

ISSN 1346-5597

NII Technical Report

A Short Tutorial of the Scenario Markup Language

Kugamoorthy GAJANANAN
communicated by Prof. Helmut Prendinger

NII-2013-001E
Jan. 2013

1

2

A Short Tutorial of the Scenario Markup

Language
Kugamoorthy Gajananan

Abstract

We present the Scenario Markup Language (SML), a practical language for authoring realistic traffic situations.

This effort is part of a novel framework for conducting controlled driving behavior studies based on multiuser

networked 3D virtual environments. SML facilitates the scripting of traffic scenarios for behavioral driver studies in

networked multi-user online 3D virtual environments.

2

3

I. INTRODUCTION

Traffic engineers who focus on the study of driver behavior (e.g., route choice) are interested in using virtual

world environments, to extract secondary data sets of natural responses of participants exposed to specific transport

situations. Driver responses during these situations are measured to collect reliable behavioral data, which is analyzed

to validate some hypotheses (e.g., about a new transport measure). Large scale behavioral studies are required by

traffic engineers to properly support these hypotheses. Examples include traffic phenomena like the rubbernecking

effect (explained later in Section 3), intersection safety, car following in traffic congestion, among others.

Traffic engineers rarely conduct behavioral studies in the real world, as the tested measures may interfere with real

world traffic. Instead, they use web-based surveys which, however, restrict the type of behavioral data collected. In

recent years, simulators were built to address several aspects of transport, including traffic flow, driving experience,

and pedestrian behavior. To conduct transport behavioral experiments in simulated environments, traffic engineers

want to create predictable experiences for human participants. To achieve this, they require realistic scenarios and

precisely controlled events [1]. Here, traffic engineers author scenarios that unfold in a virtual world environment,

whereby the scenario script orchestrates the simulation run to create predictable experiences for the participants.

To author realistic scenarios for use in virtual world simulations, scenario-based programming handles the

interaction between entities. The challenges here are to create believable entity behavior and to orchestrate different

entities’ behavior into credible, controlled scenarios [2]. A major issue for researchers of scenario languages is the

gap between the specification of scenarios in a high level language (by experts) and the technical implementation

of scenario specification (by developers).

To address the shortcomings related to scenario authoring of other related approaches (see Section 2), we propose

a simple XML based language called Scenario Markup Language (SML) as a practical tool. Using SML, traffic

engineers can author complex transport scenarios. Our solution is based on an online virtual world platform, which

allows users to be immersed in the virtual world via a graphical self-representation (as avatars), so that users can

participate as drivers, pedestrians, or traffic engineers.

4

II. RELATED WORK - SCENARIO AUTHORING LANGUAGES

This section reports on work related which focuses on specifying scenarios in a high level language appropriate for

non-programmers. In scenario based programming, the challenges are to create believable entity behavior (animation

and simulation) and to orchestrate different entities’ behavior into credible, controlled scenarios in 3D simulated

environments.

First we look at the scripting languages targeted for behavior programming for entities in 3D simulated envi-

ronments. There has been a family of languages introduced for animation and simulation behaviros of entities in

3D:

• Perlin et al. [3] introduced the Improv, which is an action based scripting language to empower computer

animators to create behavioral entities which can be controlled by scripts. Using Improv, well-defined actions,

which are routines that control an object’s degrees of freedom for a period of time, can be created and later

invoked in the simulation.

• Conway developed Alice [4], which is programming environment to make 3D animation accessible to novices.

Alice provides its own scripting language based on the Python language to control and describe the movements

of objects in the environment.

• UnrealEngine [5], which is a game development toolset designed with ease of content creation and programming

in mind, provides the UnrealScript language [6] as a powerful, built-in programming language that maps

naturally onto the needs and nuances of game programming. The UnrealScript language defines a distinct

notion of state and can be used to build autonomous agents

• Unity3D [7],very similar to UnrealEngine, is a software platform that consists of an integrated tool for design

and development of 3D real-time simulation content or games. Unity3D allows developers to write simple

behavior scripts in JavaScript, C# or Boo.

It is obivious that, except Alice, all of the above mentioned scripting languages are intended for 3D real-time

simulation programmers who work on the low level behavior programming.

Secondly, we review what languages are available for authoring scenarios, especially in the traffic domain.

Besides the scripting language of Willemsen et al.[8], and the programming style language of Devillers and

Donikian [9], other approaches for traffic scenario authoring were developed.

3

3

I. INTRODUCTION

Traffic engineers who focus on the study of driver behavior (e.g., route choice) are interested in using virtual

world environments, to extract secondary data sets of natural responses of participants exposed to specific transport

situations. Driver responses during these situations are measured to collect reliable behavioral data, which is analyzed

to validate some hypotheses (e.g., about a new transport measure). Large scale behavioral studies are required by

traffic engineers to properly support these hypotheses. Examples include traffic phenomena like the rubbernecking

effect (explained later in Section 3), intersection safety, car following in traffic congestion, among others.

