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Abstract. We develop a general convergence theory for the generalized minimal residual method
for least squares problems preconditioned with inner iterations. The inner iterations are performed
by stationary iterative methods. We also present theoretical justifications for using specific inner
iterations such as the Jacobi and SOR-type methods. The theory is improved particularly in the rank-
deficient case. We analyse the spectrum of the preconditioned coefficient matrix, and characterize it
by the spectral radius of the iteration matrix for the inner iterations. The analysis is supported by
numerical experiments.
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1. Introduction. Consider solving least squares problems

min
x∈Rn

‖b−Ax‖2, (1.1)

where A ∈ Rm×n is not necessarily of full rank and b ∈ Rm is not necessarily in
R(A), the range of A. The least squares problem (1.1) is equivalent to the normal
equations

ATAx = ATb. (1.2)

In addition, applying B ∈ Rn×m, we may transform the problem (1.1) to equivalent
problems [6, Theorems 3.1, 3.11].

Theorem 1.1. min
x∈Rn

‖b−Ax‖2 = min
z∈Rm

‖b−ABz‖2 holds for all b ∈ Rm if and

only if R(AB) = R(A).
Theorem 1.2. min

x∈Rn
‖b−Ax‖2 and min

x∈Rn
‖Bb−BAx‖2 are equivalent for all

b ∈ Rm if and only if R(BTBA) = R(A).
Thus, the original problem (1.1) may be reduced to least squares problems with

a square matrix AB or BA. Based on these transformations, the generalized minimal
residual method (GMRES) [12] was extended to deal with least squares problems
(1.1) in [6]. The right- and left-preconditioned GMRES for least squares problems
were called AB- and BA-GMRES, respectively. Sufficient conditions under which
these methods determine a least squares solution without breakdown for arbitrary b
for overdetermined, underdetermined, and rank-deficient problems, were shown.

In [9], these methods were preconditioned with several iterations of stationary
iterative methods such as variants of the Jacobi overrelaxation (JOR) and successive
overrelaxation (SOR) methods, which may be considered as inner iterations. The
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Cimmino-NE and Cimmino-NR methods are mathematically equivalent to JOR ap-
plied to AATu = b with x = ATu and ATAx = ATb, respectively. The normal-error
(NE-)SOR and normal-residual (NR-)SOR methods are mathematically equivalent to
SOR applied to AATu = b with x = ATu and ATAx = ATb, respectively [9], [11],
[1].

Krylov subspace methods preconditioned with inner iterations for solving linear
systems of equations were described in [9] and references therein.

We assumed that A should be of full-column rank for the convergence theory for
BA-GMRES with the Cimmino-NR and NR-SOR inner iterations in [9], but numerical
experiments in [9] showed that these methods actually converge also for rank-deficient
problems. In this paper, we give theoretical justifications for the convergence also in
the rank-deficient case.

The outline of the paper is as follows. In Section 2, we introduce AB- and BA-
GMRES, give their new convergence theory, and analyse the spectrum of the precon-
ditioned matrix. In Section 3, we give a framework of inner-iteration preconditioning
for these methods, and main results on sufficient conditions in terms of the inner
iterations for the convergence. In Section 4, we analyse the spectrum of the the pre-
conditioned matrix with inner iterations. In Section 5, we give the main conclusions
of this paper.

Throughout this paper, we use bold letters for column vectors. ej denotes the jth
column of an identity matrix. We denote quantities related to the kth inner iteration
with a superscript with brackets, e.g., x(k), and for outer iterations with a subscript
without brackets, e.g., xk. (a, b) denotes the inner product aTb between real vectors
a and b.

2. GMRES methods for least squares problems. We first give an ex-
planation about AB-GMRES and BA-GMRES. AB-GMRES applies GMRES to
min

u∈Rm
‖b − ABu‖2 with x = Bu, whereas BA-GMRES applies GMRES to

min
x∈Rn

‖Bb−BAx‖2.
Concerning the convergence of AB-GMRES and BA-GMRES, we have the fol-

lowing [6, Corollaries 3.8, 3.19].

