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Abstract. In daily life, if we lack information for making a decision, we often consider
multiple possibilities. However, if we are given an underdetermined inverse problem,
we often add mathematically convenient constraints and consider only one of many
possible solutions even though it may be beneficial for the application to consider
multiple solutions. We propose an algorithm for simultaneously finding multiple
solutions of an underdetermined inverse problem that are suitably distributed, guided
by a priori information on which part of the solution manifold is of interest. Through
numerical experiments, we show that our algorithm is a fast, accurate and robust
solution method, especially applicable to ODE coefficient identification problems. We
give an example of applying this algorithm to a parameter identification problem in
pharmacokinetics.
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1. Introduction

Since the information we can obtain clinically from a live patient going through

treatment is often much less than the complexity of the internal activity in a patient’s

body, underdetermined inverse problems appear often in the field of mathematical

medicine.

In fact, our interest in the underdetermined inverse problem was initiated by the

parameter identification problem of a pharmacokinetics model for the anti-cancer drug

CPT-11 (also known as Irinotecan). Konagaya has proposed a framework called “virtual

patient population convergence” [9], whose essential idea is to estimate the parameters

of the whole body pharmacokinetics model based on the clinically observed data from

patients. The essential difference of this framework from other parameter identification

approaches is that instead of finding a single set of parameters that is suitable for

the pharmacokinetics model to reproduce the clinically observed data, its aim is to

find multiple sets of such parameters. The reason for finding these multiple sets of

parameters is to take into account multiple relevant possibilities of the drug kinetics in

the patient’s body.

For underdetermined inverse problems, it is customary to add extra constraints

to make the solution unique (e.g., the solution closest to some initial point). If only

one of many solutions is considered, it is often hard to conclude if the characteristics

of that solution are representative of the other solutions or if they are a consequence

of the choice of the extra constraints. Hence we wish to sample many solutions from

the solution manifold of the underdetermined inverse problem. However, for a problem

as complicated as a pharmacokinetics model aiming to model the whole body drug

kinetics, even to find one set of model parameters that fits a clinical observation can be

time consuming. Thus, trying to find multiple sets of model parameters one set by one

set can take computational time that is unreaslistic for practical use.

Motivated by this problem, we have constructed an algorithm to simultaneously

find multiple solutions of an underdetermined inverse problem, in a new way that is

significantly more robust and efficient than solving many separate inverse problems

with different initial iterates. Our iterative scheme starts with a set (cluster) of initial

points and by computing the forward problem at each point and fitting a hyperplane

to the solution values in the sense of least squares, we obtain a linear approximation

of the function that corresponds to the forward problem. This linear approximation

aims to approximate the function in the broad domain covered by the cluster of initial

points. Then by using this linear approximation, we estimate the solution of the inverse

problem and move the cluster of points accordingly. By repeating this iteratively, the

cluster of points becomes stationary and the points are close to being solutions of the

inverse problem. In a next step, if the desired accuracy has not been met, we use

Broyden’s method to improve the accuracy by moving each point individually using

different approximated Jacobians and achieve the desired accuracy. Throughout this

paper, we shall refer to this method we have constructed as the Cluster Newton method
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(CN method).

Through numerical experiments, we found that the Cluster Newton method requires

far less function evaluations than applying the Levenberg-Marquardt method multiple

times for various initial iterates. The Cluster Newton method is similar to Newton’s

method in the sense that it iteratively improves the approximation by approximating the

forward problem by a linear function and solves the inverse of the linear approximation.

Aside from moving a cluster of points instead of a single point, the Cluster Newton

method differs from the traditional Newton’s method in the sense that instead of

approximating the Jacobian locally, we estimate it more globally in the domain

covered by the cluster of points. The global approximation of the Jacobian acts as a

regularization and we observed that the Cluster Newton algorithm is robust against local

optima caused by small-scale “roughness” of the function (e.g., caused by the inaccuracy

of solving the forward problem), compared to a method like Levenberg-Marquardt. Such

roughness appears in the coefficient identification problem of a system of ODEs when

the ODE is solved numerically.

1.1. Motivation for finding multiple solutions of the underdetermined inverse problem

Our motivation to find multiple solutions instead of a single solution of the

underdetermined inverse problem came from the parameter identification problem of

Arikuma et al.’s pharmacokinetics model for the anti-cancer drug CPT-11 [1]. Figure 1

shows the concentrations of CPT-11 and SN-38 (a metabolite of CPT-11) in blood

simulated by the pharmacokinetics model using a set of model parameters found by

the Levenberg-Marquardt method based on clinically measured data. The Levenberg-

Marquardt method iteratively finds a solution of the underdetermined inverse problem

near the initial iterate. We have chosen the initial iterate as the typical values of the

model parameters listed in Arikuma et al. [1]. From Figure 1, we observe that the peak

concentration happens at time t = 1.5 (we denote this time as Tmax) for both CPT-11

and SN-38. Also, observe that the peak concentration is around 1.3 µmol/L for CPT-11

and 0.08 µmol/L for SN-38 (We denote peak concentrations by Cmax.)

In order to investigate further whether these obtained values are specific to the

choice of the initial iterate or similar for most of the solutions of this underdetermined

inverse problem, we obtain multiple solutions (multiple sets of model parameters) using

the Levenberg-Marquardt method with multiple different initial iterates. Figure 2 shows

the concentrations of CPT-11 and SN-38 in blood simulated by the pharmacokinetics

model using 1,000 sets of model parameters found by the Levenberg-Marquardt method

with 1,000 different initial iterates.

We observe from Figure 2 that only the observation that Tmax = 1.5 for CPT-11

seems independent of the choice of the initial iterate and may be a common feature

among the solutions in the solution manifold of this underdetermined inverse problem.

Other values (e.g., Cmax for both CPT-11 and SN-38 and Tmax for SN-38) are heavily

dependent on the choice of initial iterate. That is to say, these values cannot be
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(a) Concentration of the anti-cancer drug
CPT-11.
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(b) Concentration of the metabolite SN-38.

Figure 1. Drug and Metabolite concentration simulation based on a single set of
model parameters found by the Levenberg-Marquardt Method.

determined due to the underdetermined nature of the inverse problem. Although these

values cannot be determined precisely, information on the range of Cmax and Tmax as

obtained from the multiple solutions shown in Figure 2 is still of significant value in the

context of the application problem.

Although it is only realistic in the clinical experiment setting and not necessarily

reliable (e.g., 16 blood samples are required from a patient in a day), the values of Cmax

and Tmax can be measured. Slatter et al. have obtained for 8 patients that Cmax for

CPT-11 is on average 2.26 µmol/L (with standard deviation of 0.21), Cmax of SN-38 is

on average 0.04 µmol/L (with standard deviation of 0.017), Tmax of CPT-11 is 1.5 hours

(with zero standard deviation) and Tmax of SN-38 is on average 2.3 hours (with standard

deviation of 1.0). All of the measured values except Tmax of CPT-11 are different from

what can be predicted from the single solution of Figure 1. However, Table 1 shows

that these measured values for a small set of patients are within the range of the values

of Cmax and Tmax obtained by solving for multiple solutions of the underdetermined

inverse problem as shown in Figure 2. While the numbers in Table 1 indicate that

the pharmacokinetics model is not perfect yet, this example does show that obtaining

multiple solutions of the underdetermined inverse problem is useful for determining the

general characteristics of the solutions in the solution manifold of the underdetermined

inverse problem.

The MATLAB implementation of the Levenberg-Marquardt method we used took

3.3 minutes to compute a single set of model parameters used to plot Figure 1 using

one core of an Intel Xeon X7350 3GHz processor. It took about 7 hours with a server

machine with two quad-core Intel Xeon X7350 3GHz processors to find the 1,000 model

parameters used to produce Figure 2. We wish to develop an algorithm so that we can

find such sets of parameters with significantly less computational cost.
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Table 1. Summary of Cmax and Tmax predicted from Figures 1 and 2, and clinically
measured values.