Traffic engineers rarely conduct behavioral studies in the real world, as the tested measures may interfere with real

world traffic. Instead, they use web-based surveys which, however, restrict the type of behavioral data collected. In

recent years, simulators were built to address several aspects of transport, including traffic flow, driving experience,

and pedestrian behavior. To conduct transport behavioral experiments in simulated environments, traffic engineers

want to create predictable experiences for human participants. To achieve this, they require realistic scenarios and

precisely controlled events [1]. Here, traffic engineers author scenarios that unfold in a virtual world environment,

whereby the scenario script orchestrates the simulation run to create predictable experiences for the participants.

To author realistic scenarios for use in virtual world simulations, scenario-based programming handles the

interaction between entities. The challenges here are to create believable entity behavior and to orchestrate different

entities’ behavior into credible, controlled scenarios [2]. A major issue for researchers of scenario languages is the

gap between the specification of scenarios in a high level language (by experts) and the technical implementation

of scenario specification (by developers).

To address the shortcomings related to scenario authoring of other related approaches (see Section 2), we propose

a simple XML based language called Scenario Markup Language (SML) as a practical tool. Using SML, traffic

engineers can author complex transport scenarios. Our solution is based on an online virtual world platform, which

allows users to be immersed in the virtual world via a graphical self-representation (as avatars), so that users can

participate as drivers, pedestrians, or traffic engineers.

4

II. RELATED WORK - SCENARIO AUTHORING LANGUAGES

This section reports on work related which focuses on specifying scenarios in a high level language appropriate for

non-programmers. In scenario based programming, the challenges are to create believable entity behavior (animation

and simulation) and to orchestrate different entities’ behavior into credible, controlled scenarios in 3D simulated

environments.

First we look at the scripting languages targeted for behavior programming for entities in 3D simulated envi-

ronments. There has been a family of languages introduced for animation and simulation behaviros of entities in

3D:

• Perlin et al. [3] introduced the Improv, which is an action based scripting language to empower computer

animators to create behavioral entities which can be controlled by scripts. Using Improv, well-defined actions,

which are routines that control an object’s degrees of freedom for a period of time, can be created and later

invoked in the simulation.

• Conway developed Alice [4], which is programming environment to make 3D animation accessible to novices.

Alice provides its own scripting language based on the Python language to control and describe the movements

of objects in the environment.

• UnrealEngine [5], which is a game development toolset designed with ease of content creation and programming

in mind, provides the UnrealScript language [6] as a powerful, built-in programming language that maps

naturally onto the needs and nuances of game programming. The UnrealScript language defines a distinct

notion of state and can be used to build autonomous agents

• Unity3D [7],very similar to UnrealEngine, is a software platform that consists of an integrated tool for design

and development of 3D real-time simulation content or games. Unity3D allows developers to write simple

behavior scripts in JavaScript, C# or Boo.

It is obivious that, except Alice, all of the above mentioned scripting languages are intended for 3D real-time

simulation programmers who work on the low level behavior programming.

Secondly, we review what languages are available for authoring scenarios, especially in the traffic domain.

Besides the scripting language of Willemsen et al.[8], and the programming style language of Devillers and

Donikian [9], other approaches for traffic scenario authoring were developed.

4

5

Early work on scenario scripting language by Van Winsum [[10], [11]] propose a text based Scenario Specification

Language or SSL which allows the simulation entities to be commanded to perform certain actions. Since then,

SSL is further developed as a commercial product at STsoftware [?] and SSL is now referred to as StScenario [?].

Allen et al. [12] also use a textual description of scenarios, whereas others utilized a specialized representation

called ‘tile’ [[13], [14]]. The idea of specifying a series of tiles in a configuration file can be sufficient for simple

scenarios, but cannot scale well for complex dynamic and non-deterministic scenarios. Another disadvantage with

textual and tile based approaches is that the entire scenario (static and dynamic elements) need to be specified

beforehand in texts or tiles.

In this section, we reviewed related work, in detail, that uses different approaches for scenario authoring. We

also discussed the limitations of the related approaches. The work presented in this technical report relates directly

to the body of work discussed above, and uses many of the ideas and guidelines for authoring scenarios. Our chief

goal is to make scenario authoring practical for traffic engineers to specify traffic scenarios.

6

III. TRAFFIC SCENARIO AUTHORING WITH SCENARIO MARKUP LANGUAGE

SML is a high-level, practical specification language for authoring traffic scenarios. A preliminary version of the

basic concepts of the SML was already introduced in Gajananan et al. [15]. In this section, we describe the core

tagging structures of the SML language, which are used to specify the target traffic scenario.