Theorem 2.1. If R(BT) = R(A) and R(B) = R(AT), then AB-GMRES deter-
mines a least squares solution of min

x∈Rn
‖b−Ax‖2 for all b ∈ Rm and all x0 ∈ Rn

without breakdown.

Here we say AB-GMRES breaks down at some step k if dimAB(Kk(AB, r0)) <
dimKk(AB, r0) or dimKk(AB, r0) < k, where

Kk(AB, r0) = span{r0, ABr0, . . . , (AB)k−1r0}

is the Krylov subspace of dimension k [2]. The breakdown causes a division by 0 in
the algorithm.

Theorem 2.2. If R(BT) = R(A) and R(B) = R(AT), then BA-GMRES deter-
mines a least squares solution of min

x∈Rn
‖b−Ax‖2 for all b ∈ Rm and all x0 ∈ Rn

without breakdown.

We say BA-GMRES breaks down at some step k if dimBA(Kk(BA,Br0)) <
dimKk(BA,Br0) or dimKk(BA,Br0) < k [2].

Note that R(B) = R(AT) gives R(AB) = R(A) (cf. Theorem 1.1), and R(BT) =
R(A) gives R(BTBA) = R(A) (cf. Theorem 1.2).
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On the other hand, the convergence of the standard GMRES method for least
squares problems min

x̃∈RN
‖b̃ − Ãx̃‖2 with Ã ∈ RN×N , is given as follows [5, Theorem

2.8].

Theorem 2.3. GMRES determines a solution of min
x̃∈RN

‖b̃ − Ãx̃‖2 for all b̃ ∈
R(Ã), x̃0 ∈ RN if and only if R(Ã) ∩N (Ã) = {0}.

Here, N (Ã) is the null space of Ã and x̃0 is the initial approximate solution for
GMRES. Applying this theorem to the case of AB- and BA-GMRES, we obtain the
following.

Theorem 2.4. Suppose that R(B) = R(AT). Then, AB-GMRES determines a
solution of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ R(A) and x0 ∈ Rn if and

only if R(A) ∩ N (B) = {0}.
Proof. Substitute AB, u, and b into Ã, x̃, and b̃, respectively, in Theorem

2.3. R(B) = R(AT) gives R(AB) = R(AAT) = R(A) and N (AB) = R(BTAT)⊥ =
R(BTB)⊥ = R(BT)⊥ = N (B), where S⊥ is the orthogonal complement of a subspace
S. Theorem 1.1 completes the proof.

We remark that this theorem is restricted to the consistent case b ∈ R(A).

A similar theorem holds for BA-GMRES.

Theorem 2.5. Suppose that R(BT) = R(A). Then, BA-GMRES determines a
solution of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ Rm and x0 ∈ Rn if and

only if N (A) ∩R(B) = {0}.
Proof. Substitute BA, x, and Bb into Ã, x̃, and b̃, respectively, in Theorem 2.3.

R(BT) = R(A) gives N (BA) = R(ATBT)⊥ = R(ATA)⊥ = R(AT)⊥ = N (A) and
R(BA) = R(BBT) = R(B). Hence, “for all Bb ∈ R(BA) = R(B)” is equivalent to
“for all b ∈ Rm”. Therefore, Theorem 1.2 completes the proof.

In contrast to BA-GMRES, the condition b ∈ R(AB) = R(A) is required for
AB-GMRES since the preconditioned system min

u∈Rm
‖b − ABu‖2 is inconsistent for

b �∈ R(AB).

Since the BA-GMRES algorithm will be treated in Section 3, it is given in the
following. For the AB-GMRES algorithm, see [6].

Algorithm 2.6. BA-GMRES method.

1. Let x0 be the initial approximate solution.
2. r0 = b−Ax0, r̃0 = Br0, β = ‖r̃0‖2, v1 = r̃0/β
3. For k = 1, 2, . . . until convergence, Do
4. wk = BAvk

5. For i = 1, 2, . . . , k, Do
6. hi,k = (wk,vi), wk = wk − hi,kvi

7. EndDo
8. hk+1,k = ‖wk‖2, vk+1 = wk/hk+1,k

9. EndDo
10. yk = arg min

y∈Rk
‖βe1 − H̄ky‖2, xk = x0 + [v1,v2, . . . ,vk]yk

Here, H̄k = {hi,j} ∈ R(k+1)×k.

