the total excretion of compounds
in Bile/Feces. If Arikuma et al.'s model is an adequate model to describe the administration of the
anti-cancer drug CPT-11, suitably the solutions near the best �t solution should converge towards a
better �t solution.
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Figure 6: The total excretion of compounds in Urine and Bile/Feces as well as the three lowest error
values for initial uniform distribution and 7 iterations of the CN method for Arikuma et al.'s model.
The lowest error min

j∈Ld

ρj was 3.49.

Table 3: Analysis of CN method with uniform distribution for Arikuma et al.'s model.

iteration step |Ld| |La| r̂ min
j∈Ld

rj max
j∈Ld

rj min
j∈Ld

ρj

1 1000 0 28.32 4.33 91.87 3.53
2 938 0 4.56 2.30 7.23 3.57
3 942 0 0.73 0.51 1.06 4.02
4 943 808 0.13 0.05 0.40 3.49
5 943 905 0.08 0.03 0.38 3.52
6 943 895 0.07 0.02 0.37 3.51
7 943 898 0.07 0.02 0.39 3.49

Implementing the Beta algorithm once with D = 15, we obtain the following solutions displayed
in Figure 7. We displayed the statistics after one run of the Beta algorithm in Table 4. As we can
see from this table, the Beta algorithm was successful in increasing the number of acceptable sets
of parameters, |La|, generated by the CN method as well as lowering the mean residual error r̂.
However, by investigating Figure 7, it is clear that the Beta algorithm was not capable of obtaining
better �t solutions to the total excretion of compounds in Bile/Feces. This could be due to a fallacy
in the model which restricts the versatility of solutions Arikuma et al.'s model can admit.

We will now proceed similarly with Yoshida et al.'s model. Applying the CN method with a
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Figure 7: These �gures display the Total excretion of compounds in Urine and Bile/Feces as well as
the three lowest error values after one run of the Beta Algorithm for Arikuma et al's model. The
lowest error min

j∈Ld

ρj was 3.57.

Table 4: Analysis of CN method after one run of the Beta algorithm for Arikuma et al.'s model

iteration step |Ld| |La| r̂ min
j∈Ld

rj max
j∈Ld

rj min
j∈Ld

ρj

1 1000 0 1.25 0.21 4.49 3.59
2 1000 187 0.21 0.10 0.35 3.57
3 1000 996 0.13 0.07 0.19 3.57
4 1000 1000 0.07 0.03 0.11 3.56
5 1000 1000 0.05 0.02 0.09 3.56
6 1000 1000 0.04 0.02 0.09 3.53
7 1000 1000 0.04 0.02 0.08 3.57

uniform distribution, we obtain the following results displayed in Figure 8. Similarly, the two �gures
on the left correspond to the functions h1(t, x .j,u), j ∈ Ld and h2(t, x .j,u), j ∈ Ld from equation
(52). The �gures on the right correspond to the three solutions that satis�ed the lowest error with
respect to experimental data de�ned in equation (38). We displayed the statistics from equations
(15),(16),(17),(18) for this implementation of the CN method with uniform distribution in Table 5.
It is clear that Yoshida et al.'s model is not able to achieve 10% residual error with respect to the
target value y∗. However, by investigating Figure 8, it appears that Yoshida et al.'s model is better
suited for �nding solutions that reproduce the total excretion of compounds in Urine and Bile/Feces.
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Figure 8: These �gures display the Total excretion of compounds in Urine and Bile/Feces as well as
the three lowest error values for initial uniform distribution and 7 iterations of the CN method for
Yoshida et al.'s model. The lowest error min

j∈Ld

ρj was 3.37.

