

ISSN 1346-5597

NII Technical Report

Inner-Iteration Krylov Subspace Methods for
Least Squares Problems

Keiichi Morikuni and Ken Hayami

NII-2011-001E
Apr. 2011

INNER-ITERATION KRYLOV SUBSPACE METHODS FOR
LEAST SQUARES PROBLEMS ∗

KEIICHI MORIKUNI† AND KEN HAYAMI‡

Abstract. Stationary inner iterations in combination with Krylov subspace methods are pro-
posed for least squares problems. The inner iterations are efficient in terms of computational work
and memory, and serve as powerful preconditioners also for ill-conditioned and rank-deficient least
squares problems. Theoretical justifications for using the inner iterations as preconditioners are pre-
sented. Numerical experiments for overdetermined least squares problems including ill-conditioned
and rank-deficient problems show that the proposed methods outperform previous methods.

Key words. least squares problems, iterative method, preconditioner, inner-outer iteration,
Krylov subspace method, GMRES method, CG method, Cimmino’s method, Kaczmarz’s method

AMS subject classifications. 65F08, 65F10, 65F20, 65F50

1. Introduction. Consider solving large sparse linear least squares problems

min
x∈Rn

∥b − Ax∥2, (1.1)

where A ∈ Rm×n, b ∈ Rm, and A is not necessarily full rank. (1.1) is equivalent to
the normal equation

AT Ax = AT b. (1.2)

For the under-determined case, m < n, the problem of computing the minimum norm
solution min

x∈Rn
∥x∥2 subject to Ax = b is equivalent to

AAT u = b, (1.3)

where AT u = x, if it exists.
Direct methods for solving the problems (1.2) or (1.3) are regarded as expensive

for large sparse problems. On the other hand, since κ(AT A) = κ(AAT) = κ(A)2,
iterative methods may be slow to converge. Here, κ(A) = σmax/σmin is the condition
number, where σmax and σmin are the largest and smallest positive singular values of
A, respectively. Hence, when iterative methods are used, good preconditioners are
necessary to achieve better convergence with small storage requirement [7]. For this
purpose, preconditioners such as [21], [26], [36], [4], [6], [11], [37], [18], [12] have been
proposed for the iterative solution of least squares problems.

For solving systems of linear equations, inner iterations can be applied inside the
Krylov subspace methods instead of preconditioning matrices explicitly. Such tech-
niques are often called inner-outer iteration methods. Inner-outer iteration conjugate
gradient (CG) methods [3], [17], [23] were proposed for the symmetric case. For

∗This work was supported by the Grants-in-Aid for Scientific Research (C) of the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

†Department of Informatics, School of Multidisciplinary Sciences, The Graduate Univer-
sity for Advanced Studies, Sokendai, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
(morikuni@nii.ac.jp).

‡National Institute of Informatics, and Department of Informatics, School of Multidisciplinary
Sciences, The Graduate University for Advanced Studies, Sokendai, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo, 101-8430, Japan (hayami@nii.ac.jp).

1

2 K. MORIKUNI AND K. HAYAMI

the nonsymmetric case, methods for preconditioning the generalized minimal residual
(GMRES) method using inner iterations were proposed, such as the flexible GMRES
(FGMRES) [27] and GMRESR [33]. See also [16], [24]. In [27], the CG normal
residual (CGNR) method, the GMRES method preconditioned by an incomplete LU
factorization, and the GMRES method itself, and in [24], the GMRES method itself
and the symmetric successive over-relaxation (SSOR) method are applied as inner
iterations, respectively. The variable preconditioned generalized conjugate residual
(VPGCR) method [1] employs the successive over-relaxation (SOR) method as the
inner iterations for the preconditioning. A similar inner-iteration technique can be
found in [14]. Some success with the biorthogonal Lanczos-based methods have been
reported as outer solvers combined with the same type of methods as the inner it-
erations [31], [35]. General flexible Krylov subspace methods where Krylov subspace
inner iterations are applied to Krylov subspace methods for solving linear systems of
equations were analysed in [30].

As for least squares problems, SOR-like inner iterations for preconditioning GCR
for square matrices were proposed especially for singular systems and least squares
problems in [2]. In this paper, we propose using Jacobi-type (Cimmino [10]) and
SOR-type (Kaczmarz [22]) stationary iterative methods specifically designed for least
squares problems, as inner-iteration preconditioners for CG and GMRES. These sta-
tionary iterative methods are also discussed in [28, Chapter 8], and are applicable to
(1.2) or (1.3) without explicitly constructing AT A and AAT . A significant advantage
of such inner-iteration preconditioners is that one can avoid explicitly computing and
storing the preconditioning matrix.

The main motivation for proposing the new preconditioners is to reduce CPU
time and memory significantly and to broaden the scope of problems which can be
solved. Note that previously BA-GMRES with RIF was comparable with, but not
definitely superior to, reorthogonalized CGLS with RIF in terms of CPU time for
ill-conditioned problems [18]. Moreover, RIF for least squares problems [6] will break
down for rank-deficient matrices. We aim to improve these points.

The rest of the paper is organized as follows. In section 2, we describe the
preconditioning framework for solving least squares problems using Krylov subspace
methods with inner iterations. In section 3, we present and analyse the iterative
methods used for the inner iteration. In section 4, we show numerical experiment
results on each combination for the outer and inner iterations. Section 5 summarizes
the main conclusions of the paper.

2. Preconditioning framework for inner iteration. This section presents
several frameworks for applying inner iteration to the Krylov subspace methods for
least squares problems.

In [18], the right-preconditioned and left-preconditioned GMRES methods for
least squares problems were proposed. The former is called the AB-GMRES and
the latter is called the BA-GMRES. AB-GMRES applies GMRES [29] to min

u∈Rm
∥b −

ABu∥2, whereas BA-GMRES applies GMRES to min
x∈Rn

∥Bb − BAx∥2, where B ∈
Rn×m denotes the preconditioning matrix. Conditions for the preconditioner B for the
GMRES methods for least squares problems were investigated. Among the theorems,
the following are relevant to the present paper.

Theorem 2.1. min
x∈Rn

∥b − Ax∥2 = min
z∈Rm

∥b − ABz∥2 holds for all b ∈ Rm if and

only if R(AB) = R(A).
Theorem 2.2. min

x∈Rn
∥b − Ax∥2 and min

x∈Rn
∥Bb − BAx∥2 are equivalent for all

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 3

b ∈ Rm if and only if R(A) = R(BT BA).
Theorem 2.3. If R(AT) = R(B) holds, then AB-GMRES determines a least

squares solution of min
x∈Rn

∥b − Ax∥2 for all b ∈ Rm and for all x0 ∈ Rn without

breakdown if and only if R(A) = R(BT).
Theorem 2.4. If R(A) = R(BT) holds, then BA-GMRES determines a least

squares solution of min
x∈Rn

∥b − Ax∥2 for all b ∈ Rm and for all x0 ∈ Rn without

breakdown if and only if R(AT) = R(B).
Here R(A) denotes the range space of A. In the paper [18], the robust incomplete
factorization (RIF) [6] was used to construct the factors of the preconditioner B.
RIF is guaranteed to work for full rank matrices. The preconditioning matrices are
explicitly constructed, saved, and applied at each step of GMRES.

2.1. AB-GMRES method. Consider using AB-GMRES [18] to solve least
squares problems. Instead of forming an explicit preconditioner matrix B, we propose
applying several steps of a certain iterative method inside the GMRES whenever B is
needed in the AB-GMRES. Therefore, our strategy can be considered as a precondi-
tioned GMRES with an implicit B. If R(A) = R(BT) and R(AT) = R(B) hold, then,
from Theorem 2.3, GMRES solves min

u∈Rn
∥b − ABu∥2 and determines a solution to

min
x∈Rn

∥b − Ax∥2 without breakdown, where x = Bu. When the number of inner itera-

tions is constant, the Krylov subspace Kj(AB, r0) = span
{
r0, ABr0, . . . , (AB)j−1r0

}
is involved. Note that B is not formed or stored explicitly. Similar to FGMRES [27]
and GMRESR [33], the number of inner iterations can be changed for each outer-
iteration.

Algorithm 1 shows the general framework for this approach. Note that l is the
number of the restart cycle. In the following and hereafter, (a, b) denotes the inner
product aT b between vectors a and b.

Algorithm 2.1 AB-GMRES(l) method with inner iterations.
1 . Let x0 be the initial approximate solution.
2 . Compute r0 = b − Ax0, β = ∥r0∥2, v1 = r0/β
3 . For j = 1, 2, . . . , l, Do
4 . Roughly solve min

uj∈Rm
∥vj −AAT uj∥2 to obtain zj = AT ũj = Bjvj by using an

inner iteration.
5 . wj = Azj(= ABjvj)
6 . For i = 1, 2, . . . , j, Do
7 . hi,j = (wj , vi)
8 . wj = wj − hi,jvi

9 . EndDo
10 . hj+1,j = ∥wj∥2

11 . vj+1 = wj/hj+1,j

12 . Find yj ∈ Rj that minimizes ∥βe1 − H̄jy∥2.
13 . xj = x0 + [z1, z2, . . . , zj]yj

14 . If ∥AT (b − Axj)∥2 < ε∥AT r0∥2 , then stop.
15 . EndDo
16 . x0 = xl and go to 2
Here, H̄j ≡ {hpq} ∈ R(j+1)×j and e1 ≡ (1, 0, . . . , 0)T . The method is said to break
down when hj+1,j = 0.

4 K. MORIKUNI AND K. HAYAMI

The idea behind line 4 is as follows. First consider the problem:

Minimize ∥z∥2 subject to Az = v ∈ R(A). (2.1)

This problem is equivalent to

AAT u = v ∈ R(A), z = AT u, (2.2)

which, in turn, is equivalent to

ABu′ = v ∈ R(A), z = Bu′, (2.3)

if R(AT) = R(B). Therefore, if we roughly solve (2.2) to obtain ũ such that AAT ũ ≃
v and set z = AT ũ ≡ Bv, we have ABv ≃ v, so that B will serve as a preconditioner
for solving (2.1)–(2.3).