2.1. Spectrum of the preconditioned matrix. We describe how BA-
GMRES depends on the spectrum of the preconditioned matrix. Assume R(BT) =
R(A). Then, Bb ∈ R (BA) = R(B) holds, and min

x∈Rn
‖Bb − BAx‖2 is equivalent to

BAx = Bb. Let r = rank A, Q1 ∈ Rn×r such that R(Q1) = R(BA), Q2 ∈ Rn×(n−r)
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such that R(Q2) = R(BA)⊥, and Q = [Q1, Q2], where the columns of Q are or-
thonormal. Then, GMRES applied to BAx = Bb is equivalent to GMRES applied
to [

A11 A12

0 0

] [
x1

x2

]
=

[
b1

b2

]
,

where A11 = Q1
T(BA)Q1 ∈ Rr×r, A12 = Q1

T(BA)Q2 ∈ Rr×(n−r), x1 = Q1
Tx,

x2 = Q2
Tx, b1 = Q1

TBb, and b2 = Q2
TBb = 0 since Bb ∈ R(BA). As shown

in [5], if x0 ∈ R(BA) = R(B), then the R(BA) component of GMRES applied to
BAx = Bb, is equivalent to GMRES applied to A11x

1 = b1. On the other hand, in
the R(BA)⊥ component, x2

k = x2
0 for all iterates xk.

Now, note the following.
Theorem 2.7. A11 is nonsingular if and only if R(BA) ∩N (BA).
Proof. See [5, Theorem 2.3].
Theorem 2.8. Assume R(BA) ∩ N (BA). Then, λ �= 0 is an eigenvalue of BA

if and only if λ �= 0 is an eigenvalue of A11.
Proof. Let Q = [Q1, Q2] ∈ Rn×n be as given above. Then,

BAu = λu, u �= 0 ⇐⇒ QT(BA)QQTu = λQTu, u �= 0

⇐⇒
[
A11 A12

0 0

] [
u1

u2

]
=

[
u1

u2

]
, u =

[
u1

u2

]
�= 0

⇐⇒
{
A11u

1 +A12u
2 = λu1,

0 = λu2,
u =

[
u1

u2

]
�= 0.

Hence, if λ �= 0 is an eigenvalue of BA, then we have u2 = 0, A11u
1 = λu1, and

u1 �= 0 so that λ �= 0 is an eigenvalue of A11. On the other hand, if λ �= 0 is an
eigenvalue of A11, then by setting u2 = 0, we can show that λ �= 0 is an eigenvalue of
BA.

Assume R(BA) ∩ N (BA) = {0}, equivalently R(B) ∩ N (A) = {0}. Then, A11

is nonsingular, and its eigenvalues are all nonzero and correspond to the nonzero
eigenvalues of BA. Therefore, the convergence behavior of GMRES applied to BAx =
Bb may be explained by the (nonzero) eigenvalues of A11 (or BA).

3. BA-GMRES preconditioned by stationary iterative methods as in-
ner iterations. Instead of applying B explicitly as in Algorithm 2.6, consider using
inner iterations as follows [9].

Algorithm 3.1. BA-GMRES method with the inner-iteration preconditioning.
1. Let x0 be the initial approximate solution.
2. r0 = b−Ax0

3. Apply � steps of a stationary iterative method to ATAz = ATr0 to obtain

z
(�)
0 = B(�)r0.

4. β = ‖z(�)
0 ‖2, v1 = z

(�)
0 /β

5. For k = 1, 2, . . . until convergence, Do
6. uk = Avk

7. Apply � steps of a stationary iterative method to ATAy = ATuk to obtain

z
(�)
k = B(�)uk.