Note that the usage of the word ‘scenario’ sometimes refers to both the static structure of the virtual environment

or scene (e.g., road network) and the dynamic characteristics of a simulation (e.g., critical events) [16]. We use

scenario (script) to refer to entities (vehicles) in the simulation and the orchestration of their behaviors (interactions)

to create a specific situation or event [17].

A. Motivating Traffic Scenario on Rubbernecking Effect

For this work, we choose a traffic accident scenario as a study case which could benefit from the existence of

multiple drivers in driving simulators. As for the accident scenario, we specifically mean a situation in which a

following car collides with a leading car from back. The chosen scenario helps traffic engineers to investigate how

real drivers react to each other when they perceive the accident situation (i.e., how drivers change their operational

driving behavior at the incident site). The scenario like an accident situation in which drivers’ interactions are too

dangerous or unpractical to be studied in the real world.

This particular scenario is motivated by the traffic phenomenon called rubbernecking, whereby drivers tend to

crane their neck in order to get a better view of a nearby car crash (see Fig. 1). This phenomenon can cause traffic

congestion to surge, for drivers may become distracted and drastically change their rate of travel, which in turn

may cause traffic congestion on the opposite side of the road where the accident happend [18]. Traffic engineers

identified this traffic phenomenon as a leading cause of traffic congestion and secondary accidents. They claim that

drivers looking at vehicle crashes and roadside traffic incidents cause the rubbernecking effect. We use this traffic

accident scenario as a running example to describe the tagging structures of the Scenario Markup Language (see

the following section).

B. Scenario Markup Language Concepts

We conceptualize a scenario as the script that specifies the behaviors (defined by the interests of the scenario

author) of entities, and how those behaviors are orchestrated, by creating, destroying or modifying characteristics of

5

5

Early work on scenario scripting language by Van Winsum [[10], [11]] propose a text based Scenario Specification

Language or SSL which allows the simulation entities to be commanded to perform certain actions. Since then,

SSL is further developed as a commercial product at STsoftware [?] and SSL is now referred to as StScenario [?].

Allen et al. [12] also use a textual description of scenarios, whereas others utilized a specialized representation

called ‘tile’ [[13], [14]]. The idea of specifying a series of tiles in a configuration file can be sufficient for simple

scenarios, but cannot scale well for complex dynamic and non-deterministic scenarios. Another disadvantage with

textual and tile based approaches is that the entire scenario (static and dynamic elements) need to be specified

beforehand in texts or tiles.

In this section, we reviewed related work, in detail, that uses different approaches for scenario authoring. We

also discussed the limitations of the related approaches. The work presented in this technical report relates directly

to the body of work discussed above, and uses many of the ideas and guidelines for authoring scenarios. Our chief

goal is to make scenario authoring practical for traffic engineers to specify traffic scenarios.

6

III. TRAFFIC SCENARIO AUTHORING WITH SCENARIO MARKUP LANGUAGE

SML is a high-level, practical specification language for authoring traffic scenarios. A preliminary version of the

basic concepts of the SML was already introduced in Gajananan et al. [15]. In this section, we describe the core

tagging structures of the SML language, which are used to specify the target traffic scenario.

Note that the usage of the word ‘scenario’ sometimes refers to both the static structure of the virtual environment

or scene (e.g., road network) and the dynamic characteristics of a simulation (e.g., critical events) [16]. We use

scenario (script) to refer to entities (vehicles) in the simulation and the orchestration of their behaviors (interactions)

to create a specific situation or event [17].

A. Motivating Traffic Scenario on Rubbernecking Effect

For this work, we choose a traffic accident scenario as a study case which could benefit from the existence of

multiple drivers in driving simulators. As for the accident scenario, we specifically mean a situation in which a

following car collides with a leading car from back. The chosen scenario helps traffic engineers to investigate how

real drivers react to each other when they perceive the accident situation (i.e., how drivers change their operational

driving behavior at the incident site). The scenario like an accident situation in which drivers’ interactions are too

dangerous or unpractical to be studied in the real world.

This particular scenario is motivated by the traffic phenomenon called rubbernecking, whereby drivers tend to

crane their neck in order to get a better view of a nearby car crash (see Fig. 1). This phenomenon can cause traffic

congestion to surge, for drivers may become distracted and drastically change their rate of travel, which in turn

may cause traffic congestion on the opposite side of the road where the accident happend [18]. Traffic engineers

identified this traffic phenomenon as a leading cause of traffic congestion and secondary accidents. They claim that

drivers looking at vehicle crashes and roadside traffic incidents cause the rubbernecking effect. We use this traffic

accident scenario as a running example to describe the tagging structures of the Scenario Markup Language (see

the following section).