Next, consider the problem

min
z∈Rn

∥v − Az∥2, (2.4)

where v ∈ R(A) does not necessarily hold. Now,

min
u∈Rm

∥v − ABu∥2, z = Bu (2.5)

is equivalent to (2.4) if and only if R(A) = R(AB) [18]. Note that R(AT) = R(B)
implies R(A) = R(AB) [18]. Hence, if we roughly solve min

u∈Rm
∥v − AAT u∥2 to obtain

∥v−AAT ũ∥2 ≃ min
u∈Rm

∥v − AAT u∥2, and if we let z = AT ũ ≡ Bv, we have min
u∈Rm

∥v−
ABu∥2 ≃ ∥v − ABv∥2. Therefore, in this case also, B will serve as a preconditioner
for solving (2.4). Note that we have denoted B as Bj , to allow the possibility that
Bj may be different for each j. For instance, the number of inner iterations may be
different for each outer iteration.

Thus, line 4 can be considered as approximately solving another least squares
problem: min

z∈Rn
∥vj − Az∥2. Here, it is solved roughly by using some iterative method.

We call this inner iteration. Compared to the inner iteration, the outer solver, GMRES
in this case, is called the outer iteration. In order to approximately and efficiently
solve the inner least squares problems, we propose using simple stationary iterative
methods implicitly related to the normal equation, i.e., without computing AAT .

2.2. BA-GMRES method. Similar to Algorithm 1, next we consider applying
inner iterations in the BA-GMRES method [18]. If R(A) = R(BT) and R(AT) =
R(B) hold, from Theorem 2.4, then GMRES determines a solution of
min

x∈Rn
∥Bb−BAx∥2, which is also a solution of min

x∈Rn
∥b − Ax∥2, without breakdown.

The Krylov subspace at the jth step becomes Kj(BA, r̃0) =
span

{
r̃0, BAr̃0, . . . , (BA)j−1r̃0

}
, where r̃0 = Br0. The algorithm is given as fol-

lows.

Algorithm 2.2 BA-GMRES(l) method using inner iterations
1 . Let x0 be the initial approximate solution.
2 . Roughly solve AT Az = AT r0 = AT (b − Ax0) to obtain z ≃ r̃0 = Br0 by using

an inner iteration.
3 . Compute β = ∥r̃0∥2, v1 = r̃0/β

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 5

4 . For j = 1, 2, . . . , l, Do
5 . Roughly solve AT Az = AT Avj to obtain z ≃ wj = BAvj by using an inner

iteration.
6 . For i = 1, 2, . . . , j, Do
7 . hi,j = (wj , vi)
8 . wj = wj − hi,jvi

9 . EndDo
10 . hj+1,j = ∥wj∥2

11 . vj+1 = wj/hj+1,j

12 . Find y ∈ Rj that minimizes ∥βe1 − H̄jy∥2 = ∥Brj∥2.
13 . xj = x0 + [v1,v2, . . . , vj] yj

14 . If ∥AT (b − Axj)∥2 < ε∥AT r0∥2 , then stop.
15 . EndDo
16 . x0 = xl and go to 2
The idea behind line 2 is as follows. First consider the problem

min
z∈Rn

∥r0 − Az∥2, (2.6)

where r0 is given. This problem is equivalent to

AT Az = AT r0, or AT (r0 − Az) = 0, or r0 − Az ∈ N (AT) = R(A)⊥, (2.7)

which, in turn, is equivalent to

BAz = Br0, or B(r0 − Az) = 0, or r0 − Az ∈ N (B) = R(BT)⊥, (2.8)

if R(A) = R(BT). Hence, if we roughly solve (2.6) to obtain AT Az̃ ≃ AT r0 and set
z̃ := Br0, (2.6) gives

∥r0 − ABr0∥2 = ∥r0 − Ar̃0∥2 ≃ min
z∈Rn

∥r0 − Az∥2

so that B will serve as a preconditioner for solving (2.6)–(2.8).
The idea behind line 5 can be explained similarly by replacing r0 by Avj , where

vj is given.
When B is fixed for all outer iterations, the method minimizes ∥Brj∥2 over x ∈

x0 + Kj(BA, r̃0), and is guaranteed to give a least squares solution if the conditions
R(A) = R(BT) and R(AT) = R(B) of Theorem 2.4 are satisfied.

On the other hand, when B is not fixed for each outer iteration, the method
tries to minimize ∥Bjrj∥2, where Bj is different for each outer iteration, and the
approximate solution x is sought in

x0 + span {B0r0, (B1A)B0r0, (B2A)(B1A)B0r0, . . . , (BjA)(Bj−1A) · · ·B0r0} ,

which is no longer a Krylov subspace. In fact, numerical experiments showed that
the method failed to converge when B was changed for each iteration by changing the
number of inner iterations for each outer iteration.

2.3. Right-preconditioned CGNE method. Similarly, we can apply inner-
iteration preconditioners to the CGNE method [28] as follows.

Algorithm 2.3 PCGNE method using inner iterations
1 . Let x0 be an initial vector, and compute r0 = b − Ax0.

6 K. MORIKUNI AND K. HAYAMI

2 . Roughly solve AAT z0 = r0 to obtain z̃0 by using an inner iteration.
3 . q0 = z̃0, γ0 = (r0, z̃0)
4 . For j = 0, 1, 2, . . . , Do
5 . sj = AT qj

6 . αj = γj/(sj , sj)
7 . xj+1 = xj + αjsj

8 . If ∥AT (b − Axj+1) ∥2 < ε∥AT r0∥2 , then stop.
9 . rj+1 = rj − αjAsj

10 . Roughly solve AAT zj+1 = rj+1 to obtain z̃j+1 by using an inner iteration.
11 . γj+1 = (rj+1, z̃j+1)
12 . βk = γk+1/γk

13 . qj+1 = z̃j+1 + βjqj

14 . EndDo
In lines 2 and 10, the normal equations may be solved using an iterative method.

2.4. Left-preconditioned CGLS (CGNR) method. We also apply inner-
iteration preconditioners to the CGLS method [28] as follows.

Algorithm 2.4 PCGLS method using inner iterations
1 . Let x0 be the initial solution, and compute r0 = b − Ax0.
2 . Roughly solve AT Az = AT r0 to obtain z ≃ z0 = Br0 by using an inner iteration.
3 . p0 = z0, s0 = AT r0, γ0 = (s0, z0)
4 . For j = 0, 1, . . . , Do
5 . qj = Apj

6 . αj = γj/(qj , qj)
7 . xj+1 = xj + αjpj

8 . If ∥AT (b − Axj+1)∥2 < ε∥AT r0∥2 , then stop.
9 . rj+1 = rj − αjqj

10 . sj+1 = AT rj+1

11 . Roughly solve AT Az = AT rj+1 to obtain z ≃ z̃j+1 = Brj+1 by using an
inner-iteration.

12 . γj+1 = (sj+1, z̃j+1)
13 . βj = γj+1/γj

14 . pj+1 = z̃j+1 + βjpj

15 . EndDo
In lines 2 and 11, the normal equations may be solved roughly using an iterative
method.

3. Inner-iteration preconditioners. In this section, we introduce several sta-
tionary iterative methods that can be used to perform the inner-iteration precondi-
tioning for the outer solvers discussed in Section 2. In the following, we assume that
A has no zero rows, or zero columns.

3.1. Jacobi-type iterations. Cimmino-NE and -NR methods are described
here. They may be considered as kinds of Jacobi iterations.

3.1.1. Cimmino-NE method. The Cimmino-NE method [10], [28] for least
squares problems solves the normal equation (1.3) iteratively. Let αi denote the ith
column of the matrix AT for i = 1, 2, . . . ,m. At the kth step, the solution is updated
by u(k+1) = u(k) + δ

(k)
i ei, where ei is the unit vector whose ith component is 1.

The scalar δ
(k)
i is determined as follows so that the ith component of the residual

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 7

becomes zero:

r
(k)
i = 0 ⇐⇒

(
b − AAT

(
u(k) + δ

(k)
i ei

)
, ei

)
= 0 =⇒ δ

(k)
i =

bi −
(
αi, x

(k)
)

∥αi∥2
2 ,

when b ∈ R(A), where r(k) = b − AAT u(k) and x(k) = AT u(k). Suppose αi ̸= 0,
i = 1, 2, . . . ,m. Thus, we have the following algorithm.

Algorithm 3.1 Cimmino-NE method
1 . Let x(0) ∈ Rn be the initial approximate solution.
2 . For k = 0, 1, . . . , Do
3 . For i = 1, 2, . . . ,m, Do
4 . δ

(k)
i = λ(bi − (αi, x

(k)))/∥αi∥2
2

5 . EndDo
6 . x(k+1) = x(k) + AT δ(k) (u(k+1) = u(k) + δ(k))
7 . EndDo
Here, λ is an acceleration parameter.

In Algorithm 3.1, we need only to store the vector δ ∈ Rm and the scalar λ ∈ R
besides A, x and b. One may also store 1/∥αi∥2

2, i = 1, 2, . . . ,m, to reduce the
computational cost.

Algorithm 3.1 with λ = 1 is equivalent to applying the Jacobi method to the
second kind normal equation (1.3).

We analyse this method from the inner-iteration preconditioning point of view.
The computations in lines 3–5 corresponds to the following:

δ(k) = λ

[
b1 − (α1, x

(k))
∥α1∥2

2 ,
b2 − (α2, x

(k))
∥α2∥2

2 , . . . ,
bm − (αm, x(k))

∥αm∥2
2

]T

= λ


1

∥α1∥2
2

1
∥α2∥2

2

. . .
1

∥αm∥2
2




b1 − (α1, x
(k))

b2 − (α2, x
(k))

...
bm − (αm, x(k))

 = λ∆m(b − Ax(k)),

where ∆m ≡ diag
(
1/∥α1∥2

2
, 1/∥α2∥2

2
, . . . , 1/∥αm∥2

2
)
. By repeatedly using the

relations x(k) = x(k−1) + AT δ(k−1) and δ(k) = λ∆m(b − Ax(k)), we obtain

δ(k) = (Im − λ∆mAAT)δ(k−1) = (Im − λ∆mAAT)kδ(0),

where Im ∈ Rm×m is the identity matrix. Assume x(0) = 0. Then, we have r(0) = b,
which gives

δ(k) = λ∆m

(
Im − λAAT ∆m

)k
b.