Predicted value Range Measured value
from Figure 1 from Figure 2 in [11] (ave ± sd)

Cmax of CPT-11 (µmol/L) 1.3 1.0∼2.5 2.26 ±0.21
Cmax of SN-38 (µmol/L) 0.08 0.02∼0.23 0.04 ± 0.017
Tmax of CPT-11 (hours) 1.5 1.5 1.5 ± 0
Tmax of SN-38 (hours) 1.5 1.5∼6 2.3 ± 1.0
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(b) Concentration of the metabolite SN-38.

Figure 2. 1,000 model parameter sets found by multiple application of the Levenberg-
Marquardt Method.

1.2. Statement of the Problem

In this paper, we consider the following underdetermined inverse problem, (see Appendix

A for an explanation of the matrix and vector notation used in this paper):

Find x such that

f(x) = y∗ , (1)

where y∗ is a given constant vector in Rn, f is a vector function from X ⊂ Rm to Rn

with m > n, and the solution of (1) is not unique. We assume this inverse problem has

the following properties:

• The evaluation of f (solving the forward problem) is computationally expensive.

Thus, we would like to minimize the number of function evaluations.

• The Jacobian of f is not explicitly known.

We now denote a subset X ∗
ε of X to be the set containing all the values of X which

approximately satisfy (1) with maximum norm relative residual less than ε, i.e.,

X ∗
ε := {x ∈ X ⊂ Rm : max

i=1,...,n
| (fi(x) − y∗

i ) /y∗
i | < ε} . (2)

We note that in most cases X ∗
ε is an infinite set and often is an unbounded set. We are

only interested in a part of this set X ∗
ε , namely the part that is relevant in the context
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of the problem, and corresponds to a range of reasonable physiological parameters. We

assume that we know the following regarding the relevant values of x ∈ X :

• a typical value of x is known (we denote this value as x̂)

• the typical relative range v (in the sense defined in (3) below) of the value x is

known.

So we roughly know that the solutions we are interested in are somewhere near a “box”

X 0 defined as follows:

X 0 := {x ∈ X ⊂ Rm : max
i=1,...,n

| (xi − x̂i) /(x̂i vi)| < 1} . (3)

We seek solutions that are close to this initial box X 0. We now state the problem of

interest mathematically: find a set of l column vectors {x·j}l
j=1 so that

x·j ∈ X ∗
ε and ||x·j − x

(0)
·j ||2 ≈ min

x∈X ∗
ε

||x − x
(0)
·j ||2 (4)

for j = 1, 2, ..., l, where x
(0)
·j is a randomly chosen point in the box X 0.

2. Simple model problem (Example 1)

Before we attempt to solve the parameter identification problem of the pharmacokinetics

model, we will explain our algorithm by a simple example that is easy to visualize.

2.1. Model problem description

Our model problem is as follows: find a set of l points in R2 near a box X 0, such that

f(x) = y∗ , (5)

where

f(x) = (x2
1 + x2

2) + sin(10000x1) · sin(10000x2)/100 , (6)

y∗ = 100 , (7)

X 0 = {x ∈ R2 : max
i=1,2

| (xi − 2.5) /2.5| < 1} . (8)

The function is basically a paraboloid with a small-amplitude wildly oscillatory

perturbation. As depicted in Figure 3, the solution manifold of this inverse problem

X ∗ is approximately a circle of radius 10 centred at the origin in the x1-x2 plane.

Thus, we aim to find the points on this curve X ∗ near the box X 0. The perturbation

mimics ‘roughness’ that can be found in many realistic high-dimensional applications.

For example, as we will illustrate in the following section, when the forward problem

involves numerical solution of a system of ODEs, a similar kind of ‘roughness’ can be

observed for the function. The initial box X 0 may signify some a priori knowledge about

where physically relevant solutions are expected. We choose l = 100 in the numerical

examples below.
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Figure 3. Example 1: the function f and the solution manifold X ∗ (in the first
quadrant).
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(b) Final Points obtained by the
Levenberg-Marquardt method.

Figure 4. Example 1: an attempt with the Levenberg-Marquardt method.

2.2. Levenberg-Marquardt Method

We first discuss how the well-known Levenberg-Marquardt method (see e.g. [2])

performs when applied to this problem. We create l random points in X 0 and then

apply the Levenberg-Marquardt method using each random point as an initial point.

We have used the Levenberg-Marquardt implementation in the MATLAB optimization

toolbox (version 2010b) for our numerical experiment. We observe that the algorithm

terminates with the error “Algorithm appears to be converging to a point that is not a

root” for all initial points we tried. As can be seen in Figure 4, we fail to find points

close to the solution manifold X ∗.
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2.3. Cluster Newton (CN) Method

We now introduce our algorithm, which finds multiple points on the level curve and at

the same time avoids the local optima created by the wildly oscillatory perturbation term

of the function f(x). Our algorithm described in detail below first approximates the

function f(x1, x2) linearly by a least squares fitting of a plane to (x, f(x)) for multiple

points x in R2. Least squares fitting of a plane, instead of local gradient approximation

in each point, acts as a regularization and helps to avoid convergence to the local optima

created by the oscillatory perturbation. Then, using this linear approximation, we can

obtain the next cluster of points. We can iteratively apply this scheme until the cluster

of points becomes stationary. This constitutes the first stage of our algorithm. In a

second stage, if these iterations do not achieve the desired accuracy, we use Broyden’s

method to improve the accuracy. The convergence of Broyden’s method is fast and

reliable when we use the cluster of points found by the first stage as initial points.

Also, by using the slope of the linear approximation obtained from the first stage of the

algorithm as the initial guess of the gradient, we avoid the need for approximating the

gradient locally.

2.3.1. Algorithm: Cluster Newton method We present the algorithm we have developed

to simultaneously find multiple solutions of underdetermined inverse problems, applied

to the problem from Section 2.1. We first give a simplified version of the newly proposed

Cluster Newton method for this simple model problem and give a complete description

of the full algorithm in a later section. To understand the first stage of the algorithm

visually, we suggest the reader to refer to Figure 5 while reading the following description

of the algorithm.

Stage 1

1: Set up the initial points and the target values.

1-1: Randomly choose initial points {x(0)
·j }l

j=1 in the box X 0. We put the initial

points in a 2 × l matrix X(0), where each column corresponds to a point x
(0)
·j

in R2.

1-2: In order to maintain well-posedness of the least squares problem in step 2-2

below, generate randomly perturbed target values {y∗
j}l

j=1 near y∗. We choose

each value y∗
j so that∣∣∣∣y∗

j − y∗

y∗

∣∣∣∣ < η . (9)

For our numerical experiments we choose η = 0.1. That is to say, the target

relative residual for Stage 1 is ±10%.

Let

y∗ = (y∗
1, y

∗
2, ..., y

∗
l ). (10)

2: For k = 0, 1, 2, ..., K1
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2-1: Evaluate f for each point in X(k):

y(k) = f(X(k)) , (11)

that is

y
(k)
j = f(x

(k)
·j ) for j = 1, 2, ..., l (12)

y(k) = (y
(k)
1 , y

(k)
2 , ..., y

(k)
l ) (13)

X(k) = [x
(k)
·1 ,x

(k)
·2 , ..., x

(k)
·l ] (14)

2-2: Construct a linear approximation of f by fitting a plane

a(k)Tx + y(k)
o , (15)

to the points

{(x(k)
·j , y

(k)
j )}l

j=1, (16)

that is to say find a vector a(k) and a scalar value y
(k)
o such that,

f(x) ≈ a(k)Tx + y(k)
o . (17)

The slope vector a(k) and the shift constant y
(k)
o can be found as a least squares

solution of an overdetermined system of linear equations:

min
a(k)∈R2 , y

(k)
o ∈R

||y(k) − ((a(k)TX(k))T + yo
(k))||2 , (18)

where

yo
(k) = (y(k)

o , y(k)
o , ..., y

(k)
0 ) ∈ R1×l . (19)

2-3: Find an update vector s
(k)
·j for each point x

(k)
·j using a linear approximation,

i.e., find s
(k)
·j s.t.

y∗
j = a(k)T(x

(k)
·j + s

(k)
·j ) + yo

(k) for j = 1, 2, ..., l . (20)

The vectors x
(k)
·j + s

(k)
·j satisfying (20) can be viewed as the projection of the

intersection of planes y = y∗
j and y = a(k)Tx + yo

(k) on to the x1-x2 plane,

which is a line. Thus, we cannot uniquely determine s
(k)
·j . Hence, we choose

the shortest vector s
(k)
·j . The vectors {s(k)

·j }l
j=1 written as a matrix S(k) are the

minimum norm solution of the underdetermined system of linear equations:

min
S(k)∈R2×l

||S(k)||F s.t. y∗ = (a(k)T(X(k) + S(k)))T + yo
(k) .