8. For i = 1, 2, . . . , k, Do

9. hi,k = (z
(�)
k ,vi), z

(�)
k = z

(�)
k − hi,kvi
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10. EndDo

11. hk+1,k = ‖z(�)
k ‖2, vk+1 = z

(�)
k /hk+1,k

12. EndDo
13. yk = arg min

y∈Rk
‖βe1 − H̄ky‖2, xk = x0 + [v1,v2, . . . ,vk]yk

Here, B(�) denotes the preconditioning matrix for � inner iterations.
Similarly we can obtain AB-GMRES with stationary inner iterations.
In lines 3 and 7 in Algorithm 3.1, stationary iterative methods are applied to

the normal equations. We now introduce a stationary iterative method for the nor-
mal equations ATAz = ATc. Consider the splitting ATA = M − N , where M is
nonsingular. Then, consider a class of iterative methods of the form

z(�) = M−1Nz(�−1) +M−1ATc.

Let H = M−1N = I − M−1ATA be the iteration matrix. In practice, there is no
need to form ATA, M−1, and N explicitly, as will be seen in the Cimmino-NR and
NR-SOR methods [11] in Section 3.1.

Here, we define the following, e.g., [8].
Definition 3.2. A matrix C is called semi-convergent if lim

i→∞
Ci exists.

Hensel [7], Oldenburger [10], and Tanabe [13] showed the following.
Theorem 3.3. The following are equivalent.
1. C is semi-convergent.
2. For any eigenvalue λ of C, either

(a) |λ| < 1 or
(b) λ = 1 and index(I − C) = 1
holds.

Here, index(C) denotes the smallest nonnegative integer i such that R(Ci) =
R(Ci+1). Thus, index(C) is equal to the size of the largest Jordan block corresponding
to the zero eigenvalue of C.

3.1. Convergence theory. We first give an explicit expression for the precon-
ditioned matrix B(�)A for BA-GMRES with � inner iterations. Assume that the initial
approximate solution for the inner iteration is z(0) = 0. Then, the �th iterate for the
inner iteration is

z(�) = Hz(�−1) +M−1ATc =
�−1∑
j=0

HjM−1ATc. (3.1)

Hence, if we define the preconditioning matrix by

B(�) =
�−1∑
j=0

HjM−1AT, (3.2)

we have z(�) = B(�)c. Let C(�) =
�−1∑
j=0

HjM−1. Then, B(�) = C(�)AT. Hence, the

preconditioned matrix is expressed as B(�)A = C(�)ATA.
We obtain the following.
Lemma 3.4. Let A ∈ Rm×n, ATA = M − N , where M is nonsingular, H =

M−1N , and B(�) be given by (3.2). Assume that H is semi-convergent. Then,
index(B(�)A) ≤ 1 for all � ≥ 1.
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Proof. Let J = S−1(I −H)S be the Jordan canonical form of (I −H). Assume
that H is semi-convergent. Then, from Theorem 3.3, index(I −H) = index(J) ≤ 1.
Without loss of generality, we denote J as follows:

J =

[
J̃

Js

]
∈ Cn×n, J̃ = diag (J1, J2, . . . , Js−1) ∈ Cr×r, Js = 0n−r, (3.3)

Ji = diag
(
Ji1 , Ji2 , . . . , Jisi

) ∈ Cni×ni (i = 1, 2, . . . , s− 1),
s−1∑
i=1

ni = r, (3.4)

Jij =

⎡
⎢⎢⎢⎢⎢⎣
λi 1

λi 1
. . .

0

0
. . .

1
λi

⎤
⎥⎥⎥⎥⎥⎦ ∈ Cnij

×nij ,

si∑
j=1

nij = ni, (3.5)

where r = rank A, 0n−r is the zero matrix of size n− r, J̃ has no eigenvalues equal to
zero, s is the number of distinct eigenvalues of I −H, and λi is a nonzero eigenvalue
of I −H. Since J̃ is nonsingular,

B(�)A = S
�−1∑
j=0

(I − J)jJS−1 = S

[
Ir −

(
Ir − J̃

)�

0

0 0n−r

]
S−1.

Since λi = 1− ν(H), where ν(H) is an eigenvalue of H and |ν(H)| < 1, |1−λi| =
|ν(H)| < 1. The eigenvalue of Ir− (Ir− J̃)� has the form μi = 1− (1−λi)

�. If μi = 0,
then (1−λi)

� = 1, which contradicts |1−λi| < 1. Hence, Ir− (Ir− J̃)� is nonsingular.
Therefore, index(B(�)A) ≤ 1 for all � ≥ 1.