Finally, x(k+1) can be expressed as

x(k+1) = x(k) + AT δ(k)

= x(0) + AT
k∑

i=0

δ(i) = B(k)b,

8 K. MORIKUNI AND K. HAYAMI

where

B(k) ≡ λAT ∆m

k∑
i=0

(
Im − λAAT ∆m

)i
, (3.1)

which can be interpreted as the Cimmino-NE preconditioner for k iterations. Hence,
this B(k) can act as Bj in the AB-GMRES(l) method of Algorithm 2.1.

Here, let

C(k) ≡ λ∆m

k∑
i=0

(
Im − λAAT ∆m

)i
(3.2)

so that (3.1) gives B(k) = AT C(k). Note that ∆m is nonsingular. We omit k of C(k)

for simplicity below.
Denote Â = ∆

1
2
mA and let Â = Û Σ̂V̂ T be the singular value decomposition of Â.

Then, we have

C = λ∆
1
2
m

[
k∑

i=0

(
Im − λ∆

1
2
mAAT ∆

1
2
m

)i
]

∆
1
2
m

= λ∆
1
2
mÛ

[
k∑

i=0

(
Im − λΣ̂Σ̂T

)i
]

ÛT ∆
1
2
m

= ∆
1
2
mÛ diag (τ1,k, τ2,k, . . . , τr,k, λ(k + 1), . . . , λ(k + 1)) (∆

1
2
mÛ)T ,

where

τl,k ≡ 1 − (1 − λσ̂2
l)k+1

σ̂2
l

,

σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂r > 0 are the singular values of Â, and r = rankA. Hence, C is
symmetric and congruent to diag(τ1,k, τ2,k, . . . , τr,k, λ(k+1), . . . , λ(k+1)). Hence, we
have the following.

Theorem 3.1.

λ < 0 =⇒ C is negative definite,
λ = 0 =⇒ C = 0,

0 < λ <
2
σ̂2

1

=⇒ C is positive definite,

2
σ̂2

1

≤ λ =⇒

{
C is positive definite if k is even,
C is not definite if k is odd.

Theorem 3.2. C is singular if and only if λ = 0, or k is odd and λ = 2
σ̂2

i
for

some i, 1 ≤ i ≤ r.
Theorem 3.3. Assume C is nonsingular and that the initial guess x(0) for

the Cimmino-NE inner-iteration preconditioning method is set to be zero. Then
min

x∈Rn
∥b − Ax∥2 = min

z∈Rm
∥b − AB(k)z∥2 holds for all b ∈ Rm.

Proof. B(k) = AT C implies R(B(k)) = R(AT). Since R(AAT) = R(A), R(A) =
R(AB(k)). From Theorem 2.1, the theorem holds.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 9

Theorem 3.4. Assume C is nonsingular, rankA = m, and that the initial
guess x(0) for the Cimmino-NE inner-iteration preconditioning method is set to be
zero. Then, with this inner-iteration preconditioning, AB-GMRES determines a least
squares solution of min

x∈Rn
∥b − Ax∥2 for all b ∈ Rm and for all x0 ∈ Rn without

breakdown.
Proof. B(k) = AT C gives R(B(k)) = R(AT). m = rankA = rankAT =

rankB(k) = rank
(
B(k)

)T
gives R

((
B(k)

)T
)

= R(A) = Rm. Hence, from Theo-
rem 2.3, the theorem holds.

Note also that since C is symmetric, we may use it to precondition (1.3) for the
CGNE method if C is also definite.

3.1.2. Cimmino-NR method. The Cimmino-NR method [28] solves the nor-
mal equation (1.2) iteratively. Let di be the difference between the ith component of
the current solution and the previous solution. The kth Jacobi iteration applied to
(1.2) gives the following relation for the ith component

(AT b − AT A(x(k) + d
(k)
i ei), ei) = 0 =⇒ d

(k)
i =

(r(k), ai)
∥ai∥2

2 ,

where x(k+1) = x(k) +d
(k)
i ei and ai denotes the ith column of A. Suppose ai ̸= 0, i =

1, 2, . . . , n.
Adding an acceleration parameter λ, we obtain the following algorithm [28].
Algorithm 3.2 Cimmino-NR method

1 . Let x(0) ∈ Rn be the initial approximate solution.
2 . Compute r(0) = b − Ax(0)

3 . For k = 0, 1, . . . , Do
4 . For i = 1, 2, . . . , n, Do
5 . d

(k)
i = λ(r(k), ai)/∥ai∥2

2

6 . EndDo
7 . x(k+1) = x(k) + d(k)

8 . r(k+1) = r(k) − Ad(k)

9 . EndDo
Here, λ is an acceleration parameter. At the last loop for k, r does not have to be
updated, since it does not affect the final solution. The memory requirement for the
right-hand side vector b can be replaced by the residual r. Only the vector d ∈ Rn

needs to be stored besides A, x and b.
Algorithm 3.2 with λ = 1 is equivalent to applying the Jacobi method to the

normal equation (1.2).
The preconditioning matrix of the Cimmino-NR method can be derived in a

similar way to that of the Cimmino-NE method. The computations in lines 4-6 at
the kth step in Algorithm 3.2 correspond to the following:

d
(k)
i = λ

(r(k), ai)
∥ai∥2

2 for i = 1, 2, . . . , n

⇐⇒ d(k) = λ

[
(r(k), a1)
∥a1∥2

2 ,
(r(k), a2)
∥a2∥2

2 , . . . ,
(r(k),an)
∥an∥2

2

]T

.

Define Dn ≡ diag
(
1/∥a1∥2

2
, 1/∥a2∥2

2
, . . . , 1/∥an∥2

2
)
. Then, d(k) = λDnAT r(k).

Let x(0) = 0. Applying the relations r(k) = r(k−1) − Ad(k−1) and d(k) = λDnAT r(k)

10 K. MORIKUNI AND K. HAYAMI

repeatedly, we obtain

d(k) = λDnAT (Im − λADnAT)1r(k−1)

= λDnAT (Im − λADnAT)kr(0)

= λ(In − λDnAT A)kDnAT b,

where In ∈ Rn×n is the identity matrix. Finally, x(k+1) is represented by using A
and b as

x(k+1) = x(k) + d(k) = x(0) +
k∑

i=0

d(i).

Let B(k) be

B(k) ≡ λ

[
k∑

i=0

(In − λDnAT A)i

]
DnAT . (3.3)

Then x(k+1) = B(k)b for x(0) = 0, and B(k) can be considered as the Cimmino-NR
preconditioner for k inner iterations. Hence, this B(k) can act as B in the BA-
GMRES(l) method of Algorithm 2.2.

Here, let

C(k) ≡ λ

[
k∑

i=0

(In − λDnAT A)i

]
Dn (3.4)

so that (3.3) gives B(k) = C(k)AT . Note that Dn is nonsingular. We omit k of C(k)

below.
Denote Ǎ = ADn

1
2 and let Ǎ = Ǔ Σ̌V̌ T be the singular value decomposition of Ǎ.

Then, we have

C = λDn
1
2

[
k∑

i=0

(In − λDn
1
2 AT ADn

1
2)i

]
Dn

1
2

= λDn
1
2 V̌

[
k∑

i=0

(In − λΣ̌T Σ̌)i

]
V̌ T Dn

1
2

= Dn
1
2 V̌ diag (ρ1,k, ρ2,k, . . . , ρr,k, λ(k + 1), . . . , λ(k + 1)) (Dn

1
2 V̌)T ,

where

ρl,k ≡ 1 − (1 − λσ̌2
l)k+1

σ̌2
l

,

σ̌1 ≥ σ̌2 ≥ · · · ≥ σ̌r > 0 are the singular values of Ǎ, and r = rankA. Hence, C is
symmetric and congruent to diag(ρ1,k, ρ2,k, . . . , ρr,k, λ(k + 1), . . . , λ(k + 1)). Hence,
we have the following.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 11

Theorem 3.5.

λ < 0 =⇒ C is negative definite,
λ = 0 =⇒ C = 0,

0 < λ <
2
σ̌2

1

=⇒ C is positive definite,

2
σ̌2

1

≤ λ =⇒

{
C is positive definite if k is even,

C is not definite if k is odd.

Theorem 3.6. C is singular if and only if λ = 0, or k is odd and λ = 2
σ̌2

i
for

some i, 1 ≤ i ≤ r.
Theorem 3.7. Assume C is nonsingular and that the initial guess x(0) for

the Cimmino-NR inner-iteration preconditioning method is set to be zero. Then
min

x∈Rn
∥b − Ax∥2 and min

x∈Rn
∥B(k)b − B(k)Ax∥2 are equivalent for all b ∈ Rm.

Proof. B(k) = CAT implies R
((

B(k)
)T

)
= R(A). Since R

((
B(k)

)T
)

=

R(A) =⇒ R(A) = R
((

B(k)
)T

B(k)A
)

[18] and from Theorem 2.2, the theorem holds.

Theorem 3.8. Assume C is nonsingular, rankA = n, and that the initial
guess x(0) for the Cimmino-NR inner-iteration preconditioning method is set to be
zero. Then with this inner-iteration preconditioning, BA-GMRES determines a least
squares solution of min

x∈Rn
∥b − Ax∥2 for all b ∈ Rm and for all x0 ∈ Rn without

breakdown.
Proof. B(k) = CAT gives R

((
B(k)

)T
)

= R(A). n = rankA = rankAT =

rank
(
B(k)

)T
= rankB(k) gives R(B(k)) = R(AT) = Rn. Hence, from Theorem 2.4,

the theorem holds.
Note also that since C is symmetric, we may use it to precondition (1.2) for the

CGLS method if C is also definite.
One advantage of the Jacobi iterations is that the vectors d(k), r(k), x(k), and,

δ(k) can be computed in parallel.

