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PAPER
Asynchronous Pipeline Controller Based on Early
Acknowledgement Protocol

Chammika MANNAKKARA†, Nonmember and Tomohiro YONEDA†, Member

SUMMARY A new pipeline controller based on the Early Acknowl-
edgement (EA) protocol is proposed for bundled-data asynchronous cir-
cuits. The EA protocol indicates acknowledgement by the falling edge of
the acknowledgement signal in contrast to the 4-phase protocol, which in-
dicates it on the rising edge. Thus, it can hide the overhead caused by
the resetting period of the handshake cycle. Since we have designed our
controller assuming several timing constraints, we first analyze the tim-
ing constraints under which our controller correctly works and then dis-
cuss their appropriateness. The performance of the controller is compared
both analytically and experimentally with those of two other pipeline con-
trollers, namely, a very high-speed 2-phase controller and an ordinary 4-
phase controller. Our controller performs better than 4-phase controller
when pipeline has processing elements.

We have obtained interesting results in the case of a non-linear
pipeline with a Conditional Branch (CB) operation. Our controller has
slightly better performance even compared to 2-phase controller in the case
of a pipeline with processing elements. Its superiority lies in the EA proto-
col, which employs return-to-zero control signals like the 4-phase protocol.
Hence, our controller for CB operation is simple in construction just like
the 4-phase controller. A 2-phase controller for the same operation needs
to have a slightly complicated mechanism to handle the 2-phase operation
because of the non-return-to-zero control signals, and this results in a per-
formance overhead.
key words: Asynchronous Pipelines, Early Acknowledgement Protocol,
Bundled-Data Asynchronous Circuits

1. Introduction

Digital design embraced the synchronous design methodol-
ogy because it greatly simplifies the design task with a sin-
gle orchestrator– the clock signal– in command. In the days
when CMOS technology was in its infancy, with low gate
densities and low operating frequencies, the asynchronous
design methodology gave way to a rapid advancement in
digital design based on synchronous circuits. However, with
the remarkable conformance to Moore’s Law to date, the
designs have become denser and operating frequencies have
increased by several orders of magnitude. Clock skew has
become a significant portion of the cycle, and routing the
clock signal of a design has become an engineering art.
Moreover, clock distribution demands a significant chip area
to reduce the skew increasing the power consumption.

The distinctive advantages of asynchronous design,
which counter the above problems, signify its importance.
Without a global clock signal, the designs eliminate the ever
increasing problems associated with it. Each component
operates only on request in an inherently power-efficient
manner, generating little electromagnetic noise. Component
timing is naturally elastic with each component operating
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Fig. 1 Handshake protocols.

at its own speed. This gives a system average-case perfor-
mance as opposed to worst-case performance dictated by the
slowest component in a synchronous system. It also makes
the system more resilient to fabrication and environmental
variations. Moreover, metastability issues arising from the
handling of inputs and/or multiple clock domains do not ex-
ist in the asynchronous design paradigm.

Many asynchronous pipeline controllers have been pro-
posed over the years [4,6,7,11,16,18]. They mainly use ei-
ther the 2-phase signalling protocol or the 4-phase signalling
protocol.

In the 2-phase, or transition signalling, protocol, each
cycle consists of two transitions (rising or falling edge) on
request (req) and acknowledge (ack) signals as shown in
Fig. 1(a). A request is made by a transition on the req sig-
nal. The receiver also acknowledges completion of work by
a transition on the ack signal. The working period is defined
as the duration from the request being made to the acknowl-
edgment of completion. Hence, for the 2-phase protocol it
is between any transition on the req signal to the same tran-
sition on the ack signal. It should be noted that in this proto-
col, the next cycle can be started immediately after the work-
ing period. The MOUSETRAP [4], a simple and robust lin-
ear pipeline controller, is based on this protocol, which has
been proven to operate high-throughput pipelines at 2.1–2.4
GHz [5]. However, when the transition signalling protocol
is used, translations from 2-phase to 4-phase are usually re-
quired at some points, because in many cases, environment
circuits use level-sensitive controls.
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The 4-phase protocol is shown in Fig. 1(b). As the
name suggests, in this protocol, there are four transitions on
the req and ack signals per cycle. Here, a request is made
by the rising edge of the req signal. The corresponding ac-
knowledgement is indicated by the receiver raising the ack
signal. The working period for this protocol is from the ris-
ing edge of req to the rising edge of ack. At the end of the
working period, both req and ack signals are high. Upon
receipt of the acknowledgement, req is lowered and ack is
also lowered, completing the cycle. The duration in which
both req and ack return-to-zero before the next cycle starts
is the resetting period. The different sequencing of these 4-
phase signalling transitions leads to different controllers for
a range of cost and performance options as shown in [7].

The pipeline controller presented in this paper employs
the Early Acknowledgement (EA) protocol introduced in
[10], where its original idea was presented in [3]. This pro-
tocol is an improvement over the simple 4-phase protocol
and can hide the resetting period of the signalling. As shown
in Fig. 1(c), the request is made at the rising edge of the req
signal like in the 4-phase protocol. However, the ack sig-
nal goes high at any time point after the request, and the
req signal can be lowered in response to this early acknowl-
edgement. In the EA protocol in particular, the completion
of work is indicated by the falling edge of the ack signal in
contrast to the 4-phase protocol where it is indicated by the
rising edge. Since the working period is from the request
being made to notification of completion, in the case of EA
protocol it is from the rising edge of the req signal to the
falling edge of the ack signal. Unlike in the 4-phase proto-
col, at the end of the working period, both signals are reset
back to zero and the next cycle can be started immediately.
Hence, this protocol eliminates the resetting period inher-
ent in the 4-phase protocol and yet retains its simplicity by
maintaining the return-to-zero control signals.

In this paper†, we present a new asynchronous pipeline
controller based on the EA protocol. It is an improvement
of the controller that we proposed earlier in [2]. We also
describe how this controller can be used for non-linear con-
ditional branch (CB) operation. For both cases, we show the
set of timing constraints to be satisfied for proper operation
of the controller. Finally, this paper shows analytical and
experimental performance comparisons with the existing 2-
and 4-phase controllers.

The rest of the paper is organized as follows. Section
2 describes the design of our controller and its detailed op-
eration in the case of linear pipelines, as well as the analy-
sis of the timing constraints and performance. The perfor-
mance comparison with the 2- and 4-phase linear controllers
is given in Section 3. The design and analysis of the CB non-
linear controller is given in Section 4. Section 5 presents
comparative experimental results for the three controllers.
Section 6 presents conclusions and mentions future work in
this research.

†This paper is an extended version of [1] published in the
ACSD 2008 proceedings
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Fig. 2 General pipeline with logic processing.

2. Pipeline Controller for EA Protocol

2.1 Pipeline Operation of EA Protocol

First, we define a few naming conventions that we use for all
controllers throughout the rest of this paper. A general dia-
gram of a pipeline using the bundled-data scheme with logic
processing in between stages is shown in Fig. 2. In the inter-
face of the controller, RinN is the request to the controller
of stageN , and AinN is the corresponding acknowledge-
ment signal from it to the input side (stageN−1). Similarly,
RoutN and AoutN are the request and acknowledgement
to and from the output side (stageN+1) controller. The lo-
cal clock signal of the stage generated by the controller is
clkN . The logic processing unit (logic) between the pipeline
stages is accounted for by the matched delay (MD) inserted
in the request line between stages. For the 2-phase proto-
col, the delay can be symmetric such as a string of buffers,
whereas for the 4-phase protocol (hence, for the EA protocol
as well), the delays are asymmetric with a quicker resetting
time as shown in Fig. 3. tMD↑ represents the variable delay
for the rising transition and tMD↓ represents the delay for
the falling transition. In our implementation, tMD↓ is equal
to tAND↓.

Fig. 4 shows the operational waveforms of the EA con-
troller in a general pipeline with logic processing as in Fig.
2. The EA protocol uses the falling edge of the acknowl-
edgement signal to indicate the completion of the working
period. Hence, data D on dataN will be captured in stageN

at the falling edge of AinN (i.e., clkN = AinN ). The cap-
tured data is processed by the logic unit in between two

MD

tMD↑

in out
outin

in

out
tMD↓

Fig. 3 Asymmetric delay for MD.
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stages and becomes available at dataN+1 after tlogic de-
lay. Concurrently, on the control path, RoutN is raised and
stageN+1 controller receives the request on RinN+1 after
the tMD↑ delay. The matched delay MD is chosen such that
the falling edge of AinN+1 occurs just after dataN+1 be-
comes valid. This essentially hides the controller overhead
(i.e., from the rising edge of RinN+1, up to the falling edge
of AinN+1) inside the required tlogic delay by offsetting it
from the matched delay MD. Thus,

tlogic = tMD + tctrl (1)

where tctrl is the processing delay of the controller. When
tlogic ≥ tctrl, it can be completely hidden inside. However,
for fine-grained pipelines with 1–2 gates per stage, this con-
dition may not hold, and in that case, the controller delay is
exposed to the pipeline operation. Hence, our controller is
preferable in applications where there is a fairly large pro-
cessing delay (tlogic) between stages.