(21)

2-4: Find new points approximating the solution manifold X ∗ by updating X(k),

i.e.,

X(k+1) = X(k) + S(k) . (22)

(20) and (22) give y∗
j = a(k)Tx

(k+1)
·j + yo

(k). Hence, if {y∗
j}l

j=1 are chosen to

be the same for all j, then vectors {x(k+1)
·j }l

j=1 all lie on one line and the least

squares problem (18) becomes rank-deficient. However, as the values {y∗
j}l

j=1

were chosen randomly around y∗, we maintain (18) to be full-rank so that

we can obtain a linear approximation at the next iteration in Equation (18)

without complications.
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End for.

Stage 2: Broyden’s method

3: Set up the initial gradient approximation using the slope vector obtained in the last

iteration of Stage 1 as follows:

g
(K1+1)
(j) = a(K1) for j = 1, 2, ..., l . (23)

4: For k = K1 + 1, ..., K2

4-1: Solve the forward problem for each point in X(k), i.e.,

y(k) = f(X(k)) . (24)

4-2: If k 6= K1+1 then update the gradient for each point using Broyden’s method

as follows (cf. [7]):

g
(k)
(j) = g

(k−1)
(j) + (y

(k)
j − y∗)

s
(k−1)
·j

||s(k−1)
·j ||2

for j = 1, 2, ..., l. (25)

4-3: Find the update vectors s
(k)
·j for all points in X(k) using the approximate

gradient, i.e., find s
(k)
·j given by the minimum norm solution of an

underdetermined system of linear equations:

min
s
(k)
·j ∈R2

||s(k)
·j ||2 s.t. y∗ − y

(k)
j = g

(k)T
(j) s

(k)
·j (26)

for j = 1, 2, ..., l.

4-4: Update the points approximating the solution manifold X ∗:

X(k+1) = X(k) + S(k) . (27)

End for.

2.3.2. A few notes on the algorithm The fundamental differences between Stage 1 and

Stage 2 is that in Stage 1 we use one linear approximation for all the points; however, in

Stage 2 each point has its own gradient approximation. Also note that both Stage 1 and

Stage 2 only require one function evaluation per point per iteration. For simplicity in

presenting our algorithm, we have fixed the number of iterations for each of the stages

(K1 and K2). However, one can easily modify the implementation so that the iteration

stops once a desired accuracy has been achieved.

2.3.3. Pictorial description of the solutions found by the Cluster Newton method We

choose K1 = 5 and K2 = 24 in the numerical results shown here. As depicted in

Figure 6(i), the multiple points found by our algorithm trace part of the solution curve

accurately. As can be seen in Figure 6(a), we start with an initial cluster of points

uniformly distributed in the domain bounded by x1 = 0, x1 = 5 and x2 = 0, x2 = 5.

Figures 6(a)-6(f) show that Stage 1 of the Cluster Newton method moves the points

roughly close to the solution manifold X ∗. Once the algorithm moves onto Stage 2

when k = 6, we see that the points quickly line up with the solution curve as they were

already near the solution owing to Stage 1 of our scheme. Recall from Figure 4 that the

Levenberg-Marquardt method was not able to find solutions.
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(a) Line 2-1: Evaluate f at each point in X(0) to
generate Y (0).

(b) Line 2-2: Construct a linear approximation y =
a(0)Tx + y

(0)
o .

(c) Line 2-3: Find the update vector s·j . (d) Line 2-4: Find new cluster of points X(1) that
approximate X ∗.

(e) Line 2-1: Evaluate f at each point in X(1) to
generate Y (1).

(f) Line 2-2,...,2-4: Obtain X(2)

Figure 5. Example 1: Pictorial description of Stage 1 of the Cluster Newton method.
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Figure 6. Example 1: Plots of the points in X(k). X(0) to X(5) correspond to Stage 1,
and X(6) to X(8) to Stage 2.
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(b) Accuracy of the final set X(24) after
2500 total function evaluations.

Figure 7. Example 1: Speed and Accuracy of the Cluster Newton method.

2.3.4. Speed and accuracy of the Cluster Newton method In Figure 7(a), the relative

residuals are plotted against the number of iterations. For Example 1, we define the

relative residual to be the following:

r
(k)
j =

|y(k)
j − y∗|

y∗ =
|y(k)

j − 100|
100

. (28)

As can be seen in Figure 7(a), the residual reduces rapidly.

In Figure 7(b), the number of points in the final set X(24) whose relative residuals

are less than a relative residual tolerance ε is plotted. The graph shows that more than

90% of the points in the final set have relative residuals less than 10−10.

Thus we have shown that the Cluster Newton method can find multiple accurate

solutions of an underdetermined inverse problem. The method is highly efficient because

of the collective operator fitting in Stage 1, and it also acts as a regularization against

the small ‘roughness’ of the function. Hence this method is robust.

3. Pharmacokinetics ODE Coefficient Identification Problem (Example 2)

We now introduce the original problem that led us to construct the Cluster Newton

algorithm for simultaneously finding multiple solutions of an underdetermined inverse

problem. This inverse problem can be categorized as a coefficient identification problem

of a system of ordinary differential equations. We use the system of ODEs modelling

the metabolic and transportation processes of the anti-cancer drug CPT-11 and its

metabolites developed by Arikuma et al. [1]. By solving this system of ODEs with fixed

parameters, we simulate the amount of CPT-11 and its metabolites excreted in urine

and bile. The amount of these chemical compounds in urine and bile can be measured

clinically for individual patients (cf. Slatter et al. [11] and de Jong et al. [4]). The set

of model parameters (we denote them as x1, x2, ..., x60) represents a biological state of a

patient (e.g., amounts of enzymes, blood flow rates) that cannot be measured directly.
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Table 2. The amount of drug and its metabolite in excreta in units [nmol/kg]
calculated from published data of Slatter et al. [11].

Patient 1
CPT-11 in Urine y∗

1 859.0
SN-38 in Urine y∗

2 35.5
SN-38G in Urine y∗

3 473.9
NPC in Urine y∗

4 3.55
APC in Urine y∗

5 305.0
CPT-11 in Bile + Faeces y∗

6 975.4
SN-38 in Bile + Faeces y∗

7 127.1
SN-38G in Bile + Faeces y∗

8 105.4
NPC in Bile + Faeces y∗

9 24.5
APC in Bile + Faeces y∗

10 219.4
total dosage

∑10
i=1 y∗

i 3946

By solving this inverse problem, we aim to find multiple possible biological states

of a patient that are consistent with the clinical observations.

3.1. Inverse Problem: Parameter identification of a Pharmacokinetics Model

Using Arikuma et al.’s PBPK model (see Appendix B), we have a function that maps

the parameters of the PBPK model to the quantities of CPT-11 and its metabolites

excreted in urine and bile (faeces). We shall refer to a set of quantities of excreted

CPT-11 and its metabolites as an excretion profile. In order to create the mathematical

model, we wish to identify these model parameters using clinically measured excretion

profiles. As there are 60 model parameters and 10 clinically measurable excretion profile

quantities, we have an underdetermined inverse problem.