Implementing the Beta Algorithm with D = 15, we obtain the following results displayed in Figure

Table 5: Analysis of CN method with uniform distribution for Yoshida et al.'s model

iteration step |Ld| |La| r̂ min
j∈Ld

rj max
j∈Ld

rj min
j∈Ld

ρj

1 1000 0 18.94 2.03 326.33 3.68
2 1000 0 2.74 1.33 80.64 3.02
3 1000 0 2.21 0.83 15.38 2.66
4 1000 0 1.35 0.33 6.49 3.49
5 1000 0 0.92 0.21 3.62 3.60
6 1000 2 0.77 0.14 3.49 3.48
7 1000 0 0.77 0.23 5.68 3.37

9. We displayed the statistics from equations (15),(16),(17),(18) after one run of the Beta Algorithm
in Table 6. The Beta algorithm was successful in improving the number of parameter sets which
could achieve 10% residual error with respect to the target value y∗. Moreover, from Figure 9, we
can see that the Beta algorithm did indeed �nd more solutions that �t better to the additional time
course data of the total excretion of compounds in Urine and Bile/Feces.

Although Yoshida et al.'s model is not capable of obtaining a large number of parameters sets that
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Figure 9: These �gures display the Total excretion of compounds in Urine and Bile/Feces as well as
the three lowest error values after one run of the Beta Algorithm. The lowest error min

j∈Ld

ρj was 1.84.

Table 6: Analysis of CN method after one run of the Beta algorithm for Yoshida's model

iteration step |Ld| |La| r̂ min
j∈Ld

rj max
j∈Ld

rj min
j∈Ld

ρj

1 1000 0 1.96 0.73 29.34 1.76
2 1000 0 0.93 0.32 4.34 1.46
3 1000 4 0.56 0.14 2.20 1.74
4 1000 8 0.45 0.08 2.15 1.56
5 1000 12 0.42 0.10 2.10 2.29
6 1000 14 0.43 0.10 2.17 1.92
7 1000 9 0.50 0.12 2.15 1.84

achieve 10% residual error with respect to the target value y∗, it is still the better model of the two.
Since, we can't incorporate the standard deviation error on the target value y∗, we are forcing the
Cluster Newton method to �nd solutions around this point instead of a region around this point. As
we have seen from Arikuma's model, even if the solutions come arbitrarily close to the target value
y∗, they may not simulate additional data very well. Moreover, in Yoshida et al.'s model, the Beta
algorithm was capable of guiding many solutions around the additional experimental data concerning
the total excretion of compounds both in Urine and Bile/Feces. This demonstrates the versatility of
solutions Yoshida et al.'s model can output.
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7 Conclusions

In this paper, we developed an algorithm capable of �nding many solutions near a solution of
interest utilizing the Cluster Newton Method and the Beta distribution. Our algorithm is based
on concentrating the initial distribution of points for the CN method around the best �t solutions
previously obtained with an originally uniformly distributed CN method. To reduce the number
of free parameters, we introduced the constraint αi + βi = D > 2 for i = 1, . . .m. The choice
of the parameter D has a signi�cant e�ect on the mean squared deviation from the mode as was
demonstrated by Theorem 1. It is the opinion of the authors that an algorithm capable of �nding the
optimal value for this constant given any data set would prove bene�cial to this algorithm. However,
for the purpose of this paper, we found heuristically that D = 15 was optimal.

We applied the Beta algorithm to two pharmacokinetic models concerning the cancer �ghting
drug CPT-11 and analyzed its e�ects. Arikuma et al.'s model was incapable of reproducing the
experimental data concerning the total excretion of compounds in Urine and Bile/Feces even after
using the Beta algorithm. On the other hand, Yoshida et al.'s model yielded a good diversity of
solutions after the application of the Beta algorithm. This suggests that the Beta algorithm can
achieve good results only if the model allows for versatility in its solutions and if the model correctly
models the phenomenon. It is important to note that the uniform distribution was unable to obtain a
large set of solutions near the experimental data. Utilizing the bias embedded in the Beta distribution,
we were able to focus the output of the Cluster Newton Method near the experimental data in the
case of Yoshida et al.'s model. Thus, the Beta algorithm is also a useful method for validating
mathematical models.
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8 Appendix

8.1 The Adaptive Margin

During the implementation of the CN method, there is a need to randomly perturb the target values
y⋆. Otherwise this least-squares problem becomes rank de�cient. In [1], Aoki chose to construct the
matrix Ŷ in equation (5) in the following way:

Ŷ = diag (y⋆)U (1− η, 1 + η), (54)

where U (1−η, 1+η) is a 10× l random matrix where each entry is randomly chosen from a uniform
distribution on the interval [1 − η, 1 + η] and η ∈ (0, 1). In this formalism, the perturbations are
the same regardless of the iteration step k. We implemented 10 iterations of the CN method for
Arikuma et al.'s model with an initial uniform distribution 10 times for di�erent values of η and took
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the mean value of |Ld|, |La| with ϵ = 10% and the mean residual at each iteration. These values
were de�ned in equations (15), (16) and (18), respectively. Figure 10 displays the mean value of |Ld|,
|La| and natural logarithm of the mean residual, log(r̂), at each iteration. At the �rst iteration, the

Figure 10: The leftmost �gure displays the average number of elements in the set Ld; the middle
�gure displays the average number of elements in the set La and the rightmost �gure displays the
value of log(r̂) at the kth iteration for di�erent constant values of η.

parameters x might not belong to the set X ∗
ϵ . In this sense, it would be wise to allow a broader

perturbation η at the beginning and reduce the perturbations as the parameters x approach the real
solution. As we can see from these �gures, larger values of η improve the CN method for smaller
iteration as they achieve lower residuals quicker and have a larger number of acceptable parameters.
However, as the number of iterations increases, the smaller values of η reign supreme. With this in
mind, we propose an adaptive margin; i.e. letting η be a function depending on the iteration step. By
letting η vary at each iteration step, we found that this procedure yields a much faster convergence.
After several di�erent numerical trials, we found that

η(k) = 0.025 + 0.1/k!, (55)

yields the best numerical results. With this selection for the margin of perturbations, only 6 iterations
are needed to achieve optimal results. We presented some di�erent choice of adaptive margins in
Figure 11. It is important to note that although this particular adaptive margin proved to be optimal
in our situation, it may not be optimal for di�erent models. However, it is worth investigating when
working with a new model.

8.2 Using an Analytic Jacobian when solving the Forward Problem

The model presented by Arikuma et al. [2] has the same form as the one shown in equation (19). To
solve this sti� ODE system, the ODE package ODE15s in Matlab is required [6]. When using this
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Figure 11: The leftmost �gure displays the average number of elements in the set Ld; the middle
�gure displays the average number of elements in the set La and the rightmost �gure displays the
value of log(r̂) at the kth iteration for di�erent varying values of η.

ODE package, one has the option of explicitly providing the analytical Jacobian of F(u, t, x ) with
respect to u or providing a known pattern of the Jacobian. This latter options is known as a Jpattern.
If one cannot compute the Jacobian explicitly but has an idea which entries are non-zero, they can
input a matrix into this ODE package in order for Matlab to numerically calculate these non-zero
entries instead of the whole Jacobian. In Aoki et al.'s report, the Jpattern was used [1]. Although
somewhat tedious to calculate, the Jacobian of F(u, t, x ) with respect to u can be calculated and
coded e�ciently as a sparse matrix. Figure 12 is a representation of the Jacobian for this system.
Using 200 randomly selected column vectors {x .j}200j=1, we tested the e�ciency of using both the
Jpattern and analytical Jacobian. Figure 13 shows a box plot analysis of the ODE15s CPU time
for these 200 di�erent sets of parameters {x .j}200j=1. As we can see from this �gure, the input of an
analytical Jacobian inside the ODE15s solver greatly reduces the time it takes to solve the PBPK
model ODE system. This is due to the fact that less function evaluations are needed in order to
compute the Jacobian and approximate the optimal step size when using the analytical Jacobian. In
addition, the use of an analytic Jacobian can improve the reliability and e�ciency of the numerical
integration.
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Figure 12: This �gure shows the sparse structure of the Jacobian matrix of the PBPK model. There
are 80 nonzero elements out of 1296. Hence, the density of this matrix is only 0.062. The blue entries
are constant. That is, they are a function of x only. The red entries change with respect to time
since they are a function of u(x , t) and x .
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Figure 13: On the left hand side, we have the box plot for the ODE15s CPU time in seconds using
the analytical Jacobian. On the right hand side we �nd the box plot ODE15s CPU time in seconds
using a JPattern. The red line is the median CPU time, the outlines of the box represent the 25th
and 75th percentiles. The top and bottom lines represent the max and min CPU time, respectively.
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8.3 Proof of Theorem 1

We will now present the proof for Theorem 1.