2.2 Controller Operation

Our controller for the EA protocol is depicted in Fig. 5. The
controller consists of two AND gates, a C-element, an in-
verter, and an asymmetric delay (RD) for the self-resetting
of the complete signal. The implementation of this delay is
shown in Fig. 6. tRD↓ is the variable part of the delay, and
tRD↑ equals to tOR↑. The clock signal clk of the pipeline
stage is derived from Ain, and allows the clocking of the
stage to be made at the falling edge of the acknowledge-
ment.

Fig. 7 shows the operation of the controller, which con-
forms to the pipelined operation in Fig. 4. Initially, all the
control signals are low except for the clk signal. When the
input stage raises the request Rin, the controller immediately
acknowledges the request by raising Ain. At first, this is

RinN

AinN

RoutN

RinN+1

AinN+1/

tMD↑

tlogic

dataN

data′
N

dataN+1

data′
N+1

D

D

D
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Fig. 4 Behavior of EA controller.
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Fig. 5 EA pipeline controller.
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Fig. 6 Asymmetric Delay for RD.

made possible because there are no pending requests at the
output stage through Rout (For the blocked case, see below).

Since the early acknowledgement is provided by rais-
ing Ain, rst– the input for the A2 AND gate from the asym-
metric delay– is also raised. When the input stage lowers
the request on response the acknowledgement and the data
is expected to be ready, the following events occur.

• Ain is lowered by the falling edge of Rin thorough A1,
• clk is raised, latching the new valid data from the input

stage to the current stage register, and
• complete is raised, generating the rising edge of the

output request Rout

Once the Rout has been driven high, it can be main-
tained high by C-element† even after the complete signal has
been lowered by the self-resetting circuit of the controller.
This also constitutes a local timing constraint to be satisfied
by tRD↓ of the self-resetting delay to correctly produce the
Rout signal.

Since the controller has fully completed the handshake
cycle at the input side, it is free to make a new request on
Rin. However, the pending output request Rout high effec-
tively blocks the generation of an early acknowledgement
back to the input side. Upon receipt of acknowledgement
high on Aout, Rout will be lowered, and the blocked request
from the input stage will be free to send the early acknowl-
edgement by raising Ain.

†The C-element used here with a negative input changes its
output only when the two inputs have different values, and its out-
put value is equal to that of the positive input.
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2.3 Timing Constraints

First, we turn to the timing constraints required for the de-
sired operation described in Section 2.2. For constraint anal-
ysis, we assume that our controller is in a middle stage of a
pipeline and that its environment (i.e., the controllers in the
previous and next stages) operates at a speed equal to or
slower than that of our controller. This is because we con-
sider that the linear controller is the fastest, and assuming
that the environment is slower than it allows us to evaluate
the impact on constraints when more complex operations are
built around the linear controller, as detailed in Section 4.1.
Fig. 8 shows the fastest environment where the delays can
be quantified using the controller delays.

The Signal Transition Graph (STG) for our controller
for constraint analysis is depicted in Fig. 9. Thick arrows in-
dicate the signal transitions generated from the environment
of the controller whereas regular arrows indicate transitions
made by the controller. Transitions are labelled with their
associated gate delays. Note that, according to our assump-
tions, the environment delays are either equal to or larger
than the delays incurred from the two similar controllers in
the previous and next stages as shown in Fig. 8.

We identify two types of expressions throughout the
constraint analysis: the constraints and properties. The

Rin

Ain

rst

complete

Rout

Aout

tRD↓ tRD↑

Fig. 7 Controller operation.

equation numbers are appropriately prefixed with the letter
C or P to distinguish between these types. Constraints are
what are required to be satisfied, whereas properties express
conditions that already hold. We utilize the properties of the
controller and the environment in validating the constraints
during our analysis.

In the timing calculations, the inverted inputs of AND
gates A1, A2 and of the C-element are not considered sepa-
rately. They are attributed to the total delay of the gate.

Constraint 1. The first constraint imposes conditions
to prevent data overwriting. In our controller, the pending
output request (Rout high) blocks any new requests on Rin.
This requires Rout to go high before the a new request (Rin
high) is received. Thus the timing constraint can be formu-
lated as follows:

tRin↓→Rin↑ ≥ tRin↓→Rout↑. (C2)

The left-hand side of the above constraint can be given as:

tRin↓→Rin↑ = tAND↓ + tAin↓→Rin↑. (P3)

The above path is labelled A© in Fig. 9. Note that Ain ↓
is always caused by Rin ↓ through AND gate A1. Since
the delays incurred from the environment at the input and
output sides are considered to be either equal to or larger
than the delays incurred by a linear controller, as mentioned
previously, the following holds (see Fig. 8).

tAin↓→Rin↑ ≥ tC↑ + tNMD↑. (P4)

Thus, (P3) can be rewritten as

tRin↓→Rin↑ ≥ tAND↓ + tC↑ + tNMD↑. (P5)

As for the right-hand side of (C2), we need to consider
two cases where different events cause Rout ↑.

Case 1: If Aout ↓ is early enough compared with the
next complete ↑ such that Rout ↑ is caused by complete ↑,
then the following holds:

tRin↓→Rout↑ =max(0,−tAin↑→Rin↓ + tRD↑)
+ tAND↑ + tC↑. (P6)
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The above expression is labelled B© in Fig. 9. The max
operator is used to get the larger of the delays from two
concurrent paths. The first path corresponds to the delays
from the input side, and the second path comprises delays
local to the controller in the self-resetting loop. Since the
second path actually originates from Ain ↑, tRin↓→Ain↑ =
−tAin↑→Rin↓ is used. Again, from the delay assumption of
the environment,

tAin↑→Rin↓ ≥ tC↓ + tNMD↓ (P7)

holds (see Fig. 9). Thus, (P6) can be rewritten as:

tRin↓→Rout↑ ≤max(0,−(tC↓ + tNAND↓) + tRD↑)

+ tAND↑ + tC↑. (P8)

From (P5) and (P8), a conservative version of the constraint
(C2) is obtained in the form of constraints for the variable
parameter tNMD↑, the matched delay to be inserted between
two stages of the pipeline, as follows:

tAND↓ + tC↑ + tNMD↑ ≥ tAND↑ + tC↑

that is, tNMD↑ ≥ tAND↑ − tAND↓ (C9)

and

tAND↓ + tC↑ + tNMD↑ ≥ −(tC↓ + tNMD↓) + tRD↑

+ tAND↑ + tC↑

that is, tNMD↑ ≥ tAND↑ + tOR↑

− (tC↓ + 2 · tAND↓). (C10)

In (C10), the occurrences of tNMD↓ and tRD↑ have already

been replaced with the equivalent gate delays tAND↓ and
tOR↑ respectively.

Case 2: If Aout ↓ is late and causes Rout ↑, the fol-
lowing holds:

tRin↓→Rout↑ =− (tAin↑→Rin↓ + tAND↑)
+ tRout↓→Aout↓ + tC↑. (P11)

The above expression is labelled C© in Fig. 9. From the
delay assumption (P7), it can be rewritten as:

tRin↓→Rout↑ ≤− (tC↓ + tNMD↓ + tAND↑)

+ tRout↓→Aout↓ + tC↑. (P12)

From (P5) and (P12), another conservative version of the
constraint (C2) for tNMD↑ is obtained as follows:

tAND↓ + tC↑ + tNMD↑ ≥ −(tC↓ + tNMD↓ + tAND↑)

+ tRout↓→Aout↓ + tC↑

that is, tNMD↑ ≥ tRout↓→Aout↓ − (tC↓
+ tAND↑ + 2 · tAND↓). (C13)

All the constraints derived for tNMD↑ in Cases 1 and
2 (i.e., (C9), (C10), and (C13)) can be satisfied in the pre-
ferred application of our controller where there are process-
ing elements within the pipeline and hence the matched de-
lay tNMD↑ is large enough to meet the above constraints.

Constraint 2. The next is a timing constraint to be sat-
isfied by the self resetting delay. The complete signal should
not be self-reset before the Rout high is produced. This con-
straint imposes conditions on minimum delay for the self
resetting loop tRD↓ to satisfy the above condition. We can
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formulate this constraint as

tRin↓→complete↓ ≥ tRin↓→Rout↑. (C14)

From Fig. 7, the causality relation for Rin ↓, Ain ↓, RD ↓,
and complete ↓ is straightforward. Thus, the left-hand side
of the above constraint can be given as

tRin↓→complete↓ = tAND↓ + tRD↓ + tAND↓
= tRD↓ + 2 · tAND↓. (P15)

The path of the above expression is labelled D© in Fig.
9. The right-hand side of the above constraint is the same
as that of (C2). Thus, exactly the same two cases as those
shown for Constraint 1 are considered, and the following
three constraints are obtained for (C14).