We note that the model parameters appear as coefficients of the system of

ODEs. Also note that solving the forward problem involves solving a system of ODEs

numerically and is computationally expensive.

3.1.1. Clinically measured excretion profile by Slatter et al. [11] Although it would be

ideal to use raw clinical data, due to a limitation of resources, we used the clinical data

published by Slatter et al. [11]. Based on their data, we calculated the excretion profile

of two patients as shown in Table 2. The published data by de Jong et al. [4] lacks the

information of the patient’s weight so that we could not calculate the excretion profile for

this data. Without loss of generality, for our numerical experiments, we use the clinically

measured data of patient 1 as the target for the output of the pharmacokinetics model:

the goal is to determine multiple sets of parameter values that are consistent with the

excretion profile of Patient 1.

3.1.2. Typical value and variability of the model parameters x1, x2, ..., x60 We use the

typical values of the model parameters derived through literature search and educated
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estimates by Arikuma et al. [1] and denote them as x̂1, ..., x̂60. These values are re-

tabulated in Tables B1-B5 in Appendix B.

We choose the variability to be ±50% for the kinetic parameters (Tables B1-B3),

±30% for the physiological parameters (Table B4) and ±5% for the drug administration

parameters (Table B5), i.e.,

vi =


0.5 for i = 1, 2, ..., 50

0.3 for i = 51, 52, ..., 58

0.05 for i = 59, 60.

(29)

The variability of the kinetic parameters was chosen guided by the fact that the

inter-subject variability of these values is usually less than ±50% as shown in [3, 5, 6, 12].

The variability of the physiological parameters was motivated by [13]. The variability

of the drug administration parameters is chosen to be small since it is only influenced

by the experimental precision of the drug administration procedure.

3.1.3. Statement of the inverse problem We now state the PBPK model parameter

identification problem as follows: find a set of l points in X ⊂ R60 near a box X 0, such

that

f(x) = y∗ , (30)

where

f : X ⊂ R60 → R10 a function that maps the model parameters

to the excretion profile, as defined in Appendix B , (31)

y∗ : clinically measured data from patient 1 as in Table 2 , (32)

X = {x ∈ R60 : xi > 0 and
58∑

i=55

xi < 1000} , (33)

X 0 = {x ∈ R60 : max
i=1,2,...,60

| (xi − x̂i) /(x̂ivi)| < 1} . (34)

We note that evaluating function value f(x) involves numerically solving the system

of ODEs, hence the function cannot be evaluated exactly. The computational cost of

computing the forward problem with various discretization accuracy is tabulated in

Table B6.

3.2. Levenberg-Marquardt Method

We first create random points in X 0 and then apply the Levenberg-Marquardt method

using each point as an initial point. We do this computation in parallel as each run of

the Levenberg-Marquardt method is parallel to each other. Due to the limitation of the

Matlab Parallel Computing Toolbox we utilize at most 8 cores. A visual representation

of 1,000 randomly chosen points in X 0 is given in Figure 8. A red × indicates the centre

of a set of points (average of normalized parameters). We have used the implementation
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Figure 8. Initial set of points in X 0.
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Figure 9. Final set of points found by the Levenberg-Marquardt method.

in the MATLAB optimization toolbox (version 2010b) to find the root of the following

function in our numerical experiment:

f̃(x̃) =

{
(diag(y∗))−1f(diag(x̂)x̃) − 1 if (diag(x̂)x̃) ∈ X
105 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T otherwise

, (35)

where x̃ is a normalized model parameter. Note that we used the normalization by

diag(y∗) because it improved convergence. The way to enforce solutions in the domain

of the function f in (35) turns out to work satisfactorily.

3.2.1. Visual representation of the solution found by the Levenberg-Marquardt method

Figure 9 visually represents the final set of points found by the Levenberg-Marquardt

method after 469,439 function evaluations at the error tolerance of 10−9 (i.e., we set the

error tolerance to be RelTol= δODE, AbsTol= δODE for MATLAB ODE solver ODE15s,

when solving the system of ODEs with δODE = 10−9). Note that this small tolerance

is required for the Levenerg-Marquardt method to converge, while the Cluster Newton

method converges with larger tolerance, see below.
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3.2.2. Speed and accuracy of the Levenberg-Marquardt method In Figure 10(a), the

relative residual was plotted against the number of iterations. For Example 2, we define

the relative residual to be the following:

r
(k)
j (x) = max

i=1,2,...,10

∣∣∣∣∣y
(k)
ij − y∗

i

y∗
i

∣∣∣∣∣ , (36)

where y
(k)
·j = f(x

(k)
·j ) with δODE = 10−11. As can be seen in Figure 10(a), it takes on

average seven iterations to find solutions accurate up to the accuracy of the function

evaluation (δODE). We note that as the Jacobian of the function is not explicitly

given, the MATLAB implementation of the Levenverg- Marquardt method estimates

the Jacobian by finite differences. Hence, at each iteration, the function is evaluated

at least 61 times. In each function evaluation, we solve the system of ODEs to high

accuracy. Thus, this method can be computationally very expensive (e.g., to obtain the

solution presented in Figure 10(b), about 8 hours of computation is used on a server

machine with two quad-core Intel Xeon X7350 3GHz processors).

In Figure 10(b), the number of points in the final set obtained by the Levenberg-

Marquardt method (after 469,439 function evaluations) whose relative residual is less

than the relative residual tolerance ε is plotted. As can be seen in Figure 10(b), about

95% of the points achieve a relative residual less than 10−6 and about 65% of the points

achieve a relative residual less than 10−8.

As stated in Section 1.1, we confirm that we can obtain 1,000 different model

parameter sets of interest through multiple application of the Levenberg-Marquardt

method. However, it requires accurate function evaluation tolerances δODE and also a

large number of function evaluations per iteration. Thus, multiple applications of the

Levenberg-Marquardt method to obtain multiple model parameters is computationally

very expensive.

3.2.3. Influence of the accuracy of the function evaluation to the convergence of the

Levenberg-Marquardt method In Figure 11, we have plotted the median relative residual

against the number of iterations with different accuracy of the function evaluation. As

can be seen from Figure 11, the function needs to be evaluated accurately in order

for the Levenberg-Marquardt method to find the solutions with small relative residual.

Numerical experiments show that an accuracy of function evaluations of at least 10−9

is required for the MATLAB implementation of the Levenberg-Marquard method to

stably find the solution.

3.3. Cluster Newton Method

We now show that our Cluster Newton method is a much more computationally efficient

way to find multiple solutions of the underdetermined inverse problem than multiple

applications of the Levenberg-Marquardt method. The computational efficiency of

the Cluster Newton method is due to the following characteristics: robustness against
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(b) Accuracy of the final set of points after
469,439 function evaluations at the error
tolerance of 10−9.

Figure 10. Speed and accuracy of the Levenberg-Marquardt method applied to
Example 2.
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Figure 11. Influence of the accuracy of the function evaluation (δODE) on the
Levenberg-Marquardt method.

‘roughness’ (numerical error) in the function evaluation, and less number of required

function evaluations per iteration. These characteristics follow from the collective way

in which the points are updated and linear approximations are computed in Stage 1 of

the Cluster Newton method.

3.3.1. Algorithm: Cluster Newton method There are three major differences between

Example 1 and 2 and we need to modify the algorithm accordingly. These major

differences are as follows:

• The function f is a vector function, i.e., f(x) ∈ R10.

• The domain X of function f is not the entire R60.

• The magnitude of the parameters to be identified differs significantly, i.e., the typical

values of the model parameters varies in order from 10−1 to 103.
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Extension of the algorithm presented in Section 2.3.1 to a vector function is

straightforward. Also, we can simply modify lines 2-4 and 4-4 of this algorithm to

adjust the step-size so that the points remain in the domain X . Lastly, by scaling the

matrix S when the minimum norm solutions of the underdetermined systems of linear

equations are solved in lines 2-3 and 4-3, we can address the issues originating from the

differences in magnitude of the parameters. The resulting algorithm is as follows:

Stage 1

1: Set up the initial points and the target values.