3.2. SOR-type iterations. This subsection provides an overview of the normal
error SOR and normal residual SOR methods.

3.2.1. Normal error SOR method. The NE-SOR method [28] solves (1.3)
iteratively. Let αi be the ith column of matrix AT , i = 1, 2, . . . ,m. Suppose αi ̸= 0,
i = 1, 2, . . . ,m.

Algorithm 3.3 NE-SOR method
1 . Let x(0) ∈ Rn be the the initial approximate solution.
2 . For k = 0, 1, . . . , Do
3 . For i = 1, 2, . . . ,m, Do
4 . δ

(k)
i = ω

[
bi − (αi, x

(k))
]
/∥αi∥2

2

5 . x(k) = x(k) + δ
(k)
i αi (u(k+1)

i = u
(k)
i + δ

(k)
i)

6 . EndDo
7 . x(k+1) = x(k)

8 . EndDo
Here, ω is an acceleration parameter.

12 K. MORIKUNI AND K. HAYAMI

Similar to Algorithm 3.1, Algorithm 3.3 can be derived by solving for u in (1.3) by
performing the SOR-type iteration, supposing b ∈ R(A). The iterative solution x(k)

is updated component-wise. This method is also known as the Kaczmarz’s method
[22], [32] or the row-action method [9].

In the following, we derive the preconditioning matrix corresponding to this
method, similarly to [32]. Line 5 in Algorithm 3.3 can be expressed as

x = Pix + ω
bi

∥αi∥2
2 αi, where Pi ≡ In − ω

1
∥αi∥2

2 αiαi
T , i = 1, 2, . . . ,m.

Then, the kth step is given by

x(k+1) = Pm

(
· · ·

(
P2

(
P1x

(k) + ω
b1α1

∥α1∥2
2

)
+ ω

b2α2

∥α2∥2
2

)
· · ·

)
+ ω

bmαm

∥αm∥2
2 .

Let Qi be

Qi ≡

{
PmPm−1 · · ·Pi, if i = 1, 2, . . . ,m,

In, if i = m + 1.

Define R≡ [Q2α1, Q3α2, . . . , Qm+1αm],

∆m ≡ diag

(
1

∥α1∥2
2 ,

1
∥α2∥2

2 , . . . ,
1

∥αm∥2
2

)
,

R̄ ≡ R∆m, and Q ≡ Q1. Then, if the initial solution x(0) = 0, we have

x(k+1) = Qx(k) +
m∑

i=1

ω
bi

∥αi∥2
2 Qi+1αi = Qx(k) + ωR̄b

= Qk+1x(0) + ω

(
k∑

l=0

Ql

)
R̄b = ω

(
k∑

l=0

Ql

)
R̄b.

Let B(k) be

B(k) ≡ ω

(
k∑

l=0

Ql

)
R̄,

which can be considered as the preconditioning matrix corresponding to Algorithm
3.3 with k iterations. Hence, this B(k) can act as Bj in the AB-GMRES(l) method
of Algorithm 2.1. Here,

R̄ = [c11α1 + c12α2 + · · · + c1mαm, c22α2 + c23α3 + · · · + c2mαm, . . . , cmmαm] .

Noting that

Qαi = PmPm−1 · · ·P1αi

= c′1α1 + c′2α2 + · · · + c′mαm,

generically

R(B(k)) = span {α1, α2, . . . , αm} = R(AT),

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 13

holds, provided ω ̸= 0. Hence, from Theorem 2.1, min
x∈Rn

∥b − Ax∥2 =

min
z∈Rm

∥b − AB(k)z∥2 generically holds for B(k) of NR-SOR and x(0) = 0.

On the other hand,

(
B(k)

)T

= ω


1

∥α1∥2
α1

T Q2
T

1
∥α2∥2

α2
T Q3

T

...
1

∥αm∥2
αm

T Qm
T


k∑

l=0

(
QT

)l
,

and, if Q does not have an eigenvalue equal to 1,
k∑

l=0

QT l
= (I − Q)−1(I − Qk+1).

Hence, if rank A = m, and if Qk+1 does not have an eigenvalue equal to 1, we may
expect that

R
((

B(k)
)T

)
= R(A) = Rm

holds, generically. Hence, from Theorem 2.3, AB-GMRES with inner iteration of NE-
SOR with x(0) =0 and ω ̸=0 can determine a least squares solution of min

x∈Rn
∥b−Ax∥2

for all b ∈ Rm and for all x0 ∈ Rn without breakdown for underdetermined full rank
problems.

3.2.2. Normal residual SOR method. The NR-SOR method [28] solves (1.2)
iteratively. Let ai be the ith column of matrix A, i = 1, 2, . . . , n. Suppose ai ̸= 0, i =
1, 2, . . . , n.

Algorithm 3.4 NR-SOR method
1 . Let x(0) ∈ Rn be the initial approximate solution.
2 . Compute r = b − Ax(0)

3 . For k = 0, 1, . . . , Do
4 . For i = 1, 2, . . . , n, Do
5 . δ

(k)
i = ω(r, ai)/∥ai∥2

2

6 . x
(k+1)
i = x

(k)
i + δ

(k)
i

7 . r = r − δ
(k)
i ai

8 . EndDo
9 . EndDo
Here, ω is an acceleration parameter.

The right-hand side vector b can be overwritten by the residual r. Hence, the
storage requirement is only for the scalar δi, where δi can also be overwritten for each
i.

Next, we derive the preconditioning matrix corresponding to this iterative meth-
od, similarly to [32]. The residual vector is updated for i = 1, 2, . . . , n as follows:

r = Sir, where Si = Im − ω
1

∥ai∥2
2 aiai

T .

Let Ti be

Ti ≡

{
SiSi−1 · · ·S1 if i = 1, 2, . . . , n,

Im if i = 0.

14 K. MORIKUNI AND K. HAYAMI

Define W ≡
[
T0

T a1, T1
T a2, . . . , Tn−1

T an

]T
,

Dn ≡ diag

(
1

∥a1∥2
2 ,

1
∥a2∥2

2 , . . . ,
1

∥an∥2
2

)
,

W̄ ≡ DnW , and T ≡ Tn. Then, we have

x(k+1) = x(k) + ωW̄r(k)

= x(0) + ωW̄
k∑

l=0

r(l)

= x(0) + ωW̄

(
k∑

l=0

T l

)
b.

Thus, if x(0) = 0, the preconditioning matrix is given by

B(k) ≡ ωW̄

k∑
l=0

T l,

which can be considered as a preconditioner for BA-GMRES. Hence,

(
B(k)

)T

= ω

(
k∑

l=0

(
TT

)l

)
W̄T ,

where

W̄T =

[
1

∥a1∥2
2 T0

T a1,
1

∥a2∥2
2 T1

T a2, . . . ,
1

∥an∥2
2 Tn−1

T an

]
= [c11a1, c21a1 + c22a2, . . . , cn1a1 + cn2a2 + · · · + cnnan] ,

since

Si = Im + ciaiai
T , Si = Si

T , and Ti
T = S1S2 · · ·Si.

Hence,

(
B(k)

)T

= ω

(
k∑

l=0

(
TT

)l

)
[c11a1, c21a1 + c22a2, . . . , cn1a1 + cn2a2 + · · · + cnnan] .

Noting that

TT aj = S1S2 · · ·Snaj = c1
′a1 + c2

′a2 + · · · + cn
′an,

generically

R
((

B(k)
)T

)
= span {a1, a2, . . . , an} = R(A)

holds, provided ω ̸= 0. Hence, from Theorem 2.2, min
x∈Rn

∥b − Ax∥2 and

min
x∈Rn

∥B(k)b−B(k)Ax∥2 are generically equivalent for B(k) of NR-SOR and x(0) = 0.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 15

On the other hand,

B(k) = ω


1

∥a1∥2
a1

T T0
1

∥a2∥2
a2

T T1

...
1

∥an∥2
an

T Tn−1


k∑

l=0

T l,

and, if T does not have an eigenvalue equal to 1,
k∑

l=0

T l = (I − T)−1 (
I − T k+1

)
.

Hence, if rankA = n, and if T k+1 does not have an eigenvalue equal to 1, we may
expect that

R(B(k)) = R(AT) = Rn

holds generically. Hence, from Theorem 2.4, BA-GMRES with inner iteration of NR-
SOR with x(0) =0 and ω ̸=0 can determine a least squares solution of min

x∈Rn
∥b−Ax∥2

for all b ∈ Rm and for all x0 ∈ Rn without breakdown for overdetermined full rank
problems.

3.2.3. Normal error and normal residual SSOR method. In order to pre-
condition the CGNE and CGLS methods, a symmetric preconditioner is required. If
lines 3–6 in Algorithm 3.3 and lines 4–8 in Algorithm 3.4 are updated in the forward
order, i = 1, 2, . . . ,m(n), and then in the reverse order, i = m(n),m− 1(n− 1), . . . , 1,
we obtain symmetric variants of NE- and NR-SOR, i.e., the NE-SSOR and NR-SSOR
methods, respectively. These variants, when applied to the CGNE and CGNR meth-
ods with only one inner iteration, are discussed in [8], [28, Chapter 10].

Algorithm 3.5 gives the detail of the NR-SSOR method. Let ai be the ith column
of matrix A, i = 1, 2, . . . , n. Suppose ai ̸= 0, i = 1, 2, . . . , n.

Algorithm 3.5 NR-SSOR method
1 . Let x(0) ∈ Rn be the initial approximate solution.
2 . Compute r = b − Ax(0)

3 . For k = 0, 1, 2, . . . , Do
4 . For i = 1, 2, . . . , n, Do
5 . δ

(k)
i = ω(r, ai)/∥ai∥2

2

6 . x
(k+ 1

2)
i = x

(k)
i + δ

(k)
i

7 . r = r − δ
(k)
i ai

8 . EndDo
9 . For i = n, n − 1, . . . , 1, Do

10 . δ
(k+ 1

2)
i = ω(r, ai)/∥ai∥2

2

11 . x
(k+1)
i = x

(k+ 1
2)

i + δ
(k+ 1

2)
i

12 . r = r − δ
(k+ 1

2)
i ai

13 . EndDo
14 . EndDo
Here, ω is an acceleration parameter.