Case 1: From (P15) and (P8), a conservative version of
the constraint (C14) is obtained as follows:

tRD↓ + 2 · tAND↓ ≥ tAND↑ + tC↑
that is, tRD↓ ≥ tAND↑ + tC↑ − 2 · tAND↓ (C16)

and

tRD↓ + 2 · tAND↓ ≥ −(tC↓ + tNMD↓) + tRD↑

+ tAND↑ + tC↑
that is, tRD↓ ≥ tOR↑ + tAND↑ + tC↑

− (tC↓ + 3 · tAND↓). (C17)

Case 2: From (P15) and (P12), another conservative
version of constraint (C14) for tRD↓ is obtained as follows:

tRD↓ + 2 · tAND↓ ≥ −(tC↓ + tNMD↓ + tAND↑)

+ tRout↓→Aout↓ + tC↑
that is, tRD↓ ≥ tRout↓→Aout↓ + tC↑

− (tAND↑ + tC↓ + 3 · tAND↓).
(C18)

The constraints derived for tRD↓ in Cases 1 and 2 (i.e.,
(C16), (C17), and (C18)) should be considered when select-
ing the minimum delay for the self-resetting loop.

Constraint 3. The last timing constraint prevents
StageN clock (clkN ) from capturing new data before
StageN+1 captures data already processed between two
stages. When we use Rout ↓ event, which signals the ar-
rival of new data to the StageN+1, and unblocks the re-
quests pending at AND gate A1, as the starting point of time
measurements, this timing constraint can be formulated as
follows.

tRout↓→clkN↑ ≥ tRout↓→clkN+1↑. (C19)

Right-hand side of the above constraint (labelled F© in Fig.
9), is the path from the Rout falling edge to the capture of
data by the clock clkN+1. The left-hand side (labelled E© in
Fig. 9), is the path from Rout falling edge to the capture of
new data from clkN .

tRout↓→clkN↑ = tAND↑ + tAin↑→Rin↓
+ tAND↓ + tNOT↑

≥ tAND↑ + tC↓ + tNMD↓
+ tAND↓ + tNOT↑. (P20)

For the worst case of the constraint (C19), the equality of
the property (P20) should hold. In other words, the input
environment is the fastest possible (i.e., delays are equal to
the those incurred by the linear controller). This gives an
upper bound for the right-hand side of the constraint.

tRout↓→clkN+1↑ ≤ tAND↑ + tC↓ + tNMD↓
+ tAND↓ + tNOT↑. (C21)

In the case of linear controller in the StageN+1, from Fig.
9, the following holds.

tRout↓→clkN+1↑ = tN+1
MD↓ + tAND↓ + tNOT↑. (P22)

Hence, in the linear pipeline, the above environment de-
lay satisfies (C21) because, when the equations (C21) and
(P22) are simplified replacing tNMD↓ and tN+1

MD↓ with con-
stant tAND↓ delay, the right-hand sides of the resulting ex-
pressions amounts to 5 gate delays and 3 gate delays, re-
spectively.

The controller is model checked using UPPAAL model
checker [20, 21] tool to verify the correctness of the func-
tionality and to conclude that the above constraints compre-
hensively guarantee the operation of the controller.

2.4 Performance

Here, we derive equations for two important performance
factors of the pipeline i.e., forward latency(L) and cycle
time(T ). More importantly, we show which components of
the latter performance metric can be hidden in the case of a
pipeline with logic processing where the EA protocol has a
competitive edge. We assume that the controller in a middle
stage of a pipeline with the similar controllers in the previ-
ous and next stages. In contrast to the constraint analysis,
we assume the controllers are operating at maximal speed
in the performance analysis. With these two assumptions,
we can derive the maximum performance of our controller.

The Fig. 10 depicts the STG for our controller in de-
sired operation, when it meets the above constraints. Here,
the environment delays are equal to the delays incurred from
two similar controllers in the previous and next stages ac-
cording to our second assumption. Dashed-line arrows are
for the clock signals of the controller stage and the following
stage (clkN and clkN+1) as well as for the data path between
these stages, which are not directly in the control path of the
main control logic but are useful in measuring the cycle time
in terms of logic processing delay (tlogic). For clarity, not all
the transition arcs for these two clock signals are shown.

The cycle time is defined as the interval between two
successive data items passing through a pipeline stage when
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Fig. 10 STG for EA controller.

the pipeline is operating at maximum speed. For this pur-
pose, we can measure the gate delays between two succes-
sive clk rising edges or equivalently the delay between two
successive falling edges of Rin.

First, we identify the controller’s critical cycle using
the STG branch and merge points. This critical cycle lies on
the path (Rin ↓→ Rout ↑→ Aout ↑→ Rout ↓→ Ain ↑→
Rin ↓) indicated by the cycle composed of short dashes. In
fact, it is necessary to unfold the STG to the previous and
next stages as well to formally show that this path with the
delays shown in the STG is indeed the critical path defining
the controller’s cycle. Details of the inductive proof that
arrives at the same conclusion have been omitted. The cycle
time can be obtained from the critical path as a function of
gate delays and required matched delays (tNMD and tN+1

MD ) as
follows.

T = 3 · tAND↑ + 2 · tC↓ + tC↑ + tN+1
MD↑ + tNMD↓. (23)

Here, all terms except tN+1
MD↑ are constant gate delays. To

obtain the cycle time and forward latency in terms of logic
processing delay (tlogic), we need to express the required
matched delay tN+1

MD for the operations in terms of tlogic.
When the data is captured with clkN ↑, the next stage clock
clkN+1 ↑ needs to be made after a delay of tflop + tlogic,
where tflop is the delay of the date register. We can relate
tlogic to tN+1

MD by measuring the same delay in two paths to
the event of clkN+1 ↑.

• Path on control cycle: Rin ↓→ Rout ↑→ Aout ↑→
Rout ↓→ clkN+1 ↑

T1 = tAND↑ + tC↑ + tN+1
MD↑ + tAND↑

+ tC↓ + tNMD↓ + tAND↓ + tNOT↑. (24)

• Path on data cycle: Rin ↓→ Ain ↓→ clkN ↑→
clkN+1 ↑

T2 = tAND↓ + tNOT↑ + tflop + tlogic. (25)

To ensure the correct operation of the pipeline, T1 ≥
T2 must hold. Thus, from the above two equations, we can
derive an expression for the minimum value of tN+1

MD↑ as

tN+1
MD↑ ≥ (tflop + tlogic)

− (2 · tAND↑ + tNMD↓ + tC↑ + tC↓). (26)

Thus, if

tlogic ≥ (2 · tAND↑ + tNMD↓ + tC↑ + tC↓)− tflop (27)

holds, we can find the cycle time in terms of tlogic by replac-
ing tN+1

MD↑ in equation (23) by the right-hand side of (26).
The the cycle time for the linear controller of EA protocol
can be expressed as follows.

T l
EA = tflop + tlogic + tAND↑ + tC↓. (28)

Note that in the above expressions, tNMD↓ is equal to tAND↓
for our implementation shown in Fig. 3. The convention
that we use for cycle time and forward latency consists of
the protocol in the subscript (EA, 2P, 4P, respectively) and
the controller type (l, cb for linear- and CB-type controllers,
respectively) in the superscript.

If the logic processing time is smaller and the inequal-
ity (27) does not hold, we obtain the minimum cycle time
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(maximum throughput) of this controller directly from equa-
tion (23) by using tN+1

MD↑ = tNMD↓ = 0, that is

T l
EA|min = 3 · tAND↑ + 2 · tC↓ + tC↑. (29)

The above cycle minimum time is valid because it is possi-
ble to remove the matched delay without violating the tim-
ing constraints derived for tNMD↑

†. This could be confirmed
in our experiments as well.

Forward latency is the time taken by a data item to
emerge from an initially empty pipeline. Transitions that
take place in the forward latency path starting from the
Rin ↓ of the STG is shown in Fig. 10 by the line of short
dashes. When the inequality (27) holds, we can use a similar
argument to obtain the forward latency as follows.

Ll
EA = tAND↓ + tNOT↑ + tflop + tlogic. (30)

When the logic processing delay is small and inequality (27)
does not hold, the critical path for forward latency lies on the
path: Rin ↓→ Rout ↑→ Aout ↑→ Rout ↓→ clkN+1 ↑,
which is:

L = tAND↑ + tC↑ + tN+1
MD↑ + tAND↑ + tC↓

+ tN+1
MD↓ + tAND↓ + tNOT↑. (31)

Like the minimum cycle time, the minimum forward latency
on this path can be derived using tN+1

MD↑ = tN+1
MD↓ = 0. It is

given by

Ll
EA|min = 2·tAND↑+tAND↓+tC↑+tC↓+tNOT↑. (32)

In a general pipeline with logic processing, condition
(27) often holds. In that case, cycle time and forward la-
tency for our controller are given by equations (28) and (30),
respectively.