B. Scenario Markup Language Concepts

We conceptualize a scenario as the script that specifies the behaviors (defined by the interests of the scenario

author) of entities, and how those behaviors are orchestrated, by creating, destroying or modifying characteristics of

6

7

Fig. 1. Illustration of a rubbernecking scenario. In this example, an accident has happened on the right side of a road (oncoming direction).

The first driver on the left side (reference side), is the one who first perceives the accident and, likely, initiates the formation of traffic jam.

entities and coordinating their actions, to produce experiences for human users immersed in a 3D virtual environment.

In this case, an entity refers to a materialized or embodied virtual object (e.g., a car) or to a virtual character

represented as a human avatar (a synthetic human user or a bot). Users who are participants of a behavioral study

may interact with one or more entities in the virtual world during a simulation run designated for the behavioral

study.

A behavioral entity perceives its environment, makes decisions, performs actions and has an interface for

communication. Our conceptualization of defining the behavior of entities is similar to the definition above.

1) SML Tagging Structure: As shown in the Fig. 2, the root element of a scenario script is SML. The tagging

structure <SML></SML> contains the header and body parts. As in Fig. 3, the header part of an SML script

is composed of the tagging structures such as ‘entities’ — the entities involved in a scenario, ‘user’ — the

user referenced in a scenario. Fig. 4 shows the body part of an SML script that contains the tagging structure

<Scenario></Scenario> all other tagging structures, in particular ‘director’ — the portion of script that

orchestrates certain behaviors of specified entities, and ‘events’ — generated as an outcome of executing the

scenario, ‘behaviors’ — a set of interesting behaviors for the entities defined above, from a scenario point of view.

We assume that entities will have their autonomous behaviors implemented, will behave accordingly mostly except

the time the behaviors defined in a scenarios are executed. In addition, we implement a set of interface methods to

8

Fig. 2. The structrual diagram that provides an overall structure of an SML script for scenario, two main parts: the head and the body and

their abstract content.

Fig. 3. The structrual diagram that provides an overall structure of the header part of an SML script for scenario

direct or command an entity from a scenario.

2) SML Entity: For the accident scenario, we define two car entities along with their attributes and properties

(see Fig. 5). We identify each entity by its id. The ids of entities are assigned once the candidates are chosen from

the simulation space (e.g., cars that are selected to create an accident). Each entity has a type. Currently, the type

attribute supports ‘Vehicle’, which was sufficient for the scenarios implemented now. It can be extended to other

types of entities (e.g., pedestrian), once they are implemented in the simulation. To define the properties of an

7

7

Fig. 1. Illustration of a rubbernecking scenario. In this example, an accident has happened on the right side of a road (oncoming direction).

The first driver on the left side (reference side), is the one who first perceives the accident and, likely, initiates the formation of traffic jam.

entities and coordinating their actions, to produce experiences for human users immersed in a 3D virtual environment.

In this case, an entity refers to a materialized or embodied virtual object (e.g., a car) or to a virtual character

represented as a human avatar (a synthetic human user or a bot). Users who are participants of a behavioral study

may interact with one or more entities in the virtual world during a simulation run designated for the behavioral

study.

A behavioral entity perceives its environment, makes decisions, performs actions and has an interface for

communication. Our conceptualization of defining the behavior of entities is similar to the definition above.

1) SML Tagging Structure: As shown in the Fig. 2, the root element of a scenario script is SML. The tagging

structure <SML></SML> contains the header and body parts. As in Fig. 3, the header part of an SML script

is composed of the tagging structures such as ‘entities’ — the entities involved in a scenario, ‘user’ — the

user referenced in a scenario. Fig. 4 shows the body part of an SML script that contains the tagging structure

<Scenario></Scenario> all other tagging structures, in particular ‘director’ — the portion of script that

orchestrates certain behaviors of specified entities, and ‘events’ — generated as an outcome of executing the

scenario, ‘behaviors’ — a set of interesting behaviors for the entities defined above, from a scenario point of view.

We assume that entities will have their autonomous behaviors implemented, will behave accordingly mostly except

the time the behaviors defined in a scenarios are executed. In addition, we implement a set of interface methods to

8

Fig. 2. The structrual diagram that provides an overall structure of an SML script for scenario, two main parts: the head and the body and

their abstract content.

Fig. 3. The structrual diagram that provides an overall structure of the header part of an SML script for scenario

direct or command an entity from a scenario.