1-1: Randomly choose initial points {x·j}l
j=1 in the box X 0. The initial points are

stored in a 60 × l matrix X(0) where each column corresponds to a point x·j

in R60.

1-2: Generate randomly perturbed target values {y∗
·j}l

j=1 (to maintain well-

posedness of step 2-2) near y∗. We choose each value y∗
·j so that

max
i=1,2,...,10

∣∣∣∣y∗
ij − y∗

i

y∗
i

∣∣∣∣ < η , (37)

with η = 0.1 meaning that the target accuracy for Stage 1 is ±10%. We put

these vectors in a matrix Y ∗ where column j corresponds to y∗
·j.

2: For k = 0, 1, 2, ..., K1

2-1: Solve the forward problem for each point in (column vector of) X(k), i.e.,

Y (k) = f(X(k)) , (38)

where each column of Y (k) corresponds to the solution of the function f at

each column of X(k).

2-2: Construct a linear approximation of f , i.e.,

f(x) ≈ A(k)x + y(k)
o , (39)

by fitting a hyperplane to Y (k). The slope matrix A(k) and the shift constant

y
(k)
o can be found as a least squares solution of an over-determined system of

linear equations:

min
A(k)∈R10×60 , y

(k)
o ∈R10

||Y (k) − (A(k)X(k) + Y (k)
o )||F , (40)

where Y
(k)
o is a 10 × l matrix whose columns are all y

(k)
o .

2-3: Find the update vectors s·j for all cloumns of X(k) using the linear

approximation, i.e., find s·j s.t.,

y∗
·j = A(k)(x

(k)
·j + s

(k)
·j ) + yo

(k) for j = 1, 2, ..., l . (41)

As can be seen from the fact that matrix A is a rectangular matrix with more

columns than rows, this is an underdetermined system of linear equations.

Hence we cannot uniquely determine s
(k)
·j that satisfies Equation (41). Among

all the solutions of Equation (41), we choose the vector s
(k)
·j with the shortest

scaled length as follows. The vectors {s(k)
·j }l

j=1 written as a matrix S(k) are the

minimum norm solution of an underdetermined system of linear equations:

min
S(k)∈R60×l

||(diag(x̂))−1S(k)||F (42)
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s.t. Y ∗ = (A(k)(X(k) + S(k)) + Y (k)
o ) . (43)

Here, x̂ = (x̂1, x̂2, ..., x̂60). We note that we have scaled Equation (42) as the

order of magnitudes of the values in vector s
(k)
·j are different.

2-4: Find new points approximating the solution manifold X ∗ by updating X(k).

If necessary, we shrink the length of the vector s
(k)
·j until the point (x

(k)
·j +s

(k)
·j )

is in the domain of the function f , i.e.,

For j = 1, 2, ..., l

While (x
(k)
·j + s

(k)
·j ) /∈ X

s
(k)
·j =

1

2
s

(k)
·j (44)

End while

End for

X(k+1) = X(k) + S(k) . (45)

End for.

Stage 2: Broyden’s method

3: Set up the initial Jacobian approximation:

J
(K1+1)
(j) = A(K1) for j = 1, 2, ..., l . (46)

4: For k = K1 + 1, ..., K2

4-1: Solve the forward problem for each column of X(k), i.e.,

Y (k) = f(X(k)) . (47)

4-2: If k 6= K1+1 then update the Jacobian for each point using Broyden’s method

as follows:

J
(k)
(j) = J

(k−1)
(j) + (y

(k)
·j − y∗)

(s
(k−1)
·j )T

||s(k−1)
·j ||2

for j = 1, 2, ..., 1000.

(48)

4-3: Find the search direction vectors s
(k)
·j for each point in X(k) using the

approximated Jacobian, i.e., find s
(k)
·j given as the minimum norm solution

of an underdetermined linear system:

min
s
(k)
·j ∈R60

||(diag(x̂))−1s
(k)
·j ||2 (49)

s.t. y∗ − y
(k)
·j = J

(k)
(j) s

(k)
·j (50)

for j = 1, 2, ..., l.

4-4: Find new points approximating the solution manifold X ∗ by updating X(k),

i.e.,

For j = 1, 2, ..., l

While (x
(k)
·j + s

(k)
·j ) /∈ X

s
(k)
·j =

1

2
s

(k)
·j (51)

End while
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Figure 12. Example 2: Set of points X(30) found by the Cluster Newton method.

End for

X(k+1) = X(k) + S(k) . (52)

End for.

Note that the function evaluations at each point in lines 2-1 and 4-1 are independent

of each other. Hence, these lines can be implemented embarrassingly in parallel. Since

most of the computational cost is spent on computing the function in these two lines,

the computation time required by the Cluster Newton method is almost inversely

proportional to the number of CPU cores that we can utilize.

3.3.2. Visual representation of the solution found by the Cluster Newton method In

the numerical result presented here, we choose l = 1,000, K1 = 10 and K2 = 29.

Figure 12 visually represents the final set of points found by the Cluster Newton method

after 30,000 function evaluations with the error tolerance of 10−9 (i.e., we set the error

tolerance to be RelTol= δODE, AbsTol= δODE with δODE = 10−9 for MATLAB ODE

solver ODE15s, when solving the system of ODEs).

3.3.3. Speed and accuracy of the Cluster Newton method In Figure 13(a), the relative

residual calculated as in Equation (36) is plotted against the number of iterations. As

can be seen in Figure 13(a), 30 iterations are sufficient to find the solution accurate up to

the accuracy of the function evaluation. We note that the Cluster Newton method only

requires one function evaluation per point per iteration, thus, to get the final solution,

only 30,000 function evaluations are necessary (recall that the Levenberg-Marquardt

method required 469,439 function evaluations).

In Figure 13(b), the number of points in the final set obtained by the Cluster

Newton method whose relative residuals are less than the relative residual tolerance ε is

plotted. As can be seen in Figure 13(b), almost all the points achieve relative residual

less than 10−6 and about 75% of the points achieve relative residual less than 10−8.
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(b) Accuracy of the final set of points after
30,000 function evaluations at the error
tolerance of 10−9.

Figure 13. Example 2: Speed and accuracy of the Cluster Newton method.

As the Cluster Newton method only requires one function evaluation per point per

iteration, we can obtain the solution presented in Figure 13(b) in about 30 minutes on

a server machine with two quad-core of Intel Xeon X7350 3GHz processors, which is a

factor of 16 faster than the Levenberg-Marquardt method.

3.3.4. Influence of the accuracy of the function evaluations on the convergence of

the Cluster Newton method In Figure 14, we have plotted the median of the relative

residuals against the number of iterations with different accuracy of function evaluation.

As can be seen from Figure 14, the Cluster Newton method finds the solutions with

accuracy close to the accuracy of the function evaluation for all the function evaluation

accuracies. Thus, we observe that the Cluster Newton method is robust against small

errors in the function evaluation caused by the discretization of the system of ODEs.

This characteristic is especially advantageous if the desired accuracy for the solution is

not very high so that we can reduce the accuracy of the numerical solution of the ODEs

to save computational cost. In this way the Cluster Newton method can for example

obtain 1,000 solutions with relative accuracy of 10−3 within 4.7 minutes which is 100

times faster than the Levenberg-Marquardt method.

3.4. Comparison between the Levenberg-Marquardt method and the Cluster Newton

method

We now compare the Levenberg-Marquardt method and the Cluster Newton method.

We first show that the Cluster Newton method finds solutions similar to what the

Levenberg-Marquardt method finds by solving the inverse problem with multiple initial

points. Then we compare the time it takes to compute each set of solutions.
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Figure 14. Influence of the accuracy of the function evaluation to the Cluster Newton
method.
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Figure 15. Average and standard deviation of the set of points found by the
Levenberg-Marquardt method and the Cluster Newton method.