3. Comparison with 2- and 4-phase Pipeline Con-
trollers

To demonstrate the advantage of the EA-protocol-based
controller, we compared its performance with 2- and 4-
phase pipeline controllers. The following subsections de-
scribe the controllers used for this comparison and their key
features.

3.1 2-phase Controller: MOUSETRAP

For the 2-phase or the transition signalling protocol, the
MOUSETRAP controller was selected for its simplicity and
high performance. As shown in Fig. 11, this controller con-
sists of a simple transparent latch (denoted by the rectangu-
lar box) and an XNOR gate. The signal enable is used to
drive data latches (instead of D-flipflops) in the data path.

Initially, all control signals are low except for the
enable signals that make all the pipeline stages transparent.

† In the pipeline, the constraints derived for tN
MD of stageN

are valid for tN+1
MD of stageN+1

When the first data item flows through the pipeline stage, it
flips the values of RinN , RoutN , and AinN exactly once
(to high). Subsequently, the second data item flips all these
signals once again (to low). This is 2-phase (or transition)
signalling where each transition (either up or down) indi-
cates a distinct request or acknowledgement.

Once a data item has been captured by stage latches,
three actions occur in parallel: (i) the request to the next-
stage RoutN is made; (ii) an acknowledgement, AinN , is
sent to the previous stage, allowing the next data item to
be sent; and finally (iii) enableN is lowered to make the
stage latches opaque, protecting the current data from be-
ing overwritten. Subsequently, when an acknowledgement,
AoutN is received from stageN+1, the latch in stageN is
re-enabled (i.e., made transparent).

enableN

RinN RoutN

AoutN

AinN

enableN+1

MD

AinN+1

RinN+1

AoutN+1

RoutN+1

StageN StageN+1

Fig. 11 MOUSETRAP controller.

In [4] the operation of the MOUSETRAP controller in
both high-speed pipelines and pipelines with logic process-
ing is described in detail. The authors also presented the
controller’s cycle time and the forward latency. The most
important point to note regarding the EA protocol and 4-
phase signalling protocol is that there is no resetting over-
head in the 2-phase protocol, hence there is none controller
either. We have extended the original derivation of cycle
time and latency for MOUSETRAP to cases with and with-
out logic processing. The complete derivation can be found
in Appendix A. The results are summarized as follows.

T l
2P = 2 · tlatch + tlogic + tXNOR↑ (33)

Ll
2P = tlatch + tlogic. (34)

The minimum cycle time and forward latency can be derived
from the above equations when tlogic = 0 as follows.

T l
2P |min = 2 · tlatch + tXNOR↑ (35)

Ll
2P |min

= tlatch. (36)

3.2 4-phase Controller

We used the 4-phase controller proposed in [17] for this
comparison. That controller is shown in Fig. 12. G1 and
G2 are complex gates composing the controller.

We could derive the cycle time and latency for this 4-
phase controller using a similar mechanism to the one used
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Rin

Ain

Aout

Rout

clk

G1 G2

Fig. 12 4-phase controller.

in the EA protocol controller. The formal analysis for ob-
taining them is described in Appendix B. The results can be
summarized as follows. When tlogic is large enough that the
inequality

tlogic ≥ tG1↑ + tG2↑ − tflop (37)

holds, the cycle time and the latency can be expressed as:

T l
4P = tflop + tlogic + tG1↑ + tG1↓

+ tG2↓ + tAND↓ (38)

Ll
4P = tflop + tlogic + tG1↑. (39)

When tlogic is too small, that the above inequality does not
hold, then the cycle time and latency take the following
form.

T l
4P |min = 2 · tG1↑ + tG2↑ + tG1↓ + tG2↓ (40)

Ll
4P |min

= 2 · tG1↑ + tG2↑. (41)

3.3 Performance Comparison

The merits of using the EA controller could be observed in
the case where tlogic satisfies the condition derived in (27).
Then, the cycle time for our controller is given by (28). This
can be compared analytically with the 2- and 4-phase pro-
tocols using equations (33) and (38). It is not possible to
compare the cycle times without specific delays obtained
from technology libraries. However, we can get an idea
of the controller overhead in the overall cycle time in each
case. Note that the data-path delay for our controller and
for the 4-phase controller is both tflop + tlogic because, we
use D-flipflops on the data-path. In the case of the MOUSE-
TRAP controller, the data-path delay is tlatch + tlogic as
a result of the use of transparent latches. Any additional
terms appearing in the cycle-time expressions apart from
these data-path delays are incurred by the controller over-
head. Hence, our controller has an overhead of only two gate
delays (tAND↑ + tC↓), which is comparable to the 2-phase
controller’s overhead (tlatch + tXNOR↑). For the 4-phase
controller, the overhead is 4 gate delays, which is incurred
by the resetting period.

However, our controller does not exhibit the per-
formance advantage in first-in-first-out (FIFO) types of
pipelines, which have no logic processing. In that case, its

minimum cycle time is given by (29), where the controller
overhead is exposed in the controller’s critical cycle. Com-
pared with the 2-phase controller (35), this is clearly larger.

The forward latencies of the three controllers can
be compared using equations (30), (34), and (39). The
MOUSETRAP controller clearly exhibits the lowest for-
ward latency, whereas the 4-phase controller shows slightly
lower latency than our controller, given that the gate delays
are equal. The forward latencies when there is no logic pro-
cessing are given by equations (32), (36), and (41). Again,
we can see that the MOUSETRAP controller has the lowest
latency and our controller has the highest.

It should be noted that neither our controller nor the
MOUSETRAP controller is a Speed Independent(SI) circuit
whereas the 4-phase controller is. SI circuits work correctly
under the unbounded gate delay model, for which gate de-
lays are unbounded (yet finite) and wire delays are zero. In
our controller (and also in the MOUSETRAP), there are tim-
ing constraints that should be held by the gate delays of the
selected technology for the design. The performance advan-
tages of both controllers over the 4-phase controller depends
partly depend this as well.

4. Conditional Branch (CB) Controller

We have used the CB non-linear pipeline operation to
demonstrate the simplicity of the EA protocol (which is
a return-to-zero protocol) in composing complex pipeline
constructs. The CB operation implements the logical equiv-
alent of an if-then-else construct. The data in the input is
diverted to one of the branches depending on the select sig-
nal to the controller.

The CB controller communicates with the input stage
by means of Rin and Ain signals, whereas the two output
stage control signals are Rout1, Aout1 and Rout2, Aout2, re-
spectively as shown in Fig. 13. When a request Rin is made
from the previous stage of the pipeline, data is captured by
the clk signal. Acknowledgement Ain is sent to the input
stage when the data is captured. Depending on the select
signal, the request is routed on either the first branch Rout1
or the second branch Rout2. It is assumed that the select
signal is generated from one or more data-path signals.

4.1 Early Acknowledgement CB Controller

The CB controller for the EA protocol is a simple exten-
sion of its linear controller. The controller can be composed
of a linear controller (for EA protocol), demultiplexer, de-
lay element (SD), and an OR gate. The CB controller at
StageN of a pipeline is shown in Fig. 13. The Rin and Ain
of the controller are handled by the linear controller used
within the CB controller. A function generator gen that pro-
duces select from stageN data is explicitly considered for
analyzing constraints imposed by such an application. In
Fig. 13, the rectangular box connected to clkN signal rep-
resents the stageN register which consists of D-flipflops.
data′N is the captured data of dataN in the stage register
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0

1

C

complete
RD

A1

A2
rst

SDAin

Rin

clkN

gen
select

data′
N

dataN

EA linear controller

EA CB controller

req req d

ack
Aout1

Aout2

DEMUX

Rout1

Rout2

t
N+1′
MD1

t
N+1′
MD2

StageN−1 StageN StageN+1

tN
MD

Fig. 13 Early Acknowledgement CB controller.

according to our naming convention. The select signal is
generated using function generator gen from this captured
data as shown. The asymmetric delay element SD, which is
the same type as MD shown in Fig. 3, is used to compensate
for the delay of gen. An additional constraint on SD for
this correct sampling of the select signal is presented in the
constraint analysis of this controller. The select signal di-
verts the delayed request req d from the linear controller to
either the Rout1 or Rout2 conditional paths through the de-
multiplexer. Since only one request is acknowledged from
either Aout1 or Aout2, the acknowledgements from the con-
ditional branches can be simply ORed to produce the ack to
the linear controller.

4.1.1 Timing Constraints

Timing constraints for the CB controller are analyzed as an
extension of the linear controller constraints presented in
Section 2.3. Again, we obtain timing constraints to satisfy
the desired operation described in Section 4 assuming that
the CB controller is in a middle stage of a pipeline with the
environment operating at a speed equal to or slower than
our linear controller. First, the three constraints presented
in Section 2.3 are reevaluated to ensure proper operation of
the linear controller used within the CB controller. Then, an
additional constraint on SD delay element for proper oper-
ation of demultiplexer is presented.