2) SML Entity: For the accident scenario, we define two car entities along with their attributes and properties

(see Fig. 5). We identify each entity by its id. The ids of entities are assigned once the candidates are chosen from

the simulation space (e.g., cars that are selected to create an accident). Each entity has a type. Currently, the type

attribute supports ‘Vehicle’, which was sufficient for the scenarios implemented now. It can be extended to other

types of entities (e.g., pedestrian), once they are implemented in the simulation. To define the properties of an

8

9

Fig. 4. The structrual diagramthat provides an overall structure of the body part of an SML script for scenario

entity, we specify an element called Property. Using this tag inside the Entity structure, a script author can define

the information to initialize an entity for a scenario.

An SML script lets a script author freely define the properties for an entity. However he/she has to ensure that

the component responsible for the entity supports the specified properties. In the example script shown in Fig. 5,

we show some example properties that are currently supported for each type of entities used in our simulation. For

a car entity, we define (a) desiredspeed that specifies the desired speed, (b) desiredaccel that specifies the desired

acceleration and, (c) scenarioroleloc that specifies what location the entity has to take initially in the scenario

execution.

Our target environment has to handle multiple users simultaneously. We decided that there has to be at least one

User as the focal point of a scenario, that is, the experimental condition is to be reproduced from the viewpoint of

one specified user. This user is identified as shown in Fig. 6.

3) SML Event: One can define a set of events (e.g., an accident) in a scenario specification to create interesting

experiences for users.The event definition specifies the conditions that decide when the event is triggered, as shown

in Fig. 7. The conditions for triggering events can be based on an interaction of a human participant with an entity,

or the environment, or of entities with others. The conditions can also be based on the changes in the simulation

10

<entity name = "AI Car A" id= "" type = "Vehicle">

<property name = "desiredspeed" value = "40m/s"/>

<property name = "desiredaccel" value = "1.6m/s2"/>

<property name = "scenariorole" value = "Follow_Car"/>

<property name = "scenarioroleloc" value = "ROLE_LOCATION_A"/>

</entity>

<entity name = "AI Car B" id= "" type = "Vehicle" >

<property name = "desiredspeed" value = "30m/s"/>

<property name = "desiredaccel" value = "1.5m/s2"/>

<property name = "scenariorole" value = "Lead_Car"/>

<property name = "scenarioroleloc" value = "ROLE_LOCATION_B"/>

</entity>

<entity name = "VMS" id= "VMS_A" type = "MessageSign" >

<property name = "updatetime" value = "5min"/>

<property name = "location" value = "Intersection_I1"/>

</entity>

Fig. 5. Snippet of an SML script that specifies two car entities and a variable message sign.

<user name = TestUser01">

<property name = "usecarid" value = "U1"/>

<property name = "scenariorole" value = "Reference_User"/>

</user>

Fig. 6. Snippet of an SML script that specifies the reference user.

state, or a timer or the changes that occur in the external applications such as a traffic simulation application.

4) SML Behavior, Perception with its Container, Action, Command: For each behavior (e.g., ManageMessages),

we specify one or more actions (e.g., UpdateMessage) inside each behavior specification as shown in Fig. 8. Each

action specifies a perception container which has a set of perceptions defined in it. A behavioral entity perceives its

environment (e.g., Accident Event) via the perceptions. Each perception is contingent upon an event, which means

that a perception is the minimum unit of event handling from the script perspective. Hence the perception is activated

when the corresponding event is triggered during a simulation. This may lead to the activation of the perception

<event>

<condition>

<var name = "eventid" valueType = "string" value= "Accident_Event_01"/>

<var name = "collider" valueType = "string" value= "AI Car B"/>

<var name = "collidedwith" valueType = "string" value = "AI Car A"/>

<var name = "location" valueType = "vector3" value = "ACCIDENT_LOCATION"/>

</condition>

</event>

Fig. 7. An example SML script that specifies an accident event that occurred in the 3D virtual environment as a result of executing a scenario.

9

9

Fig. 4. The structrual diagramthat provides an overall structure of the body part of an SML script for scenario

entity, we specify an element called Property. Using this tag inside the Entity structure, a script author can define

the information to initialize an entity for a scenario.

An SML script lets a script author freely define the properties for an entity. However he/she has to ensure that

the component responsible for the entity supports the specified properties. In the example script shown in Fig. 5,

we show some example properties that are currently supported for each type of entities used in our simulation. For

a car entity, we define (a) desiredspeed that specifies the desired speed, (b) desiredaccel that specifies the desired

acceleration and, (c) scenarioroleloc that specifies what location the entity has to take initially in the scenario

execution.

Our target environment has to handle multiple users simultaneously. We decided that there has to be at least one

User as the focal point of a scenario, that is, the experimental condition is to be reproduced from the viewpoint of

one specified user. This user is identified as shown in Fig. 6.