Lemma 3.5. Using the notations and the assumption of Lemma 3.4,

R
(
B(�)T

)
= R(A) holds for all � ≥ 1.

Proof. If C(�) is nonsingular, then R
(
B(�)T

)
= R

(
AC(�)T

)
= R(A). Hence, we

show that C(�) is nonsingular
Assume that H is semi-convergent. Then, we have

C(�) =

�−1∑
j=0

(I − SJS−1)jM−1 = S

[
J̃−1

[
Ir − (Ir − J̃)�

]
0

0 �In−r

]
S−1M−1.

As in Lemma 3.4, Ir − (Ir − J̃)� is nonsingular. Hence, C(�) is nonsingular for all

� ≥ 1. Therefore, we have R
(
B(�)T

)
= R(A) for all � ≥ 1.

Hence, we obtain the main result.
Theorem 3.6. Assume that H is semi-convergent. Then, BA-GMRES with the

inner-iteration preconditioning of the form (3.1) determines a least squares solution
of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ Rm and all x0 ∈ Rn.

Proof. Assume that H is semi-convergent. Then, from Lemma 3.4, we have
index(B(�)A) ≤ 1, or equivalently R(B(�)A) ∩ N (B(�)A) = {0}. Moreover, since

R
(
B(�)T

)
= R(A) from Lemma 3.5, we have R(B(�)A) = R

(
B(�)B(�)T

)
= R(B(�))

and N (B(�)A) = R
(
ATB(�)T

)⊥
= R (

ATA
)⊥

= R(AT)⊥ = N (A). Hence, Theorem

2.5 completes the proof.
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We remark that this theorem holds whether A is of full rank or rank-deficient, and
whether A is overdetermined or underdetermined, i.e., unconditionally with respect
to A. As for the convergence of AB-GMRES with inner iterations, it follows from
Theorem 2.4 that a similar convergence theorem holds, which may be shown via
lemmas similar to Lemmas 3.4 and 3.5.

Now, we consider applying Theorem 3.6 for BA-GMRES preconditioned with spe-
cific inner-iteration methods as follows. The inner-iteration preconditioning matrices
for Cimmino-NR, NR-SOR, and NR-SSOR [9] are respectively obtained from (3.2) by
setting

M =

⎧⎪⎨
⎪⎩
ωD : Cimmino-NR,
1
ω (D + ωL) : NR-SOR,

ω−1(2− ω)−1(D + ωL)D−1(D + ωLT) : NR-SSOR,

where ATA = L + D + LT , L is a strictly lower triangular matrix, D is a diagonal
matrix, and ω is the relaxation parameter. The following are the algorithms for these
methods for inner iterations.

Algorithm 3.7. Cimmino-NR method.
1. Let z(0) = 0 and r(0) = c.
2. For k = 0, 1, . . . , �, Do

3. d(k) = D−1ATr(k)

4. z(k+1) = z(k) + ωd(k)

5. r(k+1) = r(k) − ωAd(k)

6. EndDo

Algorithm 3.8. NR-SOR method.
1. Let z(0) = 0 and r = c.
2. For k = 0, 1, . . . , �, Do
3. For j = 1, 2, . . . , n, Do

4. d
(k)
j = (r,aj)/‖aj‖22

5. z
(k+1)
j = z

(k)
j + ωd

(k)
j

6. r = r − ωd
(k)
j aj

7. EndDo
8. EndDo

Algorithm 3.9. NR-SSOR method.
1. Let z(0) = 0 and r = c.
2. For k = 0, 1, . . . , �, Do
3. For j = 1, 2, . . . , n, Do

4. d
(k)
j = (r,aj)/‖aj‖22

5. z
(k+ 1

2 )
j = z

(k)
j + ωd

(k)
j

6. r = r − ωd
(k)
j aj

7. EndDo
8. For j = n, n− 1, . . . , 1, Do

9. d
(k+ 1

2 )
j = (r,aj)/‖aj‖22

10. z
(k+1)
j = z

(k+ 1
2 )

j + ωd
(k+ 1

2 )
j

11. r = r − ωd
(k+ 1

2 )
j aj

12. EndDo
13. EndDo

Here, aj is the jth column of A.
According to Dax [4], the iteration matrix H for
• Cimmino-NR with 0 < ω < 2/ρ(D−1/2ATAD−1/2)
• NR-SOR with 0 < ω < 2,
• NR-SSOR with 0 < ω < 2,

is semi-convergent, where ρ(C) is the spectral radius of C. Here, we assume A has
no zero columns. Hence, from Theorem 3.6, these methods can serve as the inner
iterations for BA-GMRES.