Constraint 1 and 2. The CB controller is viewed
as a linear controller (or linear pipeline) from the input
side because, it uses a linear EA controller to communi-
cate with Rin and Ain. The difference can be perceived
only when viewed from the controller’s branches owing to
the additional branching logic for request and acknowledge.
Thus, constraints involving tRout↓→Aout↓ should be recon-
sidered. This corresponds to Case 2 of each constraint,
where Aout ↓ causes Rout ↑. The two constraints (C13)
and (C18) can be restated for the linear controller within the
CB controller using the labels req and ack for the output side
as in Fig. 13.

tNMD↑ ≥ treq↓→ack↓

− (tC↓ + tAND↑ + 2 · tAND↓) (C42)
and tRD↓ ≥ treq↓→ack↓ + tC↑

− (tAND↑ + tC↓ + 3 · tAND↓) (C43)

where

treq↓→ack↓ = tSD↓ + tAND↓ + tRout1↓→Aout1↓ + tOR↓
= 2 · tAND↓ + tRout1↓→Aout1↓ + tOR↓.

(C44)

Here, tNMD↑ and tRD↓ should be selected to satisfy these
new constraints.

Constraint 3. This constraint can be restated for CB
controller from (C21) as follows.

treq↓→clkN+1↑ ≤ tAND↑ + tC↓ + tNMD↓
+ tAND↓ + tNOT↑. (C45)

This condition must be satisfied by any controller in the out-
put stage.

For example, this constraint can be considered for two
cases 1) when there is a linear controller at the output stage,
and 2) when there is a CB controller at the output stage. It
should be noted that there is no difference in these two cases
as far as this constraint is concerned because, the input side
of a CB controller is composed of a linear controller. Hence,
the output stage, Rout1/Aout1 (and/or Rout2/Aout2) will
be connected to a linear controller in either case. The path
delay from req ↓ to clkN+1 ↑ (similar to (P22) in linear
controller) in above two cases can be obtained from the STG
diagram for the CB controller shown in Fig. 14.

treq↓→clkN+1↑ = [tSD↓ + tAND↓] + t′MD1↓
+ tAND↓ + tNOT↑. (P46)

Due to the extra overhead incurred by the SD and demulti-
plexer, the property becomes a hard condition to satisfy with
5 gate delays in either side of the inequality. Satisfaction of
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Ain ↓

Rin ↑

Ain ↑

Rin ↓

Rout1 ↓

Aout1 ↓

Rout1 ↑

Aout1 ↑

clkN ↑ clkN+1 ↑tflop + tlogic

tNOT↑ t′
MD1↓ + tAND↓ + tNOT↑

tC↑ + tMD↑

tAND↑

tC↓ + tMD↓

[tOR↓] + tC↑ + [tAND↑]

t′
MD1↑ + tAND↑

tAND↓

t′
MD1↓ + tAND↓

req d ↑

req ↓tAND↑

tAND↑ + tC↑ + [tSD↑]

[tAND↑]

[tOR↑] + tC↓

[tSD↓]

req d ↓

[tAND↓]

select

tflop + tgen

B

A

Fig. 14 STG for EA-CB controller.

this constraint can be guaranteed by increasing tNMD↓ to be
more than one gate delay at the expense of introducing ad-
ditional overhead to the critical cycle of the controller. (This
can be done by adding buffers in between the out port and
the rightmost AND gate of the asymmetric delay in Fig. 3.
As a result, it also increases the tMD↑ by the same amount
of delay incurred by the buffers. It should be adjusted back
by reducing the AND gates which comprises the variable
part of the delay.)

Constraint 4. An additional constraint on a CB con-
troller requires the select signal to be valid before req d goes
high. This ensures proper operation of the demultiplexer
that switches the request req to either branch depending on
the select signal. The EA protocol stipulates that the data
becomes valid before Rin ↓ arrives. Thus, the worst case
for this constraint is when data becomes valid simultane-
ously with Rin ↓. In that case, the constraint becomes:

tRin↓→req d↑ ≥ tRin↓→select. (C47)

For Rin ↓ to cause req d ↑, at least tAND↑ of AND gate A2,
tC↑ of the C-element, and tSD↑ of SD should occur (path
labelled A© in Fig. 14). Hence, the lower bound for the
left-hand side of the above constraint can be expressed as
follows.

tRin↓→req d↑ ≥ tAND↑ + tC↑ + tSD↑. (P48)

The Rin ↓ also causes data capture by lowering Ain though
the AND gate A1 and raising the clock NOT gate. The func-
tion generator produces the correct select signal from the

captured data after time tgen has elapsed (path labelled B©
in Fig. 14). Hence, the right-hand side of the constraint can
be expressed as

tRin↓→select = tAND↓ + tNOT↑ + tflop + tgen. (P49)

Thus, the constraint on the asymmetric delay can be derived
as

tAND↑ + tC↑ + tSD↑ ≥ tAND↓ + tNOT↑ + tflop + tgen

tSD↑ ≥ tflop + tgen + tAND↓ + tNOT↑
− (tAND↑ + tC↑). (C50)

This constraint defines the selection of tSD↑ based on the
select generator function.

4.1.2 Performance

In this section, the controller’s cycle time and forward la-
tency are derived analytically as was done for the linear con-
troller. The minimum time for processing logic tlogic that
ensures the advantage of the new controller by hiding its
overhead is also derived in the form of an inequality similar
to that of (27).

The STG for the CB controller is shown in Fig. 14.
The arrows with associated delays in square brackets in-
dicate the delays incurred by the controller’s extra compo-
nents (demultiplexer, delay element, and OR gate). We try
to differentiate between the linear operation overhead and
the additional overhead incurred due to the CB operation,
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and then reflect them in the equations that we derive as well.
The diagram shows the STG for only one branch of the con-
troller (Rout1/Aout1) without losing any functional informa-
tion needed to perform the analysis.

The notable difference from the linear controller’s STG
is in the matched delays MD1 and MD2 for the controller’s
output branches. As shown in Fig. 13 and detailed in the
constraint analysis, part of the output-side matched delays
may be used for SD inside our controller to compensate for
the select generator function. The matched delays outside
the controller MD1′ and MD2′ are selected such that the
original matched delay remains the same. i.e.,

tMD1↑ = t′MD1↑ + tSD↑

and tMD2↑ = t′MD2↑ + tSD↑.

We can measure the delays in the control cycle and data
cycle to derive the cycle time in tlogic and the inequality for
optimal controller operation. The cycle time (indicated by
the cycle composed of short dashes in Fig. 14) in terms of
gate delays can be expressed as follows.

T = tAND↑ + tC↑ + [tSD↑] + [tAND↑]
+ t′MD1↑ + tAND↑ + [tOR↑] + tC↓

+ tAND↑ + tC↓ + tMD↓. (51)

The delays enclosed within square brackets indicate the
extra delays of the path due to CB operation. We can express
this cycle time in terms of tlogic by measuring the delays in
the control and data paths.

• Path on control cycle: Rin ↓→ req d ↑→ Rout1 ↑→
Aout1 ↑→ req ↓→ Rout1 ↓→ clkN+1 ↑

TCB1 = tAND↑ + tC↑ + [tSD↑] + [tAND↑]
+ t′MD1↑ + tAND↑ + [tOR↑] + tC↓ + [tSD↓]

+ [tAND↓] + t′MD1↓ + tAND↓ + tNOT↑.
(52)

• Path on data cycle: Rin ↓→ Ain ↓→ clkN ↑→
clkN+1 ↑

TCB2 = tAND↓ + tNOT↑ + tflop + tlogic. (53)

Again, for proper operation of the pipeline, TCB1 ≥ TCB2

must hold. This translates to:

t′MD1↑ ≥ (tflop + tlogic)

− (2 · tAND↑ + tC↑ + tC↓ + t′MD1↓)

− [tSD↑ + tAND↑ + tAND↓ + tOR↑ + tSD↓].
(54)

Thus, if

tlogic ≥ (2 · tAND↑ + tC↑ + tC↓ + t′MD1↓
+ [tSD↑ + tAND↑ + tAND↓ + tOR↑
+ tSD↓])− tflop (55)

holds, the cycle time for CB controller T cb
EA can be ex-

pressed in terms of tlogic by substituting the minimum of
(54) into equation (51).

T cb
EA = tflop + tlogic + tAND↑ + tC↓ − [2.tAND↓]. (56)

To simplify the above expression, we use the fact that
t′MD1↓ = tMD↓ = tSD↓ = tAND↓ in accordance with our
implementation.

Note that in inequality (55), the additional delays due
to CB operation (enclosed in brackets) constitute two parts.
1) tSD, which compensates for tgen and 2) delays due to the
DEMUX and the OR gate. When the condition in (55) is
satisfied, the controller’s cycle time is given by (56). Ac-
cording to inequalities of (27) and (55), the minimum tlogic

required to hide the additional overhead incurred by the CB
controller is higher than that for the linear controller.