The algorithm for the NE-SSOR method can be given similarly.
The computational work for one iteration and memory requirement, for Cimmino-

NE/NR, and NE/NR-SOR, and NE/NR-SSOR, are summarized in Tables 3.1 and
3.2, respectively. “MV” in Table 3.1 denotes the computational cost required for

16 K. MORIKUNI AND K. HAYAMI

Table 3.1
Number of operations required for one inner iteration.

Cimmino-NE Cimmino-NR NE-SOR NR-SOR NE-SSOR NR-SSOR
Number of op. 2MV+3m + n 2MV+m + 3n 2MV+3m 2MV+3n 4MV+6m 4MV+6n

Table 3.2
Storage requirement in addition to A, b, and x.

Cimmino-NE Cimmino-NR NE-SOR NR-SOR NE-SSOR NR-SSOR
Storage requirement m m + n 1 m 1 m

one matrix-vector multiplication. Note that we assume that ∥αi∥2
2 and ∥aj∥2

2 are
computed beforehand and stored.

Table 3.1 shows that the computational work for one inner iteration is roughly
proportional to the cost of the matrix-vector multiplications with A, and the work for
NE/NR-SSOR is twice that for NE/NR-SOR. Table 3.2 shows that the inner iterations
can be carried out by storing a few vectors only. Note that matrix decomposition-
type preconditioners for iterative methods for solving least squares problems requires
memory comparable to the size of A, e.g., [4], [5].

4. Numerical experiments. We tested the preconditioning methods that were
discussed in Sections 2 and 3. We will apply our proposed methods to CG- and
GMRES-based methods and compare them with the diagonal scaling and the RIF
preconditioners.1 Note that, theoretically, the RIF preconditioner may break down
for rank-deficient problems.

The stopping criteria for the ith outer iteration was∥∥AT (b − Axi)
∥∥

2
< ε

∥∥AT r0

∥∥
2
. (4.1)

The left-hand side of (4.1) can converge to zero because of the equivalence between
(1.1) and (1.2). This means that we explicitly compute the relative residual. In the
numerical experiments, the CPU time for checking (4.1) was excluded from the total
CPU time. The initial solutions for the inner iterations and the outer iterations were
always set to x0 := 0. No restarts were used for GMRES.

In this paper, overdetermined problems (m > n) are tested. All zero columns
and zero rows of the test matrices were deleted in advance. The elements of b were
randomly generated using the Fortran built-in subroutine random_number. Therefore,
the test problems were not necessarily consistent, i.e., b may not be in R(A). For
overdetermined problems, BA-GMRES is computationally more efficient compared
to AB-GMRES since the former works in a smaller dimensional (n < m) space [18].
Similarly, PCGLS is more efficient compared to PCGNE.

All computations were done on a PC workstation with an Intel Xeon X5492 3.4
GHz CPU, 16 GB RAM, and Scientific Linux 5.4. The experiments were done in
double precision floating-point arithmetic. All programs for the iterative methods
used for our tests were coded in Fortran 95 and compiled by Intel Fortran Version
11.1. For the direct methods, we used Matlab 2010a.

4.1. Effect of condition number. Test matrices RANDLn, n = 1, 2, . . . , 7,
were randomly generated using the Matlab function sprandn, as in [18]. Table 4.1
shows the condition numbers κ(A) of the matrices. They all have a nonzero density of

1The RIF code developed by Professors Michele Benzi and Miroslav Tůma, available online at
http://www2.cs.cas.cz/~tuma/sparslab.html, was implemented.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 17

Table 4.1
Information on the random test matrices.

Name κ(A) Time ∥AT r∥2/∥AT b∥2

RANDL1 1.9 × 10 13.44 5.59 × 10−15

RANDL2 1.6 × 102 13.79 5.75 × 10−15

RANDL3 1.3 × 103 13.70 1.09 × 10−14

RANDL4 2.0 × 104 13.41 6.10 × 10−14

RANDL5 1.3 × 105 13.79 4.87 × 10−13

RANDL6 1.3 × 106 13.95 2.85 × 10−13

RANDL7 1.3 × 107 14.42 7.73 × 10−11

0.1%, m := 30,000, and n := 3,000. The third column gives the CPU time in seconds
taken by a direct method, namely the “ backslash \ ” solver in Matlab. The fourth
column gives the resulting relative residual ∥AT r∥2/∥AT b∥2. The required accuracy
for the relative residual ε = 10−8 is satisfied in all cases. Observe that as the condition
number increases, the accuracy decreases.

Table 4.2 gives the shortest CPU time for the iterative methods to achieve a
relative residual ∥AT rj∥2/∥AT b∥2 less than ε = 10−8 as in (4.1) for each problem.
Diag., RIF, Cimm.-NR, NR-SOR, and NR-SSOR stand for the diagonal scaling, RIF

Table 4.2
Best results for artificial random problems.

Solver CGLS BA-GMRES
Precon. diag. RIF Cimm.-NR NR-SSOR diag. RIF Cimm.-NR NR-SOR

RANDL1 68 62 (0.4) 35 (2, 0.8) 32 (1, 1.0) 68 56 (0.3) 35 (2, 0.8) 9 (5, 1.5)
0.04 0.10 (0.07) 0.05 0.04 0.05 0.11 (0.06) 0.04 * 0.02

RANDL2 192 110 (0.1) 103 (2, 0.7) 88 (1, 1.0) 191 130 (0.2) 105 (2, 0.7) 15 (9, 1.7)
0.12 0.20 (0.13) 0.15 0.12 0.21 0.20 (0.16) 0.14 * 0.06

RANDL3 624 259 (0.05) 328 (2, 0.7) 276 (1, 1.0) 595 144 (0.04) 234 (4, 0.7) 41 (10, 1.8)
0.38 0.32 (0.15) 0.46 0.38 1.62 0.32 (0.18) 0.69 * 0.16

RANDL4 2,863 489 (0.01) 1,594 (2, 0.6) 1,253 (1, 1.0)1,479 334 (0.009) 508 (8, 0.7)126 (15, 1.9)
1.74 0.79 (0.57) 2.25 1.70 8.73 1.09 (0.50) 3.36 * 0.73

RANDL5 5,4821,033 (0.007) 3,019 (2, 0.6) 2,392 (1, 1.0)1,613 569 (0.005) 560 (8, 0.7) 339 (6, 1.4)
3.33 * 1.14 (0.43) 4.24 3.2510.28 2.17 (0.65) 3.78 1.19

RANDL6 13,2863,918 (0.009) 7,310 (2, 0.6) 5,648 (1, 1.0)1,822 787 (0.002)619 (10, 0.7) 422 (6, 1.3)
8.08 2.87 (0.20) 8.72 7.6812.83 3.93 (1.18) 5.05 * 1.62

RANDL7 74,0937,429 (0.001)41,310 (2, 0.6)32,605 (1, 1.0)3,0231,125 (0.002) 784 (8, 0.7) 499 (6, 1.2)
44.98 7.55 (2.31) 58.09 44.3133.90 6.20 (0.98) 5.97 * 2.11

First row: Number of (outer) iterations (number of inner iterations, preconditioning parameter)
Second row: Total CPU time [seconds] (preconditioning time)

Relative residual < 10−8

[6], Cimmino-NR, NR-SOR, and NR-SSOR preconditioners, respectively. The reason
that we use NR-SSOR for CGLS is to obtain a symmetric preconditioner. The first row
in each cell gives the number of (outer) iterations outside the brackets, and the number
of inner iterations and the best parameter value for each method in brackets. The
second row gives the total CPU time including the preconditioning time in seconds
outside the brackets, and the time to set up the preconditioning matrix of RIF in
brackets.

The optimal number of inner iterations and the optimal parameters λ and ω were
experimentally determined so that it realizes the shortest CPU time. The parameters
λ and ω tested for Cimmino-NE and NR-(S)SOR, respectively, were changed in the
interval [0.1, 1.9] with step size 0.1. We used k × 10−l for the dropping tolerance for

18 K. MORIKUNI AND K. HAYAMI

RIF, where k = 1, 2, . . . , 9 and l = 1, 2, . . . , 10.
The ∗ indicates the fastest method, which was BA-GMRES with NR-SOR except

for RANDL5. The superiority of the method becomes more pronounced as κ(A)
becomes large. For ε = 10−8, the method was also faster than the direct method,
even for the ill-conditioned problems. CGLS with reorthogonalization [18] was also
tested combined with these preconditioners, but it was slow to converge.

Figures 4.1–4.3 show the relative residual defined in (4.1) vs. the number (outer)
iterations and the relative residual defined in (4.1) vs. the CPU time for RANDL4 and
RANDL7 for each method. The convergence behaviors of CGLS with diagonal scaling

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500

R
el

a
ti

v
e

re
si

d
u
a
l

Number of (outer) iterations

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500

R
el

a
ti

v
e

re
si

d
u
a
l

Number of (outer) iterations

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
el

a
ti

v
e

re
si

d
u
a
l

CPU time [seconds]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
el

a
ti

v
e

re
si

d
u
a
l

CPU time [seconds]

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

Fig. 4.1. Relative residual ∥AT rj∥2/∥AT b∥2 vs. number of (outer) iterations and relative
residual ∥AT rj∥2/∥AT b∥2 vs. CPU time for for RANDL4.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600 800 1000

R
el

a
ti

v
e

re
si

d
u
a
l

Number of (outer) iterations

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600 800 1000

R
el

a
ti

v
e

re
si

d
u
a
l

Number of (outer) iterations

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

Fig. 4.2. Relative residual ∥AT rj∥2/∥AT b∥2 vs. number of (outer) iterations for RANDL7.

and RIF, and BA-GMRES with diagonal scaling, RIF, Cimmino-NR and NR-SOR
are indicated by ◦, △, •, N, ¨, and ¥, respectively. The convergence curve of the
relative residual vs. CPU time for the methods with RIF is shifted to the right by the
time required to construct the preconditioner. To observe the ordinary behavior of the
relative residual for the methods, RANDL4 is suitable since it is fairly ill-conditioned.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 19

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5 6 7 8

R
el

a
ti

v
e

re
si

d
u
a
l

CPU time [seconds]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5 6 7 8

R
el

a
ti

v
e

re
si

d
u
a
l

CPU time [seconds]

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

CGLS-diag.
CGLS-RIF

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

Fig. 4.3. Relative residual ∥AT rj∥2/∥AT b∥2 vs. CPU time for RANDL7.