3) SML Event: One can define a set of events (e.g., an accident) in a scenario specification to create interesting

experiences for users.The event definition specifies the conditions that decide when the event is triggered, as shown

in Fig. 7. The conditions for triggering events can be based on an interaction of a human participant with an entity,

or the environment, or of entities with others. The conditions can also be based on the changes in the simulation

10

<entity name = "AI Car A" id= "" type = "Vehicle">

<property name = "desiredspeed" value = "40m/s"/>

<property name = "desiredaccel" value = "1.6m/s2"/>

<property name = "scenariorole" value = "Follow_Car"/>

<property name = "scenarioroleloc" value = "ROLE_LOCATION_A"/>

</entity>

<entity name = "AI Car B" id= "" type = "Vehicle" >

<property name = "desiredspeed" value = "30m/s"/>

<property name = "desiredaccel" value = "1.5m/s2"/>

<property name = "scenariorole" value = "Lead_Car"/>

<property name = "scenarioroleloc" value = "ROLE_LOCATION_B"/>

</entity>

<entity name = "VMS" id= "VMS_A" type = "MessageSign" >

<property name = "updatetime" value = "5min"/>

<property name = "location" value = "Intersection_I1"/>

</entity>

Fig. 5. Snippet of an SML script that specifies two car entities and a variable message sign.

<user name = TestUser01">

<property name = "usecarid" value = "U1"/>

<property name = "scenariorole" value = "Reference_User"/>

</user>

Fig. 6. Snippet of an SML script that specifies the reference user.

state, or a timer or the changes that occur in the external applications such as a traffic simulation application.

4) SML Behavior, Perception with its Container, Action, Command: For each behavior (e.g., ManageMessages),

we specify one or more actions (e.g., UpdateMessage) inside each behavior specification as shown in Fig. 8. Each

action specifies a perception container which has a set of perceptions defined in it. A behavioral entity perceives its

environment (e.g., Accident Event) via the perceptions. Each perception is contingent upon an event, which means

that a perception is the minimum unit of event handling from the script perspective. Hence the perception is activated

when the corresponding event is triggered during a simulation. This may lead to the activation of the perception

<event>

<condition>

<var name = "eventid" valueType = "string" value= "Accident_Event_01"/>

<var name = "collider" valueType = "string" value= "AI Car B"/>

<var name = "collidedwith" valueType = "string" value = "AI Car A"/>

<var name = "location" valueType = "vector3" value = "ACCIDENT_LOCATION"/>

</condition>

</event>

Fig. 7. An example SML script that specifies an accident event that occurred in the 3D virtual environment as a result of executing a scenario.

10

11

<behavior ref = "VMS_A" id = "ManageMessages">

<action id = "UpdateMessage">

<perception id = "P3" eventid = "Accident_Event_01"/>

<command id = "Update">

<param name = "Msg" value = "Reduce Speed, Accident Ahead" />

</command>

</action>

</behavior>

Fig. 8. An example SML script that specifies a behavior for an entity.

container the perception belongs to (decision making aspect of an entity). In turn, this leads to the execution of an

entity’s action that the perception container belongs to. Therfore a perception acts as a pre-condition for an action.

An action definition can have a set of commands defined in it. Therefore, a behavioral entity performs an action

by executing the commands specified for that action. A command is the minimum unit of execution from a scenario

and entity perspectives. It carries an instruction or a function call with required parameters for the component that

controls the entity. The parameters used with the commands are passed using call-by-value semantics.

5) SML Director Element: In order to orchestrate the behavior of entities involved in a traffic scenario, we

propose the concept of a supervisor, specified as director in the script. For the director, we specify task elements

which contain information about the actions an entity has to perform. Each task defines a command for actions to

be executed by an entity. Therefore each task refers to a single entity and is executed by the director of a scenario.

A task execution (i.e. sending commands to entities) is performed via the communication interface available for

each entity.

For example, as shown in Fig. 9, we define the director for the scenario script that creates the accident situation.

In this example, we specify two tasks for the director, whereby each task defines a command to be sent to a different

car entity: AI (Artificial Intelligence) Car A and AI Car B.

As shown in Fig. 5, the two car entities involved in the scenario are initialized with a property called ‘scenari-

oroleloc’ that specifies what role the entity has to take initially in the scenario execution. In this example, AI Car

A takes the ‘leading role’ hence its ‘scenarioroleloc’ is specified to be in front of that of AI Car B, which takes the

‘following role’. When these car entities successfully reach their respective ‘scenarioroleloc’, the director executes

its task (‘MoveToTargetLocation’) to create an accident at the specified target location during a simulation run.