In the case where the logic processing time is too small
and inequality (55) does not hold, we get the minimum cycle
time directly from the equation (51) with t′MD1↑ = tMD↓ =
0. It is:

T cb
EA|min

= 3 · tAND↑ + tC↑ + 2 · tC↓
+ [tSD↑ + tAND↑ + tOR↑]. (57)

Forward latency is also measured in a manner similar to
that for the linear controller; this is marked in dashed lines
on the STG diagram. For sufficiently large tlogic, forward
latency has the same terms (despite the minimum tlogic be-
ing larger) as for the linear controller. That is,

Lcb
EA = tAND↓ + tNOT↑ + tflop + tlogic. (58)

When tlogic is small and the inequality (55) does not hold,
the critical path lies on the path: Rin ↓→ req d ↑→
Rout1 ↑→ Aout1 ↑→ req ↓→ Rout1 ↓→ clkN+1 ↑.

L = tAND↑ + tC↑ + [tSD↑] + [tAND↑] + t′MD1↑
+ tAND↑ + [tOR↑] + tC↓ + [2.tAND↓]
+ t′MD1↓ + +tAND↓ + tNOT↑. (59)

Similar to the minimum cycle time, the minimum for-
ward latency can be derived for this case when t′MD1↑ =
t′MD1↓ = 0 as follows.

Lcb
EA|min

= 2 · tAND↑ + tAND↓ + tC↑ + tC↓ + tNOT↑
+ [tSD↑ + tAND↑ + 2.tAND↓ + tOR↑]. (60)

4.2 2-phase CB Controller

The CB controller for the transition signalling protocol is
not as straightforward as in the EA or 4-phase protocol.
Since there is no resetting of the request or acknowledge-
ment signal, we cannot make use of a demultiplexer to route
the request on the sampled select signal. The CB controller
for 2-phase protocol based on [22] is shown in Fig. 15.
Note that D-flops are used instead of the transparent latches
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used in the MOUSETRAP controller for a linear pipeline
because, the D-flipflop-based controller is more robust than
the transparent-latch-based controller in this case.

Initially, all control signals are in the same state and the
complete signal is high, which indicates that the controller’s
output side operations are complete. The select signal can
be either high or low depending on the data or other con-
trol information that handles the branching operation. When
a request is made with a transition on Rin, the difference
between the states of Rin and Ain generates the clk signal,
which is gated by complete. Since complete is initially high,
the clk signal is raised and captures the control and data sig-
nals. Once the Rin is captured, the same transition occurs in
Ain, which acknowledges the request to the input side. The
s1 and s2 flipflops work as a ”transition demultiplexer” that
generates the requests on either Rout1 or Rout2 depending
on the select signal. The transition on Rout1 or Rout2 is
made using its previous level from Aout1 or Aout2, respec-
tively, and inverting it through the two XOR gates. The first
XOR gate generates ”Rout1 = Aout1 when select = 0”,
whereas the second XOR gate generates ”Rout2 = Aout2
when select = 1”. For example, if the select signal is low,
s1 captures Aout1, generating transitions on Rout1, i.e., re-
quests on the first branch.

Either request event causes the complete signal to go
low, indicating that the latched data is being passed to the
output stage, which effectively blocks new requests from the
input side. Upon the acknowledgement of the correspond-
ing branch, each pair of request and acknowledgement sig-
nals returns to the same state, raising the complete signal
high and re-enabling the requests from the input side. In
comparison to the minimal overhead of the linear controller
(MOUSETRAP), s1 and s2 the request-generating toggle
flops and completion detection mechanism incur a consid-
erable overhead in their operation, which adversely affects
the controller’s performance.

D Q

CLK

Rin

D Q

CLK

select

Rout1

Aout1

Rout2

Aout2

clk

D Q

CLK

Ain

complete

s1

s2

gen
dataN

Fig. 15 2-phase CB controller.

A formal analysis to obtain this controller’s cycle time
is presented in Appendix C. We found that

if tlogic ≥ tlatch + tXNOR↓ (61)

holds, this controller’s cycle time and forward latency can
be obtained as:

T cb
2P = tflop + tlogic + 2 · tAND↑

+ (tXNOR↑ − tXNOR↓) (62)

Lcb
2P = tflop + tlogic + tXOR↑ + tAND↑. (63)

If the above condition does not hold, the minima of these
two parameters are obtained as follows.

T cb
2P |min

= tflop + tlatch + tXNOR↑ + 2 · tAND↑ (64)

Lcb
2P |min

= tXOR↑ + tAND↑ + tflop + tlatch + tXNOR↓.
(65)

4.3 4-phase CB Controller

The construction of the CB controller for the 4-phase proto-
col is to that for the EA protocol. It is the same as Fig. 13,
except that a 4-phase linear controller is used in place of the
EA linear controller. The operation as described in previ-
ous Section 4.1 is valid for the 4-phase Conditional Branch
controller as well.

The cycle time and forward latency of this controller
are obtained in a way similar to that of CB controller for the
EA protocol. Details are given in Appendix D. The obtained
expressions can be summarized as follows.

If tlogic ≥ (tG1↑ + tG2↑ + [tSD↑ + tAND↑])
− tflop, (66)

then

T cb
4P = tflop + tlogic + tG1↑ + tG1↓ + tG2↓

+ tAND↓ + [2 · tAND↓ + tOR↑ + tOR↓] (67)

Lcb
4P = tflop + tlogic + tG1↑. (68)

Otherwise, the minimum cycle time and forward latency are

T cb
4P |min

= 2 · tG1↑ + tG2↑ + tG1↓ + tG2↓
+ [tSD↑ + tAND↑ + 2 · tAND↓
+ tOR↑ + tOR↓] (69)

Lcb
4P |min

= 2 · tG1↑ + tG2↑ + [tSD↑ + tAND↑]. (70)

4.4 Performance Comparison

Again, an accurate comparison of cycle times requires spe-
cific delay values from technology libraries. However, we
use employ the same mechanism to compare the controller
overheads as we used in the the linear controller compar-
ison (in Section 3.3). In cycle time comparison, we can
observe from equations (56), (62) and (67) that 4-phase
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cycle time has a higher overhead than the 2-phase con-
troller and our controller. Hence, we put more emphasis
on comparing the first two controllers because this compar-
ison shows the advantage of our controller over the 2-phase
controller. For the EA controller (56) and 2-phase controller
(62), an approximate comparison can be done assuming that
tAND↑ ≈ tAND↓ and tXNOR↑ ≈ tXNOR↓, which further
simplifies the cycle times to:

T cb
EA = tflop + tlogic + tC↓ − tAND↓ (71)

T cb
2P = tflop + tlogic + 2 · tAND↑. (72)

A comparison of the controllers’ simplified cycle times (72)
and (71) shows that the latter is slightly better provided that

tC↓ − tAND↓ < 2 · tAND↑ (73)

This can hold in the case of many technologies mainly ow-
ing to the fact that the right-hand side is two gate delays
while the left-hand side is less than one gate delay. This
gives a slight performance advantage to the EA-protocol-
based controller. In a process technology where gate delays
can be chosen such that tAND↑ < tAND↓ and tXNOR↑ <
tXNOR↓ (for example, using transistor sizing in ASIC tech-
nologies), the cycle times in both cases can be reduced ac-
cording to the expressions that we obtained ((56) and (62)).
Again, this give rises to the above condition, which deter-
mines the higher performance of the two controllers. As
shown in Section 5.2, in the case of our experiments on an
FPGA where the gate delays are identical, we observed that
the EA controller’s cycle time was slightly better.

When there is no logic processing, the cycle times can
be compared using equations (57), (64), and (69). With
the minimum cycle time, the 2-phase controller exhibits the
highest performance, whereas the 4-phase controller shows
the slowest performance. As in the case of the linear con-
troller, this result supports the 2-phase controller as the best
candidate for pipelines with very small or no logic process-
ing in between stages.

The forward latencies of the three CB controllers were
derived in equations (58), (63), and (68). Given that the
gate delays are equal, we have roughly the same latencies
for our controller and for the 2-phase controller, whereas
the 4-phase controller has slightly lower latency. The min-
imum latencies obtained for each type of controller (equa-
tions (60), (65) and (70)) when there are no logic processing
units in between stages also conform to the same latency
order with the 4-phase controller being the lowest and our
controller being the highest.

5. Implementation and Results

In this section we describe in detail the test cases that we
made to evaluate the performance of each controller and
present the preliminary simulation results.

5.1 Implementation

To prove the concept, we evaluated the performance of each

of the controllers on a Xilinx Vertex-4 FPGA. We made
maximum efforts to minimize the uncertain path delays in
FPGA routing. All control and data path circuits of the
designs were placed identically in each case using the rloc
placement constraints of the Xilinx ISE tool. Synthesis op-
tions, both general and Xilinx-specific ones were tuned to
suit asynchronous design synthesis; for example, the use of
global and regional clock buffers was disabled. Thus, we be-
lieve that the results we obtained are comparable with each
other with minimum uncertainty in the measurements.