Theorem 3.10. Assume that the relaxation parameter for Cimmino-NR satisfies
0 < ω < 2/ρ(D−1/2ATAD−1/2). Then, BA-GMRES with the Cimmino-NR inner-
iteration preconditioning determines a solution of min

x∈Rn
‖b−Ax‖2 without breakdown

for all b ∈ Rm and all x0 ∈ Rn.
Theorem 3.11. Assume that the relaxation parameter for NR-SOR satisfies

0 < ω < 2. Then, BA-GMRES with the NR-SOR inner-iteration preconditioning
determines a solution of min

x∈Rn
‖b − Ax‖2 without breakdown for all b ∈ Rm and all
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x0 ∈ Rn.
Theorem 3.12. Assume that the relaxation parameter for NR-SSOR satisfies

0 < ω < 2. Then, BA-GMRES with the NR-SSOR inner-iteration preconditioning
determines a solution of min

x∈Rn
‖b − Ax‖2 without breakdown for all b ∈ Rm and all

x0 ∈ Rn.
We omit similar convergence theorems and their proofs for AB-GMRES precon-

ditioned with the Cimmino-NE, NE-SOR, and NE-SSOR inner iterations [9].

4. Spectrum of the preconditioned matrix with inner iterations. Next,
we analyse the spectrum of the preconditioned matrix for BA-GMRES with � inner
iterations. The preconditioned matrix may be expressed as B(�)A = I −H�.

Let ν be an eigenvalue of H. Then, there exists v �= 0 such that Hv = νv or(
I −H�

)
v = (1− ν�)v. Hence, B(�)A has an eigenvalue μ = 1− ν�.

Assume that H is semi-convergent. Let r = rank A. Then, from Theorem 3.3, H
has r eigenvalues such that |ν| < 1 and n− r eigenvalues such that ν = 1. For ν = 1,
we have μ = 0. For |ν| < 1, we obtain

|μ− 1| = |ν|� ≤ ρ(H)� < 1.

This means that r eigenvalues of B(�)A lie inside the circle of radius ρ(H)� with
center at 1, and these eigenvalues approaches 1 as � increases. The remaining n − r
eigenvalues are zero.

We demonstrate the above observation for a test matrix called Maragal 3 [3] of
size 1,690×860 with 18,391 nonzero elements (nonzero density 1.27 %), and rank 613.
Figure 4.1 shows the spectrum of the preconditioned matrix B(�)A with the NR-SOR
inner iterations for � = 1, 2, 4, and 8. The relaxation parameter was set to ω = 1.
The computations were done using Matlab 2011b. As the number of inner iterations
� increased, the eigenvalues of B(�)A approached 1.

From the discussion in Section 2.1, we see that if H is semi-convergent, then
‖B(�)r‖2 depends on the eigenvalues of H not equal to 1, but not on the eigenvalues
equal to 1.

5. Conclusions. We considered applying inner-iteration preconditioning to
GMRES methods for least squares problems and gave a general convergence the-
ory for the methods. Theoretical justifications for the convergence were given also for
specific inner-iteration methods like NR-SOR. We have reinforced the previous theory
particularly for the rank-deficient case. The spectrum of the preconditioned matrix
was analysed and characterized using the spectral radius of the iteration matrix for
the inner iterations. Numerical experiments were done to examine the analysis.
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Fig. 4.1. Spectrum of the preconditioned matrix B(�)A with NR-SOR inner iterations for
Maragal 3. Upper left: � = 1, right upper: � = 2, left lower: � = 4, right lower: � = 8.
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