3.4.1. Solutions found by the Levenberg-Marquardt method and the Cluster Newton

method In Figure 15, we have plotted the average and the standard deviation of the

points found by the Levenberg-Marquardt method and the Cluster Newton method. The

average values correspond to the location of the centre of mass of the set of these points.

The standard deviation can be interpreted as the size of the point set. As can be seen in

Figure 15, the difference between the set of points found by the Levenberg-Marquardt

method and the Cluster Newton method is marginal.

3.4.2. Computational cost of the Levenberg-Marquardt method and the Cluster Newton

method for finding multiple solutions of an underdetermined problem In Figure 16, we

have plotted the relative residual versus the computational time. We have conducted

this numerical experiment on a server machine with two quad-core Intel Xeon X7350

3GHz processors with fully-parallelized code using the MATLAB parallel computing

toolbox for both methods.
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Figure 16. Comparison of computational cost between the Levenberg-Marquardt
method and the Cluster Newton method.

In order for the Cluster Newton method to take advantage of the robustness against

the numerical error of the function evaluation, we have implemented the Cluster Newton

method so that the error tolerance of the function evaluation is initially set to 10−3

and then increases as the number of iterations increases. The Levenberg-Marquardt

method requires 61 times more function evaluations per iteration in order to estimate

the Jacobian by finite differences, and the function evaluation tolerance has to be less

than 10−9 in order for the method to converge. Thus the computational time required

by the Levenberg-Marquardt method is significantly more than for the Cluster Newton

method when finding multiple solutions of the underdetermined inverse problem.

This difference in computational time becomes prominent if the desired accuracy of

the solution is not very high. For example, if one only requires to find solutions whose

relative residual is around 10−3, then the Cluster Newton method takes only about 5

minutes to find 1,000 sets of solutions. However, the MATLAB implementation of the

Levenberg-Marquardt method requires over 7 hours in order to find a similar set of

solutions.

4. Conclusion

We have introduced a new idea of sampling multiple points from the solution manifold

of an underdetermined inverse problem for problems for which multiple solutions

are of interest. We have also proposed a new computationally efficient, easy to

parallelize, robust algorithm for simultaneously finding these multiple solutions of

an underdetermined inverse problem. Our algorithm was applied to a coefficient

identification problem of a system of non-linear ODEs modelling the drug kinetics of an

anti-cancer drug, and we demonstrated that it efficiently traces the part of the solution

manifold of our interest. Multiple solutions are of interest in this application because

they give representative samples of the possible biological states of a patient which

according to the model, reproduces the observed data. This information about the

patient can potentially be used, for example, to assess or design treatment plans.
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Figure 17. 1,000 model parameter sets found by the Cluster Newton method.

By our algorithm, 1,000 sets of model parameters can be estimated with relative

accuracy 10−3 from clinically observed data in half an hour using a four-years-old

laptop computer (MacBook Pro with 2.33 GHz Intel Core2Duo processor with 4 GB of

RAM; the Cluster Newton method is implemented in MATLAB 2010b with the Parallel

Computing Toolbox). Figure 17 shows the predicted concentration of CPT-11 and

SN-38 in blood calculated using the model parameters found by the Cluster Newton

method. Detailed comparison verifies that this solution and the solution obtained

through multiple applications of the Levenberg-Marquardt method (cf. Figure 2), after

8 hours of computation using a server machine, are very similar.

We recognize that there are many ways to further accelerate our algorithm. For

example, we can choose the number of Stage 1 iterations based on the residual, or can

use more sophisticated step-size selection algorithms.

Similarly to what has been done for the inverse problem of the drug kinetics model,

we expect that applying our algorithm to other underdetermined inverse problems will

efficiently provide useful information, and will also lead to new insights about the

applicability of our algorithm.
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Appendix A. Matrix Notation

In general, we use a capital letter for a matrix, a bold lowercase letter for a vector and

a lower case letter for a scalar quantity. Also, we introduce the following matrix related

notations:

y : column vector, (A.1)

yi : ith component of column vector boldsymboly, (A.2)

xi j : element of matrix X in column i and row j, (A.3)

x·j : jth column of matrix X as a column vector, (A.4)

diag(y) : a diagonal matrix whose ith column, ith row entry is yi, (A.5)

||X||F : Frobenius norm of a matrix X. (A.6)

Appendix B. Forward problem of Example 2

Appendix B.1. Forward Problem: Physiologically Based Pharmacokinetics Model

We here briefly describe the physiologically based pharmacokinetics (PBPK) model of

the intravenous (i.v.) drip infusion of CPT-11 (also known as Irinotecan). We use the

PBPK model developed by Arikuma et al. [1] to model the concentration u1(t), ..., u25(t)

of CPT-11 and its metabolites (SN-38, SN-38G, NPC and APC) in each compartment of

the body (Blood, Adipose, Gastrointestinal tract (denote as GI), Liver and everything-

else (denoted as NET)). Each chemical compound in the compartment is connected by

pathways, l1, ..., l55, representing the inflow and outflow of chemical compounds. By

noting that the change in concentration is due to the flow of the chemical compounds,

we can construct a system of first order ordinary differential equations (ODEs) of the

concentrations denoted by ui(t) as a function of time t.

As the information presented in Arikuma et al. [1] is not sufficient to construct the

ODE model, for the sake of reproducibility of our results, we here present enough details

to construct a system of ODEs that models the drug kinetics of CPT-11. We shall refer

the reader to [1] for biological justification and verification of this PBPK model.

Appendix B.1.1. Mathematical model of the pathways Arikuma et al. have modelled

the pathways (labeled as l1, ..., l55 in Figure B1) of the PBPK model as listed below.

There are four kinds of pathways: i.v. drip pathways, blood flow pathways, metabolic

pathways, and excretion pathways. Each quantitatively describes the flow rate of the

drug, with units of [nmol/min]. There are 60 parameters associated with these pathways

and these parameters are labelled as x1, ..., x60 and listed in Tables B1-B5 with typical

values. The goal of this inverse problem will be to determine better estimates of these

parameters than the typical values listed in the tables, based on clinically observed data.
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Figure B1. Schematic Diagram of the PBPK model.

Table B1. Kinetic parameters related to blood flow transportation of the drugs, where
PBR is the protein binding ratio.

Tissue-Blood Distribution Ratio PBR
Organ Adipose GI Liver NET

Compound Label i = 1 i = 6 i = 11 i = 16 i = 21
CPT-11 x̂i 10.00 1.00 1.00 3.00 0.37
SN-38 x̂i+1 2.00 1.00 1.00 0.70 0.05
SN-38G x̂i+2 2.80 1.00 1.00 0.08 1.00
NPC x̂i+3 6.00 1.00 1.00 2.00 0.37
APC x̂i+4 1.50 1.00 1.00 0.06 0.37
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Table B2. Kinetic parameters related to the clearances.

Urinary Clearance Biliary Clearance
Unit [mL/min/kg] [mL/min/kg]

Compound Label i = 26 i = 31
CPT-11 x̂i 6.15 10.6
SN-38 x̂i+1 9.91 103
SN-38G x̂i+2 1.44 2.03
NPC x̂i+3 1.49 14.5
APC x̂i+4 1.47 5.45

Table B3. Kinetic parameters related to the Michaelis-Menten kinetics equation,
where the units of Km, Vmax and α are [nmol/mL], [nmol/min/mgprotein] and
[mgprotein/gtissue], respectively.

Km Vmax α

Enzyme Substrate Product Label i = 36 i = 41 i = 46
Carboxylesterase CPT-11 SN-38 x̂i 2.30 0.00211 128
Carboxylesterase NPC SN-38 x̂i+1 2.30 0.00211 128
CYP3A4 CPT-11 APC x̂i+2 18.4 0.0260 73.3
CYP3A4 CPT-11 NPC x̂i+3 48.2 0.0741 11.7
UGT1A1 SN-38 SN-38G x̂i+4 3.80 0.0508 750

Table B4. Physiological parameters obtained from Willmann et al. [13].