For the linear controllers, we created simple 8-bit 4-
stage FIFOs operated by controllers of each type. For the
CB controllers, we built 8-bit Y-shaped pipelines with 4-
stages where two stages were in the stem and two stages
were branched out. The CB controller was placed in the
second stage of the pipeline. Data width of all pipelines
were 8-bit.

Environment of the pipelines comprised input-
generating shift registers and output-capturing registers (two
registers in the CB case) were operating with minimum
overhead, which maximized the performance of the con-
troller under test.

Performance of controllers were evaluated in two cases

1. pipelines operating without any processing
2. pipelines operating with processing between stages

In the first case, there was minimum delay between
stages without any logic processing in between which rep-
resents the maximum performance of the controllers for
high-speed pipelines. Since there was no logic process-
ing (tlogic = 0), no matched delays were inserted between
stages either (tMD = 0).

In the second case, we tested the performance of
pipeline controllers for a general scenario of pipelines op-
erating with processing in between stages. To emulate the
processing elements, we used simple buffers to delay the
data path. The introduced logic delay ranged from 6.9ns
to 7.2ns (varied depending on the exact routing of the data
path) for each stage of the pipeline. This delay was chosen
such that it satisfied the condition (55) (which in turn satis-
fies condition (27)) that we derived for CB controller for the
EA protocol. Thus, we could obtain the performance of the
EA protocol (and other protocols) in the case of a general
pipeline with logic processing, for which these two condi-
tions can be easily satisfied.

The delay elements for controllers were tuned starting
from a higher delay to the lowest possible delay for which
proper operation of the pipeline was guaranteed. Even when
the logic delay was measured accurately, it was not possible
to get the exact delay value. The tracking error, i.e., the
difference between the actual and required delays, should be
always kept positive to correctly operate a design. This error
is additive to the cycle time of each design and is common
to all designs of the three protocols. In an ASIC design,
adjustable delays are desired so that the delay can be set
properly after the design has been fabricated.
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5.2 Results

Post-layout simulation results for Vertex-4 obtained using
ModelSim are shown in Table 1. The first column of re-
sults shows, that the 2-phase controllers outperformed the
4-phase and EA controllers in linear and CB operations
when there was no processing in between pipeline stages
(tlogic = 0). Its performance advantage was evident in
these cases where minimum controller overhead is desir-
able. Since tlogic = 0, condition (27) for the EA controller
does not hold, so the overhead of the controller is exposed on
the critical cycle time which explains its larger cycle time.

The second column shows that, in the cases where logic
processing is present between pipeline stages, the EA con-
trollers performed better as their overhead got hidden in the
required delay between stages. For EA controllers, condi-
tion (27) holds in this case, so their performances are com-
parable to that of the 2-phase controller in linear operation,
which confirms the analytical cycle times that we obtained
in (28) and (33).

The last thee rows of the second column show, that the
CB controller for EA protocol outperformed the 4-phase
controller and performed slightly better than the 2-phase
controller. As we demonstrated in our analysis, the ability
of the EA protocol to hide the control overhead leads to this
performance gain. In our FPGA implementation, all gates
(including the C-elements) are implemented using lookup
tables (LUTs) that have identical delays, which simplifies
the comparison of controller cycle times. Given the equal
delays in gates, the difference in cycle times of CB con-
trollers derived in (56) and (62) amounts to a 2-gate delay,
which is roughly between 600 ps and 1100 ps [19] in the
Vertex-4 architecture. Hence, the results (600 ps difference)
agree with our formal analysis, subject to routing delay vari-
ations. Even though the gain is relatively small, the simplic-
ity of the EA protocol as a 4-phase protocol makes it more
appealing in this case, which is a non linear asynchronous
pipeline application. As described earlier, when the 2-phase
protocol is used, translations from 2-phase protocol to 4-
phase protocol are usually required at some points where
level-sensitive control is necessary. In such cases, our con-
troller has the added advantage using a variation of the 4-
phase protocol and of having a performance gain over the 2-
phase protocol by hiding the additional controller overhead

Table 1 Cycle-time comparison.
Cycle Time Without With

(ns) processing processing
Linear
2-phase (MOUSETRAP) 2.6 9.9
4-phase 3.6 12.4
EA 4.0 10.0
CB
2-phase 4.0 11.2
4-phase 7.1 15.1
EA 5.6 10.6

incurred by non linear operations.
To evaluate the area consumption of our controller, we

measured the resource utilization of the FPGA for our de-
signs. The resource utilization of the control path for both
controllers and matched delays in terms of FPGA slices used
in the 4-stage pipelines used in our experiments is shown in
Table 2. In the Vertex-4 architecture that we used, one slice
comprises two lookup tables and two flipflops and/or latch
units.

Table 2 Resource utilization comparison.
Resource Utilization Without With
( of slices) processing processing
Linear
2-phase 4 24
4-phase 4 27
EA 12 26
CB
2-phase 8 43
4-phase 8 41
EA 20 42

The first column of Table 2 shows the resource utiliza-
tion of pipelines without processing for linear and CB con-
trollers for all three protocols. Since we did not use any
matched delays in this case, this column shows the resources
consumed by controllers alone. In the linear 4-stage FIFO,
both 2-phase and 4-phase controllers have the same resource
utilization; 4 slices. EA controllers, which consume the
most resources, utilize 12 slices in total for their logic and
for the self-resetting delay elements inside. However, when
we consider the case with logic processing (second column),
where the control path now includes both control logic and
matched delays, the resource usage of EA controllers (26
slices) is comparable to that of the 2- and 4-phase controllers
(24 and 27 slices, respectively). The reason for this is that
EA controllers require a smaller matched delay tMD↑ for a
logic processing stage given the same tlogic compared with
the other two protocols.

The same reasoning applies to the case of CB con-
trollers. Even though EA controllers themselves consume
higher resources, the total resources consumed in the case
of a pipeline with processing is comparable in all thee cases.
Hence, we could obtain the performance gains described
earlier with more or less the same resource utilization for
the control path, which highlights the advantages of using
EA protocol.

6. Conclusions and Future Work

We proposed a new pipeline controller for the Early Ac-
knowledgement (EA) protocol. Its timing constraints were
analyzed and performance metrics were derived. When the
pipeline has logic processing, the controller can operate with
minimal overhead by hiding its overhead in the required
matched delay. In such a case, we found both analytically
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and experimentally that the controller’s cycle-time was com-
parable to 2-phase controller MOUSETRAP.

Furthermore, we highlighted on the advantages of us-
ing EA protocol, which inherits the simplicity of the 4-phase
protocol, by comparing the conditional branch controllers
for each protocol. The area usage of the protocol is also
comparable to those of other two protocols in the preferred
application of this protocol since the required matched delay
is smaller, so that the control path (controllers and matched
delays together) do not have a area penalty.

We would like to evaluate and confirm the performance
of the controllers on an ASIC, such as 65-nm technology.
With think that experimental results in such a case are nec-
essary to strengthen our claims for the advantages of using
the EA protocol.
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Appendix A: Performance analysis of 2-phase linear
controller

Here we use the STG diagram presented in [4] (with our
naming conventions for the control signals. See Fig. A· 1)
to derive the performance of MOUSETRAP controller. Also
note that the signals request/acknowledge signals confirm to
2-phase protocol hence an arrow to/from those signals imply
a ”transition” except for the enable signals. The matched
delays are symmetrical for the transition signalling protocol.
Hence there is no distinction made between tMD↑ and tMD↓
as in the case of other two protocols. The cycle time lies on
the path marked in dashed line and the forward latency can
be measured on the same path from AinN → RinN+1 →
AoutN . Hence,

T = tN+1
MD + tlatch + tXNOR↑ + tlatch

= tN+1
MD + 2 · tlatch + tXNOR↑ (A· 1)

L = tN+1
MD + tlatch. (A· 2)

To express the above equations in terms of tlogic, the time
can be measured on control path and data path as follows.