Theorem. Let x ∼ xL + (xU − xL)Beta(α,D − α) with 1 ≤ α ≤ D − 1, D > 2, xL < xU and ,
Mode(x) = x⋆ . Then we have the following inequality for the MSDM.

l(D)(xU − xL)2 ≤ E
[
(x− x⋆)2

]
≤ u(D)(xU − xL)2, (56)

where E(g(x)) =
∫ 1

0
g(x)f(x;α, β)dx and

l(D) =


1

4(D + 1)
, 2 < D ≤ 8

2

D(D + 1)
, D > 8

 and u(D) =


2

D(D + 1)
, 2 < D ≤ 8

1

4(D + 1)
, D > 8

 . (57)

Proof. Since Mode(x) = x⋆, it follows that:

x⋆ = Mode(x)

= Mode(xL + (xU − xL)Beta(α,D − α))

= xL + (xU − xL)Mode(Beta(α,D − α))

= xL + (xU − xL)

(
α− 1

D − 2

)
⇒ α = 1 +

(
x⋆ − xL

xU − xL

)
(D − 2). (58)

Moreover, since x ∼ xL + (xU − xL)Beta(α,D − α), it follows that :

x− xL

xU − xL
∼ Beta(α,D − α). (59)

The MSDM of a Beta distribution is given by equation (29). If we introduce the constraint that
α + β = D with D > 2, we obtain the following:

E

[(
x− xL

xU − xL
− x⋆ − xL

xU − xL

)2
]
=

α2(D − α + 1) + α− 6α(D − α) + (D − α) + (D − α)2(α + 1)

D (D + 1) (D − 2)2
.

(60)
Taking in consideration that the operator E(.) is a linear operator, simplifying the expression on the
right hand side and completing the square in α, we obtain:

E
[
(x− x⋆)2

]
(xU − xL)2

=

(
8−D

D(D + 1)(D − 2)2

)(
α− D

2

)2

+
1

4(D + 1)
. (61)

Inserting the value for α = 1 +

(
x⋆ − xL

xU − xL

)
(D − 2) into our equation, we obtain:

E
[
(x− x⋆)2

]
(xU − xL)2

=

(
8−D

D(D + 1)

)(
x⋆ − xL

xU − xL
− 1

2

)2

+
1

4(D + 1)
, xL ≤ x⋆ ≤ xU . (62)
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This is a parabola in x⋆ . We have three cases to investigate concerning the bounds for E
[
(x− x⋆)2

]
.

When
(

8−D
D(D+1)

)
> 0, the parabola is concave upwards. When

(
8−D

D(D+1)

)
= 0, we have a straight line

and when
(

8−D
D(D+1)

)
< 0, the parabola is concave downwards. When 2 < D < 8, then

(
8−D

D(D + 1)

)
>

0. Hence,
(xU − xL)2

4(D + 1)
≤ E

[
(x− x⋆)2

]
≤ 2(xU − xL)2

D(D + 1)
. (63)

When D = 8, the MSDM is independent of the location of the mode and is given by:

E
[
(x− x⋆)2

]
=

(xU − xL)2

36
. (64)

When D > 8,
(

8−D

D(D + 1)

)
< 0. Hence, we obtain the inequality in (63) but reversed.

2(xU − xL)2

D(D + 1)
≤ E

[
(x− x⋆)2

]
≤ (xU − xL)2

4(D + 1)
. (65)

Combining these cases together, we obtain our desired result.
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