Blood flow rate Volume
Unit [mL/min/kg] [mL/kg]
Organ Label Typical Value Label Typical Value
Blood - - x̂55 51.0
Adipose x̂51 4.45 1000 − (x55 + x56 + x57 + x58)
GI x̂52 13.4 x̂56 32.1
Liver x̂53 5.79 x̂57 32.3
NET x̂54 37.4 x̂58 681

Table B5. Drug administration parameters.

Parameters Unit Label Value
Dosing amount [nmol/kg] x̂59 4860
Drip feed duration [min] x̂60 90

The i.v. drip feed into blood is expressed by the following step function:

l0 =

{
x59/x60 for 0 < t < x60

0 otherwise
. (B.1)

The drug transportation by the blood flow pathways are modelled using the fact that

the amount of drug flowing out of the compartment is proportional to the concentration

of the drug in the compartment, with the parameters xi used to model the constants of
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proportionality. This can be written as follows:

li =



x51/xi · ui+5(t) for i = 1, ..., 5 ,

x51 · ui−5(t) for i = 6, ..., 10 ,

(x52 + x53)/xi · ui+5(t) for i = 11, ..., 15 ,

x53 · ui−15(t) for i = 16, ..., 20 ,

x52 · ui−20(t) for i = 21, ..., 25 ,

x54/xi−10 · ui−5(t) for i = 26, ..., 30 ,

x54 · ui−30(t) for i = 31, ..., 35 ,

x52/xi−30 · ui−25(t) for i = 36, ..., 40 ,

(B.2)

where u1(t), ..., u25(t) are the concentrations of CPT-11 and its metabolites in the

compartments, as labelled in Figure B1. The drug transformation by the metabolic

pathways are modelled using the Michaelis-Menten kinetics equation as follows:

li =



(x41 · x46 · x57)/(
x36·x11

x21·u16(t)
+ 1) for i = 41 ,

(x44 · x49 · x57)/(
x39·x11

x21·u16(t)
+ 1) for i = 42 ,

(x43 · x48 · x57)/(
x38·x11

x21·u16(t)
+ 1) for i = 43 ,

(x45 · x50 · x57)/(
x40·x12

x22·u17(t)
+ 1) for i = 44 ,

(x42 · x47 · x57)/(
x37·x14

x24·u19(t)
+ 1) for i = 45 .

(B.3)

The drug elimination by the excretion pathway is modelled using the fact that the

amount of drug flowing out of the compartment is proportional to the concentration of

the drug in the compartment. This can be written as

li =

{
xi−20 · xi−25 · ui−45(t) for i = 46, ..., 50 ,

(xi−20 · xi−30)/xi−40 · ui−35(t) for i = 51, ..., 55 .
(B.4)

These pathways are assembled together to form the system of ODEs, as we discuss next.

Appendix B.1.2. Mathematical model of the concentrations Let u1(t), ..., u25(t) be the

concentrations of CPT-11 and its metabolites in the compartments, as labelled in

Figure B1, with the unit of [µmol/L]. As the change of the concentration dui

dt
is due

to the flow in/out of the drug via pathways, we can construct the following system of

ODEs to model the concentrations ui(t):

d

dt
u5(j−1)+k =

 ∑
i∈N5(j−1)+k

li(x1, ..., x60, u1, ..., u25; t)

 /Vj

−

 ∑
i∈M5(j−1)+k

li(x1,2,...,60, u1,2,...,25; t)

 /Vj ,

(B.5)

where

j = 1, ..., 5 : compartments

(Blood, Adipose, GI, Liver, NET),
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k = 1, ..., 5 : drug and its metabolites

(CPT-11, SN-38, SN-38G, NPC, APC),

and

t : time in minutes,

Ni : index set of the inflow pathways of ui as listed in Equations (B.11),

Mi : index set of the outflow pathways of ui as listed in Equations (B.12),

li : flow rate of the drug in each pathway as listed in Equations (B.1)-(B.4),

xi : model parameter,

Vj : volume of the compartment j per weight of the patient [mL/kg].

The compartment volume Vj can be written as

V1 = x55 , (B.6)

V2 = 1000 − (x55 + x56 + x57 + x58) , (B.7)

V3 = x56 , (B.8)

V4 = x57 , (B.9)

V5 = x58 . (B.10)

Equation (B.7) is derived based on the formulation used in Willmann et al. [13] and

assuming that the volume mass ratio of the human body is 1000mL/kg. The following

index sets indicate the inflow pathways of ui as in Figure B1:

Ni =



{0, 1, 11, 26} for i = 1 ,

{i, i + 10, i + 25} for i = 2, ..., 5 ,

{i} for i = 6, ..., 10 ,

{i + 10} for i = 11, ..., 15 ,

{16, 36} for i = 16 ,

{17, 37, 41, 45} for i = 17 ,

{18, 38, 44} for i = 18 ,

{19, 39, 42} for i = 19 ,

{20, 40, 43} for i = 20 ,

{i + 10} for i = 21, ..., 25 .

(B.11)

The following index sets indicate the outflow pathways of ui as in Figure B1:

Mi =



{i + 5, i + 15, i + 20, i + 30, i + 45} for i = 1, ..., 5 ,

{i − 5} for i = 6, ..., 10 ,

{i + 25} for i = 11, ..., 15 ,

{11, 41, 42, 43, 51} for i = 16 ,

{12, 44, 52} for i = 17 ,

{13, 53} for i = 18 ,

{14, 45, 54} for i = 19 ,

{15, 55} for i = 20 ,

{i + 5} for i = 21, ..., 25 .

(B.12)
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Table B6. Computational costs of numerically solving the forward problem for
Example 2. The computational time was measured on a server machine with Intel
Xeron X7350 3GHz processor.

Absolute/Relative tolerance Computational time (sec)
10−2 0.097
10−3 0.12
10−4 0.19
10−5 0.25
10−6 0.37
10−7 0.42
10−8 0.56
10−9 0.76
10−10 1.13

For example, the ODE model for the concentration of SN-38G (k = 3) in Liver

(j = 4) can be written as follows:

d

dt
u18 =

 ∑
i∈{18,38,44}

li −
∑

i∈{13,53}

li

 /V4

=

(
x53 · u3(t) +

x52

x8

· u13(t) +
x45 · x50 · x57

x40·x12

x22·u17(t)
+ 1

)
/x57

−
(

x52 + x53

x13

· u18(t) +
x33 · x23

x13

· u18(t)

)
/x57 . (B.13)

By solving this system of ODEs, we obtain a vector valued function u(x1, ..., x60; t)

depending on the variable t and parameters x1, ..., x60. Using the typical parameters

x̂, the concentration of SN-38G in the Liver can be simulated by the above system of

ODEs as depicted in Figure B2(a).

Note:

• We solve this system of ODEs using the MATLAB 2010b stiff ODE solver

ODE15s [10]. The computational costs of numerically solving this system of ODEs

with various integration tolerances are tabulated in Table B6.

• It can be shown easily that this ODE model conserves the amount of drug.

Assuming all the parameters xi and V2 are positive real numbers, we further can

show that ui(t) ≥ 0 for all i which leads to the proof of the existence of ui(t) for all

0 < t < ∞.

• We have numerically observed that if one or more of the parameters xi or V2 is

negative, the solution of this system of ODEs blows up in finite time. Thus, we

will only consider the physiologically relevant cases where all parameters xi and the

compartment volume V2 are positive.

• Although the analytical existence of the solution of this system of ODEs is

guaranteed when all xi and V2 are nonnegative, this system of ODEs cannot easily
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be solved numerically. We first note that one of the terms on the right hand side

of the ODEs corresponding to the i.v. drip feed is discontinuous at t = x60 (cf.

Equation (B.1)). This discontinuous term causes abrupt changes of the solution ui

at time t = x60. Hence, this system of ODEs is considered a stiff system numerically.