The convergence curves for all the CGLS-based methods are quite oscillatory. BA-
GMRES-based methods yield smoother curves. The convergence of BA-GMRES with
NR-SOR is the fastest. The results for RANDL7 are representative of the superiority
of BA-GMRES with NR-SOR, since RANDL7 is the most ill-conditioned problem in
this experiment.

Experiments were done also for the consistent case b ∈ R(A). Figure 4.4 shows the
relative error vs. number of (outer) iterations for RANDL6 with b := A (1, 1, . . . , 1)T .

10−8

10−6

10−4

10−2

100

102

0 2000 4000 6000 8000 10000 12000

R
el

a
ti

v
e

er
ro

r

Number of (outer) iterations

10−8

10−6

10−4

10−2

100

102

0 2000 4000 6000 8000 10000 12000

R
el

a
ti

v
e

er
ro

r

Number of (outer) iterations

CGLS-diag.
CGLS-RIF

CGLS-Cimm.NR
CGLS-NR-SSOR

CGLS-diag.
CGLS-RIF

CGLS-Cimm.NR
CGLS-NR-SSOR

10−6

10−4

10−2

100

102

0 200 400 600 800 1000 1200 1400 1600 1800

R
el

a
ti

v
e

er
ro

r

Number of (outer) iterations

10−6

10−4

10−2

100

102

0 200 400 600 800 1000 1200 1400 1600 1800

R
el

a
ti

v
e

er
ro

r

Number of (outer) iterations

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

BAGMRES-diag.
BAGMRES-RIF

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

Fig. 4.4. Relative error ∥xj − x∗∥2/∥x∗∥2 vs. number of (outer) iterations for RANDL6.

♦ and ¤ represent CGLS with Cimmino-NR and NR-SSOR, respectively. The other
symbols are the same as in Figure 4.1. The figure on the left shows the results of
the CGLS-based methods and the figure on the right shows the results of the BA-
GMRES-based methods. The vertical axis gives the relative error ∥xj −x∗∥2/∥x∗∥2,
where x∗ is the true solution (1, 1, . . . , 1)T . All the methods attain relative error
less than 10−8. Again, the convergence of BA-GMRES with NR-SOR is the fastest.
Figure 4.4 shows that the error for the CGLS methods tend to decrease gradually,

20 K. MORIKUNI AND K. HAYAMI

whereas those of the BA-GMRES methods suddenly decrease at certain steps.
As shown in [18], preconditioned CGLS (PCGLS) and BA-GMRES for overdeter-

mined problems minimize different quantities. PCGLS minimizes ∥rk|R(A)∥2, which
is the 2-norm of the R(A) component of rk, whereas BA-GMRES minimizes ∥Brk∥2.
Note that the convergence was monitored by ∥AT rk∥2.

Figure 4.5 plots the number of outer iterations (left) and the CPU time (right)
required to achieve relative residual less than ε = 10−8 vs. the acceleration param-
eter ω for NR-SOR with BA-GMRES for RANDL7. k denotes the number of inner

400

600

800

1000

1200

0 0.5 1 1.5 2

N
u
m

b
er

o
f
o
u
te

r
it

er
a
ti

o
n
s

Acceleration parameter ω

of inner iterations

k = 2

k = 4

k = 6

k = 8

k = 10

k = 12

k = 14

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
P

U
ti

m
e

[s
ec

o
n
d
s]

Acceleration parameter ω

Fig. 4.5. Number of outer iterations and CPU time to achieve relative residual < 10−8 vs. ω
for BA-GMRES with NR-SOR (RANDL7).

iterations. The optimum value for the parameter ω with respect to the number of
outer iterations and CPU time was between 1.1 and 1.3.

4.2. Experiments with practical problems. Next, we tested the methods
for more practical problems.

4.2.1. Full rank problems. We tested the same methods as in Section 4.1. In
Table 4.3, information on the test matrices, which were used in [6], are given, including
the number of rows m, the number of columns n, the number of nonzero elements
“nnz”, and the density of the nonzero elements “dens”. The first four matrices are

Table 4.3
Information on the practical test matrices.

Problem m n nnz dens. [%] κ(A) Time∥AT rj∥2/AT b∥2

well1033 1,033 320 4,732 1.431.66 × 102 0.001 8.50 × 10−16

illc1033 1,033 320 4,732 1.431.89 × 104 0.001 1.08 × 10−13

well1850 1,850 712 8,758 0.661.11 × 102 0.003 8.25 × 10−16

illc1850 1,850 712 8,758 0.661.40 × 103 0.003 1.11 × 10−14

SMALL 3,140 1,980 8,5101.37 × 10−1 1.06 × 102 0.01 4.78 × 10−10

MEDIUM 9,397 6,119 25,0134.35 × 10−2 1.39 × 102 0.03 6.28 × 10−11

LARGE 28,524 17,264 75,0181.52 × 10−2 1.93 × 102 0.12 6.21 × 10−11

VERYL 174,193105,882 463,3032.51 × 10−3 – 1.33 1.29 × 10−10

HIRLAM1,385,270452,2002,713,2004.33 × 10−4 –128.97 1.23 × 10−15

from [25], and the next four are from [19]. The last one, HIRLAM, is from [20].2

The condition numbers were computed using the Matlab functions spnrank [15]
and svd. (The condition numbers of VERYL and HIRLAM could not be computed

2We would like to thank Professor Miroslav Tůma for providing the test data.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 21

on our computers due to insufficient memory.) The CPU time and relative residual
for the direct method are also given similar to Table 4.1.

Table 4.4 gives the results with ε := 10−8, similar to Table 4.2. For convenience,

Table 4.4
Best results for practical full-rank problems.

Method CGLS BA-GMRES
Precon. diag. RIF Cimm.-NR NR-SSOR diag. RIF Cimm.-NR NR-SOR

well1033 180 155 (0.5) 106 (2, 0.6) 84 (1, 1.0) 98 98 (0.8) 98 (1, 1.0) 65 (1, 1.0)
0.001 0.003 0.014 (0.010) 0.005 0.004 0.003 0.009 (0.006) 0.003 * 0.002

illc1033 3,748 421 (0.06) 2,371 (2, 0.4) 1,545 (1, 1.0) 256 98 (0.8) 256 (1, 1.0) 152 (1, 1.0)
0.001 0.071 0.019 (0.011) 0.107 0.077 0.013 0.009 (0.006) 0.014 * 0.007

well1850 449 287 (0.3) 252 (2, 0.6) 186 (1, 1.0) 399 151 (0.2) 170 (4, 0.7) 62 (5, 1.8)
0.003 0.016 0.027 (0.014) 0.022 0.019 0.061 0.034 (0.020) 0.033 * 0.012

illc1850 2,161 544 (0.2) 1,268 (2, 0.4) 928 (1, 0.9) 697 285 (0.2) 400 (6, 0.7) 245 (4, 1.4)
0.003 0.079 * 0.045 (0.018) 0.112 0.096 0.174 0.051 (0.014) 0.132 0.055

SMALL 171 90 (0.5) 90 (2, 0.7) 78 (1, 1.0) 170 56 (0.4) 63 (4, 0.7) 24 (6, 1.5)
0.01 0.008 0.015 (0.007) 0.010 0.010 0.031 0.020 (0.013) 0.014 * 0.007

MEDIUM 188 94 (0.5) 97 (2, 0.7) 82 (1, 1.0) 184 63 (0.4) 67 (4, 0.7) 25 (6, 1.4)
0.03 0.027 0.037 (0.013) 0.034 0.033 0.235 0.067 (0.034) 0.057 * 0.024

LARGE 190 99 (0.5) 97 (2, 0.7) 88 (1, 0.8) 185 100 (0.5) 55 (6, 0.7) 20 (8, 1.6)
0.12 0.079 0.116 (0.041) 0.104 0.102 0.770 0.312 (0.041) 0.190 * 0.065

VERYL 254 228 (0.7) 128 (2, 0.7) 114 (1, 0.9) 249 208 (0.5) 73 (4, 0.9) 18 (15, 1.7)
1.33 1.267 1.836 (0.263) 1.437 1.251 8.531 7.107 (0.485) 2.459 * 0.813

HIRLAM 180 73 (0.2) 95 (2, 0.9) 27 (1, 1.8) 170 53 (0.1) 63 (4, 0.9) 17 (9, 1.7)
128.97 8.965 5.541 (1.149) 10.334 * 3.013 41.163 8.155 (2.153) 14.675 4.568

First row: Number of (outer) iterations (number of inner-iterations, preconditioning parameter)
Second row: Total CPU time [seconds] (preconditioning time)

Relative residual: 10−8

the CPU time for the direct method is given below the name of each problem. BA-
GMRES with the NR-SOR inner iteration gave the shortest CPU time except for
illc1850 and HIRLAM. For HIRLAM, CGLS with the NR-SSOR inner iterations gave
the best result.

4.2.2. Rank-deficient problems. Next, experiments were done for rank-defi-
cient problems given in [13]. The information on the matrices are given in Table 4.5,
similar to Table 4.3. Maragal 8 was transposed so that m > n. The rank and the

Table 4.5
Information of the matrices.