This operation sends a command to the component that controls the car entity with the parameters specifying the

12

<director>

<seq>

<task id= "MoveToTargetLocation">

<command>

<param name= "entityid" value = ""/>

<param name= "entityname" value = "AI Car A"/>

<param name= "targetlocation" value = "ACCIDENT_LOCATION"/>

</command>

</task>

<task id= "MoveToTargetLocation">

<command>

<param name= "entityid" value = ""/>

<param name= "entityname" value = "AI Car B"/>

<param name= "targetlocation" value = "ACCIDENT_LOCATION"/>

</command>

</task>

</seq>

</director>

Fig. 9. An example SML script that specifies the supervisor element (director) of the scenario with its tasks required for the accident scenario.

target accident location. The component controlling the car entity tries to execute the command on the respective

car entity so that an accident can be created.

A scenario director can orchestrate the behavior of entities by executing corresponding tasks. This can be done

by using the temporal elements of director, such as seq (sequential), par (parallel) or sel (selective). With the seq

element one can specify that tasks follow immediately one after the other. The par element defines that tasks should

be executed in parallel. The sel element defines that tasks should be executed depending on the condition. These

temporal elements enable SML to provide high-level synchronization of the behavior of entities that result in a

particular traffic situation. For example, as shown in Fig. 9, the task of the director tasks defined in seq temporal

element orchestrates the two car entities’ behaviors’ by issuing necessary commands, so that an accident, e.g., one

in which the following car (AI Car B) hits the leading car (AI Car A), can be created.

Here we wish to note that an empirical evaluation of a scripting tool such as SML is notoriously difficult, as

related approaches are sparse and setting up test cases for comparison is unpractical. So, as preliminary empirical

evidence on SML’s ease-of-use, it was important that our collaborators from the Smart Transport Research Centre

at Queensland University of Technology actually used SML to specify the scenario.

11

11

<behavior ref = "VMS_A" id = "ManageMessages">

<action id = "UpdateMessage">

<perception id = "P3" eventid = "Accident_Event_01"/>

<command id = "Update">

<param name = "Msg" value = "Reduce Speed, Accident Ahead" />

</command>

</action>

</behavior>

Fig. 8. An example SML script that specifies a behavior for an entity.

container the perception belongs to (decision making aspect of an entity). In turn, this leads to the execution of an

entity’s action that the perception container belongs to. Therfore a perception acts as a pre-condition for an action.

An action definition can have a set of commands defined in it. Therefore, a behavioral entity performs an action

by executing the commands specified for that action. A command is the minimum unit of execution from a scenario

and entity perspectives. It carries an instruction or a function call with required parameters for the component that

controls the entity. The parameters used with the commands are passed using call-by-value semantics.

5) SML Director Element: In order to orchestrate the behavior of entities involved in a traffic scenario, we

propose the concept of a supervisor, specified as director in the script. For the director, we specify task elements

which contain information about the actions an entity has to perform. Each task defines a command for actions to

be executed by an entity. Therefore each task refers to a single entity and is executed by the director of a scenario.

A task execution (i.e. sending commands to entities) is performed via the communication interface available for

each entity.

For example, as shown in Fig. 9, we define the director for the scenario script that creates the accident situation.

In this example, we specify two tasks for the director, whereby each task defines a command to be sent to a different

car entity: AI (Artificial Intelligence) Car A and AI Car B.

As shown in Fig. 5, the two car entities involved in the scenario are initialized with a property called ‘scenari-

oroleloc’ that specifies what role the entity has to take initially in the scenario execution. In this example, AI Car

A takes the ‘leading role’ hence its ‘scenarioroleloc’ is specified to be in front of that of AI Car B, which takes the

‘following role’. When these car entities successfully reach their respective ‘scenarioroleloc’, the director executes

its task (‘MoveToTargetLocation’) to create an accident at the specified target location during a simulation run.

This operation sends a command to the component that controls the car entity with the parameters specifying the

12

<director>

<seq>

<task id= "MoveToTargetLocation">

<command>

<param name= "entityid" value = ""/>

<param name= "entityname" value = "AI Car A"/>

<param name= "targetlocation" value = "ACCIDENT_LOCATION"/>

</command>

</task>

<task id= "MoveToTargetLocation">

<command>

<param name= "entityid" value = ""/>

<param name= "entityname" value = "AI Car B"/>

<param name= "targetlocation" value = "ACCIDENT_LOCATION"/>

</command>

</task>

</seq>

</director>

Fig. 9. An example SML script that specifies the supervisor element (director) of the scenario with its tasks required for the accident scenario.

target accident location. The component controlling the car entity tries to execute the command on the respective

car entity so that an accident can be created.