It requires a stiff ODE solver. Also, it is noteworthy that the ODE system is well-

posed only if ui(t) ≥ 0 for all i and t ≥ 0, while limt→∞ ui(t) = 0. Thus we have

to make sure that the ODE solver chooses small enough time steps especially when

ui(t) is small, so that the numerical solution does not go below 0. This stiffness and

positivity requirement causes the high computational cost of solving the forward

problem.

Appendix B.1.3. Numerical simulation of the excretion profile using the PBPK model

We now describe how to compute the excretion profile using the PBPK model. Let

y1, ..., y10 be the total excretion amount of CPT-11 and its metabolites through urine

and bile in units of [nmol/kg]. More specifically, the variables y1, ..., y5 are the total

excretion amount of CPT-11, SN-38, SN-38G, NPC and APC in urine, respectively, and

the variables y6, ..., y10 are the total excretion amount of CPT-11, SN-38, SN-38G, NPC

and APC in bile, respectively. The set of total excretion amounts of CPT-11 and its

four metabolites through urine and bile (a set of ten numbers) is an excretion profile.

The total excretion amount of each chemical compound can be computed as follows:

yi =

{ ∫∞
0

xi+25 · xi+20 · ui(t) dt for i = 1, ..., 5∫∞
0

(xi+25 · xi+15)/xi+5 · ui+10(t) dt for i = 6, ..., 10
, (B.14)

=

∫ ∞

0

li+45 dt for i = 1, ..., 10 , (B.15)

= lim
t→∞

∫ t

0

li+45 dτ for i = 1, ..., 10 , (B.16)

≈
∫ T

0

li+45 dt for i = 1, ..., 10 , (B.17)

where ui(t) is the concentration of CPT-11 and its metabolites obtained by solving the

system of ODEs (B.5), and T is a sufficiently large constant. In our implementation,

we have chosen T = 105 to ensure that ui(T ) ≈ 0 for all i = 1, ..., 5, 16, ..., 20. It

is a direct consequence of the conservation property and ui > 0 that
∫ t

0
li+45 dτ is

bounded and monotonically increasing. Thus, by the monotone convergence theorem,

there exist yi which satisfy Equations (B.14). Also by the conservation property we

have x59 =
∑10

i=1 yi.

Since the ui are independent of the yi, it is possible to compute the yi at the

same time as solving the PBPK model. That is to say, this numerical integration can

be included in the system of ODEs by adding 10 unknown functions and re-writing

Equation (B.17) in the following form:

d

dt
ui+25 = li+45 for i = 1, ..., 10 , (B.18)
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Figure B2. Example solutions from a PBPK model simulation using the typical value
x̂

which leads to

yi ≈ ui+25(T ) for i = 1, ..., 10 . (B.19)

As an example, the graphs of u26(t) and y1 are depicted in Figure B2(b) using the typical

values of the parameters x̂.

Recalling that u1, ..., u25 depend on parameters x1, ..., x60, now we have obtained a

function that maps the parameters to the excretion profile. For simplicity we denote

this vector function by f , i.e.,

[y1, y2, ..., y10]
T = [u26(x1, ..., x60; T ), ..., u35(x1, ..., x60; T )]T , (B.20)

= [f1(x1, ..., x60), ..., f10(x1, ..., x60)]
T , (B.21)

or

y = f(x) , (B.22)

where

f : R60 → R10 , (B.23)

x = [x1, ..., x60]
T : a vector that represents the parameters , (B.24)

y = [y1, ..., y10]
T : a vector that represents the excretion profile . (B.25)

Appendix C. Preconditioned Cluster Newton method

As our algorithm tries to approximate the function f by a hyper-plane in a large domain,

how close f is to a linear function influences the accuracy of the solution obtained by

our algorithm. By choosing an appropriate pre-conditioning function g so that f ◦ g−1

is close to linear, and applying the Cluster Newton method to the composite function

f ◦ g−1, we can increase the speed and chance of finding the solution. It is often not

trivial to find such a function. However, for our ODE coefficient identification problem,
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Figure C1. Median relative residual with or without preconditioning.

it is not very difficult to find one. For example, from Equation (B.13), we can observe

that the xi interact with each other mostly by multiplications and divisions. Thus, by

re-defining the parameters xi by xi = ex̆i we can make them interact by additions and

subtractions, i.e.,

d

dt
u18 =

(
ex̆53−x̆57 · u3(t) + ex̆52−x̆8−x̆57 · u13(t) +

ex̆45+x̆50

ex̆40+x̆12−x̆22/u17(t) + 1

)
−
(
(ex̆52−x̆13−x̆57 + ex̆53−x̆13−x̆57) · u18(t) − ex̆33+x̆23−x̆13 · u18(t)

)
.

In addition to making the parameters of the function f interact almost linearly, this

choice of re-definition of x has the benefit that the values of x remain positive. This helps

us reduce the complication of points going outside of the domain where the function f

is defined. This re-definition of x can be done easily for our algorithm by setting the

pre-conditioning function as g(x) = ln(x) and directly applying the Cluster Newton

method to f ◦ g−1.

The effect of this preconditioning function can be demonstrated by solving

Example 2 with an initial set of points with wider than usual variability, and that

brings the initial box close to the boundary of the domain X , i.e.,

vi =


0.95 for i = 1, 2, ..., 50

0.3 for i = 51, 52, ..., 58

0.05 for i = 59, 60

. (C.1)

Figure C1 plots the median of the relative residual versus the number of iterations

for the Cluster Newton method with or without preconditioning. As can be seen

from Figure C1, without preconditioning, the Cluster Newton method fails to find the

parameters of interest. However, with the preconditioning, the Cluster Newton method

finds the set of points with small relative residual. For the numerical results presented

in the main body of the paper preconditioning was not necessary and was thus not used.
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Figure D1. Main idea of the Global Cluster Newton method.

Appendix D. Global Cluster Newton method

Finding multiple solutions of the underdetermined inverse problem near the initial

cluster is useful when there is a priori knowledge about which part of the solution

manifold is of interest. However, it is a natural question to ask, if we can sample

multiple solutions on the solution manifold not necessarily close to the initial cluster.

We can do so using our Cluster Newton method by small modifications to line 4-4 of

the algorithm. We demonstrate this idea using Example 1, that is to say, instead of

just placing points on the contour curve near the initial cluster in box X 0, we aim to

place the points on the entire contour curve. In order to achieve the above goal, we

simply slide the points in the direction tangent to the solution manifold once the point

is sufficiently close to the solution manifold, as illustrated in Figure D1. This can be

done by replacing line 4-4 in Stage 2 of the algorithm (Section 2.3.1) with the following

lines.

4-4: If k < K3

For j = 1, 2, ..., l

If ||s(k)
·j ||2 < ξ

t1 = −s
(k)
2j /||s(k)

·j ||2
t2 = s

(k)
1j /||s(k)

·j ||2
s

(k)
·j = s

(k)
·j + rt

End if.

End for.

End if.

X(k+1) = X(k) + S(k) . (D.1)

Hence, K3 is the maximum number of iterations that the algorithm spreads the points

in the direction tangential to the solution manifold, ξ is a parameter that selects points
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sufficiently close to the solution manifold, and r is a randomly generated real number

in a certain range symmetrically about 0 (see below) which is different every time it

appears in the for-loop.

In Figure D2, we show the solutions found by the Global Cluster Newton method.

For our numerical experiment, we have chosen l = 100, K1 = 5, K2 = 100, K3 = 80,

ξ = 10−2 and r to be a uniformly randomly generated number between −5 and 5. We

can observe that the points are placed on the entire contour curve.

An extension of this idea is possible for the multi-dimensional problem (e.g.,

Example 2). However, the tangential direction cannot be uniquely determined if the

degree of freedom on the solution manifold is more than one. In such a case, we choose

the direction of the tangential vector t randomly at each time it appears in the for-loop.
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Figure D2. Example 1: Plots of the points X(k) found by the Global Cluster Newton
method. X(0) to X(5) are the same as in Figure 6 so the plots were omitted.
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