• Path on control cycle: AinN → RinN+1 →
AoutN → enableN+1−

T1 = tN+1
MD + tlatch + tXNOR↓. (A· 3)

• Path on data cycle: AinN → enableN− →
enableN+1−

T2 = tXNOR↓ + tlogic + tlatch. (A· 4)

To correctly latch the data at the next stage (enableN+1−)
it is required that T1 ≥ T2 which lead to below condition:

tN+1
MD + tlatch + tXNOR↓ ≥ tXNOR↓ + tlogic + tlatch

tN+1
MD ≥ tlogic. (A· 5)

In other words, the matched delay should be selected to be
equal or greater than the logic delay. The optimal matched
delay is when tN+1

MD = tlogic. The cycle time and forward
latency will be:

T l
2P = tlogic + 2 · tlatch + tXNOR↑ (A· 6)

Ll
2P = tlogic + tlatch. (A· 7)

In contrast to Early Acknowledgement controllers, the
above equations holds for any logic delay making it a very
high performance pipeline controller specially when the
logic processing is very low limited to one or two gate de-
lays. The maximum performance (minimum cycle time and
latency) for this controller is when tlogic = 0 which can be
given as:

T l
2P |min

= 2 · tlatch + tXNOR↑ (A· 8)

Ll
2P |min

= tlatch. (A· 9)

Appendix B: Performance analysis of 4-phase linear
controller

The STG diagram for obtaining the cycle time and latency
is shown in Fig. A· 2. Quite evidently the cycle time of the
4-phase controller has controller overhead which lies on the
critical cycle and it cannot be hidden by the matched delay,
unlike Early Acknowledgement controller. The analysis of
the cycle time and latency is similar to the Early Acknowl-
edgement controller presented in 2.4, hence we left out triv-
ial deductions that can be made directly from the STG dia-
gram.
We used the Rin+ as the starting transition confirming to
the semantics of the 4-phase protocol. The critical path lies
on the dashed line path which constitutes a twisted loop.
Hence, the cycle time and forward latency can be obtained
as a function of gate delays (starting from Rin+) as follows.

T = tG1↑ + tG2↑ + tN+1
MD↑ + tG1↑

+ tG2↓ + tN+1
MD↓ + tG1↓ (A· 10)

L = tG1↑ + tG2↑ + tN+1
MD↑ + tG1↑. (A· 11)

To bring in the tlogic to the above equations two paths on
control and data cycles are considered.

• Path on control cycle: Rin+ → Ain+ → Rout+ →
Aout+

T1 = tG1↑ + tG2↑ + tN+1
MD↑ + tG1↑. (A· 12)

• Path on data cycle: Rin+→ Ain+→ Aout+

T2 = tG1↑ + tflop + tlogic. (A· 13)

From the T1 ≥ T2 condition for proper operation we have:

tN+1
MD↑ ≥ tflop + tlogic − (tG1↑ + tG2↑)

Thus, if, tlogic ≥ tG1↑ + tG2↑ − tflop (A· 14)

holds, the cycle time and forward latency of the 4-phase con-
troller can be expressed as follows.

T l
4P = tflop + tlogic + tG1↑ + tG1↓

+ tG2↓ + tAND↓ (A· 15)

Ll
4P = tflop + tlogic + tG1↑. (A· 16)

(The tN+1
MD↓ has been replaced with equivalent tAND↓.)

When the above condition does not hold the above param-
eters can be deduced from equations (A· 10) and (A· 11) at
tMD↑ = tMD↓ = 0.

T l
4P |min

= 2 · tG1↑ + tG2↑ + tG1↓ + tG2↓ (A· 17)

Ll
4P |min = 2 · tG1↑ + tG2↑. (A· 18)
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RinN

enableN−1+

AinN AoutN

enableN+1+

RinN+1

enableN− enableN+1−

tlatch + tNMD

tlatch

tXNOR↑ tlatch

tN+1
MD

tXNOR↑

tlatch

tXNOR↓tXNOR↓

tlogic + tflop

Fig. A· 1 STG for MOUSETRAP Controller.
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tG1↑ + tG2↑

tN+1
MD↑

tG1↑

+tN
MD↓

+tG1↑

+tN
MD↑

Fig. A· 2 STG for Four phase Controller.

Appendix C: Performance analysis of CB controller
for 2-phase protocol

The STG diagram for the functional operation of the 2-phase
CB controller is given in Fig. A· 3. In this also, transitions
for only one branch of the controller is given. Similar to
2-phase linear (MOUSETRAP) controller, the signals Rin,
Ain, Rout1 and Aout1 in the STG diagram implies a ”tran-
sition” without explicitly unfolding the particular transitions
(from low-to-high and high-to-low) which are identical in
the protocol. Moreover, the matched delays are symmetri-
cal for the transition signalling protocol.
We can calculate the cycle time and forward latency in terms

of tlogic using the same rationale used in CB controller of
the EA protocol. The cycle time and forward latency of the
controller as shown in the STG diagram with thin dashed
lines, can be expressed as follows.

T = tflop + tMD1 + tlatch + tXNOR↑
+ 2 · tAND↑ (A· 19)

L = tXOR↑ + tAND↑ + tflop + tMD1

+ tlatch + tXNOR↓. (A· 20)

In order to express above in terms of tlogic we measure the
delays on the control and data paths.

• Path on control cycle: clkN+ → Rout1 → Aout1 →
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Rin

clkN(+)

Ain

Aout1

Rout1

enableN+1(−)
tflop + tlogic

tXOR↑ + tAND↑

tflop

tflop

tXNOR↓

tMD1 + tlatch

tXOR↑ + tlatch

complete(+)
tAND↑ tXNOR↑ + tAND↑

+ tMD

Fig. A· 3 STG for CB controller for 2-phase protocol.
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req d(+)

[tSD↑ + tAND↑]

tG1↑ + tG2↑

+[tSD↓ + tAND↓]

Fig. A· 4 STG for CB controller for 4-phase protocol.

enableN+1−

TCB1 = tflop + tMD1 + tlatch + tXNOR↓. (A· 21)

• Path on data cycle: clkN+→ enableN+1−

TCB2 = tflop + tlogic. (A· 22)

Since TCB1 ≥ TCB2 for proper operation, we can obtain
the constraint on tMD1 as:

tMD1 ≥ tlogic − (tlatch + tXNOR↓) (A· 23)
thus, if, tlogic ≥ tlatch + tXNOR↓ (A· 24)

holds, the cycle time and latency for this controller can be
obtained as:

T cb
2P = tflop + tlogic + 2 · tAND↑

+ (tXNOR↑ − tXNOR↓) (A· 25)

Lcb
2P = tflop + tlogic + tXOR↑ + tAND↑. (A· 26)

When the above condition does not hold we can derive the
cycle time and latency directly from (A· 19) and (A· 20) at
tMD1 = 0 as follows.

T cb
2P |min

= tflop + tlatch + tXNOR↑ + 2 · tAND↑
(A· 27)

Lcb
2P |min = tXOR↑ + tAND↑ + tflop + tlatch + tXNOR↓.

(A· 28)

Appendix D: Performance analysis of CB controller
for 4-phase protocol

The Fig. A· 4 shows the STG diagram for the CB controller
for 4-phase protocol. The analysis of the cycle time and for-
ward latency is similar to that of EA protocol CB controller
presented in section 4.1.2.
The arrows with associated delays in square brackets indi-
cate the delays incurred by the extra components (demulti-
plexer, delay element and OR gate) of the controller. With
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the same reasoning that we followed for CB controller for
EA protocol, we can derive expressions for cycle time and
forward latency in terms of tlogic. The cycle time and for-
ward latency as marked in thin dashed lines in the STG dia-
gram, can be expressed in terms of gate delays as follows.

T = tG1↑ + tG2↑ + [tSD↑ + tAND↑] + t′MD1↑
+ tG1↑ + [tOR↑] + tG2↓ + [tSD↓ + tAND↓]
+ t′MD1↓ + tG1↓ + [tOR↓] (A· 29)

L = tG1↑ + tG2↑ + [tSD↑ + tAND↑]
+ t′MD1↑ + tG1↑. (A· 30)

In order to express above two parameters in terms of tlogic

two paths on control and data cycles are considered.

• Path on control cycle: Rin+ → Ain+ → req d+ →
Rout1+→ Aout1+

T1 = tG1↑ + tG2↑ + [tSD↑ + tAND↑]
+ t′MD↑ + tG1↑. (A· 31)

• Path on data cycle: Rin+→ Ain+→ Aout1+

T2 = tG1↑ + tflop + tlogic. (A· 32)

From the T1 ≥ T2 condition for proper operation we have:

t′MD↑ ≥ tflop + tlogic − (tG1↑ + tG2↑

+ [tSD↑ + tAND↑])
Thus, if, tlogic ≥ (tG1↑ + tG2↑ + [tSD↑ + tAND↑])

− tflop (A· 33)

holds, the cycle time and forward latency of the 4-phase con-
troller can be expressed as follows.

T cb
4P = tflop + tlogic + tG1↑ + tG1↓ + tG2↓

+ tAND↓ + [2 · tAND↓ + tOR↑ + tOR↓] (A· 34)

Lcb
4P = tflop + tlogic + tG1↑. (A· 35)

(tSD↓ has been replaced with equivalent delay tAND↓.)
When the above condition does not hold the minimum val-
ues for above parameters can be deduced from equations
(A· 29) and (A· 30) at t′MD↑ = t′MD↓ = 0.

T cb
4P |min = 2 · tG1↑ + tG2↑ + tG1↓ + tG2↓

+ [tSD↑ + tAND↑ + 2.tAND↓
+ tOR↑ + tOR↓] (A· 36)

Lcb
4P |min

= 2 · tG1↑ + tG2↑ + [tSD↑ + tAND↑].
(A· 37)