Problem m n nnz dens. [%] rank κ(A) Time ∥AT r∥2/∥AT b∥2

Maragal 3 1,682 858 18,391 1.27 613 1.10 × 103 0.07 1.63 × 10−13

Maragal 4 1,964 1,027 26,719 1.32 801 9.33 × 106 0.14 4.15 × 10−9

Maragal 5 4,654 3,296 93,091 0.61 2,147 1.19 × 105 1.75 5.60 × 10−2

Maragal 6 21,251 10,144 537,694 0.25 8,331 2.91 × 106 381.15 1.37 × 10−1

Maragal 7 46,845 26,525 1,200,537 0.10 20,843 8.98 × 106 483.39 7.95 × 10−2

Maragal 8 60,845 33,093 1,308,415 0.06 – – 74.84 1.12 × 10−9

condition numbers were computed using the Matlab functions spnrank [15] and svd.
The last two columns give results for the direct method (backslash solver of Matlab)
similarly to Table 4.3. The direct solver attains relative residual less than ε = 10−8

for Maragal 3, 4 and 8. For Maragal 5, 6, and 7, the solutions are inaccurate.
Table 4.6 gives the results for the iterative methods with ε := 10−8, similar

to Table 4.2 (The † in the first column indicates that the direct method did not

22 K. MORIKUNI AND K. HAYAMI

achieve relative residual less than 10−8). For all the problems, BA-GMRES with

Table 4.6
Best results for practical rank-deficient problems.

Solver CGLS BA-GMRES
Precon. diag. Cimm.-NR NR-SSOR diag. Cimm.-NR NR-SOR

Maragal 3 506 504 (1, 0.7) 127 (1, 1.1) 293 170 (4, 0.5) 88 (3, 1.2)
0.07 0.03 0.05 0.03 0.05 0.05 * 0.02

Maragal 4 1,230 1,192 (1, 1.1) 329 (1, 0.9) 316 149 (4, 0.5) 141 (2, 1.1)
0.14 0.11 0.15 0.08 0.07 0.06 * 0.04

Maragal 5 1,872 1,868 (1, 1.9) 377 (1, 1.1) 798 409 (5, 0.4) 151 (5, 1.5)
† 1.75 0.54 0.81 0.32 2.75 1.24 * 0.29

Maragal 6 64,824 64,093 (1, 0.8) 13,112 (1, 1.1) 2,708 1,445 (4, 0.4) 430 (7, 1.4)
† 381.15 187.06 264.15 86.90 92.16 40.21 * 7.89

Maragal 7 15,668 15,418 (1, 0.9) 2,138 (1, 1.1) 2,491 1,490 (3, 0.3) 334 (7, 1.5)
†483.39 103.51 155.97 39.93 211.65 99.47 * 14.83

Maragal 8 > 106 > 106 > 106 6,834 5,250 (2, 0.3) 924 (11, 1.3)
74.84 7,998.67 3,674.50 2,176.86 * 90.18

First row: Number of (outer) iterations (number of inner iterations, preconditioning parameter)
Second row: Total CPU time [seconds] (preconditioning time)

Relative residual < 10−8

NR-SOR inner iterations gave best results. The method was particularly efficient for
ill-conditioned problems like Maragal 8. The method was also faster than the direct
method for ε = 10−8, except for Maragal 8. The optimum number of inner iterations
k was between 2 and 11. The CGLS methods did not converge for Maragal 8 for
all parameters. The RIF preconditioner was also tested with various values for the
threshold parameter, but it was slow to converge for large values and it broke down
for small values.

Figure 4.6 shows the relative residual ∥AT rj∥2/∥AT b∥2 vs. number of (outer) it-
erations for Maragal 6. The convergence graphs for the CGLS methods are oscillatory

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600 800 1000 1200 1400

R
el

a
ti

v
e

re
si

d
u
a
l

Number of (outer) iterations

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600 800 1000 1200 1400

R
el

a
ti

v
e

re
si

d
u
a
l

Number of (outer) iterations

CGLS-diag.
BAGMRES-diag.

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

CGLS-diag.
BAGMRES-diag.

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60

R
el

a
ti

v
e

re
si

d
u
a
l

CPU time [seconds]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60

R
el

a
ti

v
e

re
si

d
u
a
l

CPU time [seconds]

CGLS-diag.
BAGMRES-diag.

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

CGLS-diag.
BAGMRES-diag.

BAGMRES-Cimm.-NR
BAGMRES-NRSOR

Fig. 4.6. Relative residual ∥AT rj∥2/∥AT b∥2 vs. number of (outer) iterations and relative
residual ∥AT rj∥2/∥AT b∥2 vs. CPU time for Maragal 6.

and slow to converge. BA-GMRES with NR-SOR is shown to converge quickly.
Figure 4.7 plots the number of outer iterations (left) and the CPU time (right)

for Maragal 7 similarly to Figure 4.5. k denotes the number of inner iterations. The
optimum value for the parameter ω with respect to the number of outer iterations
and CPU time was between 1.3 and 1.5.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 23

200

300

400

500

600

700

800

0 0.5 1 1.5 2

N
u
m

b
er

o
f
o
u
te

r
it

er
a
ti

o
n
s

Acceleration parameter

of inner iterations

k = 1

k = 3

k = 5

k = 7

k = 9

k = 11

k = 13

14

16

18

20

22

24

26

28

0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
P

U
ti

m
e

[s
ec

o
n
d
s]

Acceleration Paramter ω

Fig. 4.7. Number of outer iterations and CPU time to achieve relative residual < 10−8 vs. ω
for BA-GMRES with NR-SOR (Maragal 7).

4.3. Automatic parameter tuning for NR-SOR. The NR-SOR method re-
quires two parameters, the number of inner iterations k and the acceleration parameter
ω. As seen in Figures 4.5 and 4.7, the number of outer iterations and CPU time for
the NR-SOR inner-iteration BA-GMRES method vary with the values of these pa-
rameters. Hence, it is desirable to determine the parameters automatically for any
given problem. The theoretical determination of the optimum relaxation parameter
for some stationary iterative methods for some kinds of square matrices is described
in [38], [34]. However, techniques for the determination for general matrices includ-
ing rectangular matrices seem scarce. We proposed the following procedure, which
should be performed before starting the main algorithm. This tunes the parameters
numerically. The idea is to perform some test runs of the NR-SOR iterations alone
beforehand in order to determine the near optimal nin and ω.

1. Set ω, e.g., ω := 1.
2. Starting from nin := 0, find the minimum nin which satisfies

∥x(nin) − x(nin+1)∥∞ ≤ η∥x(nin+1)∥∞.

3. Find ωopt which minimizes ∥r(nin)∥2.
Here, ωopt is the optimum acceleration parameter for NR-SOR. Let ωi’s be candidates
for ωopt. Since ωopt is often in the range [1, 2) and the quantity ∥r(nin)∥2 is usually
a convex function of ω with a minimum at ωopt . 2, it is efficient to search for ωopt

from ωi = i × 10−1 for i = 19, 18, . . . , 1 in this order.
The resulting nin and ωopt would not be absolutely optimum but would be nearly

optimum. Fortunately, x(k) and r(k) appear in the algorithm for the NR-SOR itera-
tion, so that the cost for this automatic tuning is marginal.

Table 4.7 gives the numerical experiment results with parameters automatically
tuned by the above procedure for the problems presented in Section 4.2.2 with ε =
10−8. The first row in each cell gives the number of outer iterations outside the
brackets, and the automatically tuned number of inner iterations and acceleration
parameter in brackets. The second row gives the total CPU time including the tuning
time in seconds outside the brackets, and the parameter tuning time in brackets.
Different values for the η in the tuning procedure from 10−2 to 10−0.5 were tested.
The ∗ indicates the fastest case for each problem.

The CPU times for BA-GMRES with NR-SOR with automatically tuned param-
eters is close to those with optimum parameters given in Table 4.6. Moreover, the

24 K. MORIKUNI AND K. HAYAMI

Table 4.7
Results with automatically tuned parameters for the practical rank-deficient problems.

Method BA-GMRES with NR-SOR
η 10−2 10−1.5 10−1 10−0.5 Optimum

Maragal 3 18 (36, 1.8) 25 (20, 1.7) 51 (7, 1.5) 88 (3, 1.2) 88 (3, 1.2)
0.046 (0.009) 0.036 (0.006) 0.026 (0.003) * 0.023 (0.002) 0.02

Maragal 4 25 (73, 1.7) 47 (15, 1.7) 68 (7, 1.5) 118 (3, 1.2) 141 (2, 1.1)
0.174 (0.030) 0.067 (0.006) 0.046 (0.004) * 0.045 (0.002) 0.04

Maragal 5 39 (52, 1.8) 72 (17, 1.7) 112 (8, 1.5) 177 (4, 1.3) 151 (5, 1.5)
0.619 (0.059) 0.391 (0.024) * 0.307 (0.016) 0.332 (0.011) 0.29

Maragal 6 178 (105, 1.9) 268 (50, 1.9) 406 (9, 1.6) 515 (5, 1.4) 430 (7, 1.4)
31.96 (0.53) 24.34 (0.26) 8.80 (0.09) * 8.29 (0.07) 7.89

Maragal 7 185 (46, 1.9) 257 (13, 1.7) 334 (7, 1.5) 477 (4, 1.3) 334 (7, 1.5)
39.68 (0.63) 18.32 (0.29) * 15.06 (0.22) 17.67 (0.16) 14.83

Maragal 8 487 (140, 1.6) 844 (20, 1.6) 1,543 (4, 1.3) 2,294 (2, 1.1) 924 (11, 1.3)
374.14 (4.51) * 122.59 (0.65) 131.41 (0.19) 237.36 (0.12) 90.18

First row: Number of outer iterations (number of inner iterations, acceleration parameter)
Second row: Total CPU time [seconds] (parameter tuning time)

CPU time required for tuning the parameter was marginal compared to the total CPU
time. The value η = 10−1.5 ∼ 10−0.5 for the tuning gave good results.