A scenario director can orchestrate the behavior of entities by executing corresponding tasks. This can be done

by using the temporal elements of director, such as seq (sequential), par (parallel) or sel (selective). With the seq

element one can specify that tasks follow immediately one after the other. The par element defines that tasks should

be executed in parallel. The sel element defines that tasks should be executed depending on the condition. These

temporal elements enable SML to provide high-level synchronization of the behavior of entities that result in a

particular traffic situation. For example, as shown in Fig. 9, the task of the director tasks defined in seq temporal

element orchestrates the two car entities’ behaviors’ by issuing necessary commands, so that an accident, e.g., one

in which the following car (AI Car B) hits the leading car (AI Car A), can be created.

Here we wish to note that an empirical evaluation of a scripting tool such as SML is notoriously difficult, as

related approaches are sparse and setting up test cases for comparison is unpractical. So, as preliminary empirical

evidence on SML’s ease-of-use, it was important that our collaborators from the Smart Transport Research Centre

at Queensland University of Technology actually used SML to specify the scenario.

12

13

REFERENCES

[1] J. Kearney, P. Willemsen, S. Donikian, and F. Devillers, “Scenario languages for driving simulation,” in Driving Simulation Conference,

ser. DSC’99, 1999, pp. 377–393. [Online]. Available: http://www.cs.uiowa.edu/∼kearney/pubs/dsc99\ kearney.pdf

[2] Y. Atir and D. Harel, “Using lscs for scenario authoring in tactical simulators,” in Proceedings of the 2007 summer computer simulation

conference, ser. SCSC. San Diego, CA, USA: Society for Computer Simulation International, 2007, pp. 437–442. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1357910.1357979

[3] K. Perlin and A. Goldberg, “Improv: a system for scripting interactive actors in virtual worlds,” in Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, ser. SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 205–216.

[Online]. Available: http://doi.acm.org/10.1145/237170.237258

[4] M. Conway, Alice: Easy-to-learn 3D Scripting for Novices. University of Virginia, 1998. [Online]. Available: http://books.google.co.jp/

books?id=49lrcgAACAAJ

[5] (2012, August) Unrealengine. [Online]. Available: http://www.UnrealEngine.com/

[6] (2012, August) Unrealscript reference. [Online]. Available: http://udn.epicgames.com/Three/UnrealScriptReference.html

[7] (2011, August) Unity3d. [Online]. Available: http://unity3d.com/

[8] P. Willemsen, “Behavior and scenario modeling for real-time virtual environments,” Ph.D. dissertation, Department of Computer Science,

University of Iowa, 2000.

[9] F. Devillers and S. Donikian, “A scenario language to orchestrate virtual world evolution,” in Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, ser. SCA ’03. Aire-la-Ville, Switzerland, Switzerland: Eurographics

Association, 2003, pp. 265–275. [Online]. Available: http://portal.acm.org/citation.cfm?id=846276.846315

[10] W. van Winsum., “Ssl/nsl specification release 1.2,” University of Groningen, TRC, November 1994.

[11] P. van Wolffelaar and W. van Winsum, “Traffic modeling and driving simulation - an integrated approach,” in In Driving Simulation

Conference, ser. DSC’95, 1995, pp. 235–244.

[12] T. R. R.W.Allen and G. Park, “Scenarios produced by procedural methods for driving research, assessment and training applications,” in

In Driving Simulation Conference, 2003, p. Paper No. 621.

[13] G. W. Y. Papelis, O. Ahmad, “Developing scenarios to determine effects of driver performance: Techniques for authoring and lessons

learned,” in In Driving Simulation Conference, North America, 2003.

[14] P. Suresh and R. Mourant, “A tile manager for deploying scenarios in virtual driving environments,” in In Driving Simulation Conference,

North America, 2005, pp. 21–29.

[15] K. Gajananan, A. Nakasone, H. Prendinger, and M. Miska, “Scenario markup language for authoring behavioral driver studies in 3d virtual

worlds,” in Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on, sept. 2011, pp. 43 –46.

[16] D. Fisher, M. Rizzo, J. Caird, and J. Lee, Handbook of Driving Simulation for Engineering, Medicine, and Psychology. Taylor &

Francis, 2010. [Online]. Available: http://books.google.com.au/books?id=lnTA8sT8gkEC

[17] J. Cremer, J. Kearney, and Y. Papelis, “Hcsm: a framework for behavior and scenario control in virtual environments,” ACM Trans.

Model. Comput. Simul., vol. 5, no. 3, pp. 242–267, Jul. 1995. [Online]. Available: http://doi.acm.org/10.1145/217853.217857

[18] V. L. Knoop, S. P. Hoogendoorn, and H. J. van Zuylen, “Capacity Reduction at Incidents: Empirical Data Collected from a Helicopter,”

Transportation Research Record, vol. 2071, pp. 19–25, 2008.

	NII-2013-001E(セキュリティ無）- 1
	NII-2013-001E