4.4. Estimation of convergence. In the numerical experiments so far, we
used ∥AT rj∥2 to check the convergence. In the CGLS (cf. Section 2.4), ∥AT rj∥2 =
∥sj∥2 can be obtained directly from the algorithm. On the other hand, in the BA-
GMRES algorithm, ∥AT rj∥2 = ∥AT (b − Axj) ∥2 is not directly available, so one has
to compute it at each outer iteration, which may be expensive. However, in Algorithm
2.2 for BA-GMRES, ∥Brj∥2, j = 1, 2, . . . , l, is given by the scalar

|γj | =

{
β, j = 0,

| (ej , Qj (βe1)) |, j = 1, 2, . . . , l,

where Qj is the product of Givens rotations that transforms H̄j into upper trian-
gular form. If B satisfies R(A) = R(BT), then the problem min

x∈Rn
∥B (b − Ax)∥2 is

consistent, and ∥B (b − Axj) ∥2 converges to zero, as xj approaches the least squares
solution of min

x∈Rn
∥b − Ax∥2. Hence, instead of ∥AT rj∥2, γj may be used for monitor-

ing the convergence of BA-GMRES.
Thus, we compare the convergence curve of ∥AT rj∥2 with that of γj . Figures 4.8

and 4.9 show the relative residual ∥AT rj∥2/∥AT r0∥2 and γj/γ0 vs. the number of
outer iterations for BA-GMRES with NR-SOR. The quantities ∥AT rj∥2/∥AT r0∥2 and
γj/γ0 are plotted by the dotted curve and the solid curve, respectively. In Figure 4.8,
the figure on the left shows the result for RANDL3 and the figure on the right shows
the result for RANDL6. Similar results are shown for HIRLAM (left) and Maragal 6
(right) in Figure 4.9. The parameters for NR-SOR were the ones giving the shortest
CPU time. The difference between ∥AT rj∥2/∥AT r0∥2 and γj/γ0 for RANDL6 is more
pronounced than that for RANDL3. Among RANDLn, n = 1, 2, . . . , 7, γj/γ0 tends to
be different from ∥AT rj∥2/∥AT r0∥2 for the ill-conditioned problems. For HIRLAM
and Maragal 6, γj/γ0 gives a good estimate of ∥AT rj∥2/∥AT r0∥2.

In practice, if one wants to monitor ∥AT rj∥2 in BA-GMRES, the cost for comput-
ing ∥AT rj∥2 can be reduced by checking ∥AT rj∥2 only after γj becomes sufficiently
small, and then computing ∥AT rj∥2 only every several iterations.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 25

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

5 10 15 20 25 30 35 40

R
el

a
ti

v
e

re
si

d
u
a
l

Number of outer iterations

‖AT
r‖2/‖A

T
r0‖2

|γj |/γ0

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

50 100 150 200 250 300 350 400

R
el

a
ti

v
e

re
si

d
u
a
l

Number of outer iterations

‖AT
r‖2/‖A

T
r0‖2

|γj |/γ0

Fig. 4.8. Relative residual vs. number of outer iterations for RANDL3 (left) and RANDL6
(right).

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

5 10 15 20

R
el

a
ti

v
e

re
si

d
u
a
l

Number of outer iterations

‖AT
r‖2/‖A

T
r0‖2

|γj |/γ0

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

50 100 150 200 250 300 350 400

R
el

a
ti

v
e

re
si

d
u
a
l

Number of outer iterations

‖AT
r‖2/‖A

T
r0‖2

|γj |/γ0

Fig. 4.9. Relative residual vs. number of outer iterations for HIRLAM (left) and Maragal 6
(right).

5. Conclusions. We proposed applying stationary inner iterations, as precondi-
tioners, to Krylov subspace methods for solving least squares problems. For the inner
iterations, Cimmino- (Jacobi-), SOR-, and SSOR-type iterations for least squares
problems were employed. For the outer iterations, conjugate gradient type (CGNR
and CGNE) methods, and GMRES methods were used.

The inner iterations are efficient in terms of CPU time and memory, and they also
serve as powerful preconditioners effective also for ill-conditioned and rank-deficient
least squares problems. Theoretical justifications for using the inner iterations as
preconditioners were also presented.

Numerical experiments for overdetermined least squares problems, including ill-
conditioned, rank-deficient, and practical problems, showed that the NR-SOR inner
iterations combined with the left-preconditioned (BA) GMRES method is the most
effective method, which outperforms previous methods. A strategy for choosing the
parameters for the NR-SOR inner iterations was also proposed and shown to be
effective.

Acknowledgments. We would like to thank Professors Zhong-Zhi Bai, Rafael
Bru, Michael Eiermann, and José Mas, and Dr. Xiaoke Cui for discussions and
valuable advice.

26 K. MORIKUNI AND K. HAYAMI

REFERENCES

[1] K. Abe and S.-Z. Zhang, A variable preconditioning using the SOR method for GCR-like
methods, Int. J. Numer. Anal. Model., 2 (2005), pp. 147–161.

[2] D. Aoto, E. Ishiwata, and K. Abe, A variable preconditioned GCR(m) method using the
GSOR method for singular and rectangular linear systems, J. Comput. Appl. Math., 234
(2010), pp. 703–712.

[3] O. Axelsson and P. S. Vassilevski, A black box generalized conjugate gradient solver with
inner iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl., 12 (1991),
pp. 625–644.

[4] Z.-Z. Bai, I. S. Duff, and A. J. Wathen, A class of incomplete orthogonal factorization
methods. I: Methods and theories, BIT, 41 (2001), pp. 53–70.

[5] M. Benzi and M. Tůma, A robust incomplete factorization preconditioner for positive definite
matrices, Numer. Linear Algebra Appl., 10 (2003), pp. 385–400.

[6] , A robust preconditioner with low memory requirements for large sparse least squares
problems, SIAM J. Sci. Comp., 25 (2003), pp. 499–512.

[7] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[8] Å. Björck and T. Elfving, Accelerated projection methods for computing pseudoinverse so-

lutions of systems of linear equations, BIT, 19 (1979), pp. 145–163.
[9] Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM

Review, 23 (1981), pp. 444–466.
[10] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca

Scientiica, 2 (1938), pp. 326–333.
[11] X. Cui and K. Hayami, Generalized approximate inverse preconditioners for least squares

problems, Japan J. Indust. Appl. Math., 26 (2009), pp. 1–14.
[12] X. Cui, K. Hayami, and J.-F. Yin, Greville’s method for preconditioning least squares prob-

lems, Adv. Comput. Math., accepted.
[13] T. Davis, The University of Florida Sparse Matrix Collection, available online at

http://www.cise.ufl.edu/research/sparse/matrices/, The University of Florida.
[14] E. De Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math., 67 (1996),

pp. 15–41.
[15] L. Foster, San Jose State University Singular Matrix Database, available online at

http://www.math.sjsu.edu/singular/matrices/, San Jose State University.
[16] V. Frayssé, L. Giraud, and S. Gratton, Algorithm 881: A set of flexible GMRES routines

for real and complex arithmetics on high-performance computers, ACM Trans. Math. Soft-
ware, 35 (2008), pp. 13:1–12.

[17] G. H. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer
iteration, SIAM J. Sci. Comput., 21 (1999), pp. 1305–1320.

[18] K. Hayami, J.-F. Yin, and T. Ito, GMRES methods for least squares problems, SIAM J.
Matrix Anal. Appl., 31 (2010), pp. 2400–2430.

[19] M. Hegland, Description and use of animal breeding data for large least squares problems,
Technical report TR/PA/93/50, CERFACS, (1993).

[20] A. Holstad and I. Lie, On the computation of mass conservative wind and vertical velocity
fields, Technical report 141, The Norweigian Meteorological Institute, (2002).

[21] A. Jennings and M. A. Ajiz, Incomplete methods for solving AT Ax = b, SIAM J. Sci. Stat.
Comput., 5 (1984), pp. 978–987.

[22] M. S. Kaczmarz, Angenäherte auflösung von systemen linearer bleichungen, Bulletin interna-
tional de l’Academie polonaise des Sciences et Lettres, 3A (1937), pp. 355–357.

[23] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460.
[24] X.-W. Ping, R.-S. Chen, K.-F. Tsang, and E.-K.-N. Yung, The SSOR-preconditioned inner

outer flexible GMRES method for the FEM analysis of EM problems, Microwave Optical
Technology Letters, 48 (2006), pp. 1708–1711.

[25] National Institute of Standards and Technology, Matrix Market, available online at
http://gams.nist.gov/MatrixMarket/.

[26] Y. Saad, Preconditioning techniques for nonsymmetric and indefinite linear systems, J. Com-
put. Appl. Math., 24 (1988), pp. 89–105.

[27] , A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14
(1993), pp. 461–469.

[28] , Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[29] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[30] V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer.

INNER-ITERATION METHODS FOR LEAST SQUARES PROBLEMS 27

Anal., 40 (2003), pp. 2219–2239.
[31] D. B. Szyld and J. A. Vogel, FQMR: A flexible quasi-minimal residual method with inexact

preconditioning, SIAM J. Sci. Comput., 23 (2001), pp. 363–380.
[32] K. Tanabe, Projection method for solving a singular system of linear equations and its appli-

cations, Numer. Math., 17 (1971), pp. 203–214.
[33] H. A. van der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods, Numer.

Linear Algebra Appl., 1 (1994), pp. 369–386.
[34] R. S. Varga, Matrix iterative analysis, Springer Verlag, 2nd ed. ed., 2000.
[35] J. A. Vogel, Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems, Appl.

Math. Comp., 188 (2007), pp. 226–233.
[36] X. Wang, K. A. Gallivan, and R. Bramley, CIMGS: An incomplete orthogonal factorization

preconditioner, SIAM J. Sci. Comp., 18 (1997), pp. 516–536.
[37] J.-F. Yin and K. Hayami, Preconditioned GMRES methods with incomplete Givens orthog-

onalization method for large sparse least-squares problems, J. Comput. Appl. Math., 226
(2009), pp. 177–186.

[38] D. M. Young, Iterative solution of large linear systems, Academic Press, 1971.

	NII Technical Report(2011-001E)cover
	2011-001E投稿原稿（保國）20110324

