

ISSN 1346-5597

NII Technical Report

 SWCLOS User's Manual

 Seiji Koide
 communicated by Hideaki Takeda

NII-2009-014E
Oct. 2009

1

INDEX

1. Introduction ... 1

2. SWCLOS Basics ... 2

2.1 How to Get SWCLOS ... 2

2.2 Proprietary Rights ... 2

2.3 How to Start SWCLOS ... 2

2.4 Monotonicity of Knowledge ... 2

2.5 Open World Assumption and Ternary-Value Logic .. 3

3. URI, QName, and Resource .. 4

3.1 URI .. 5

3.2 QName .. 6

3.3 URI Named Space ... 7

3.4 Resource ... 11

3.5 NodeID .. 13

4. RDF Resource Objects .. 15

4.1 Resource Objects and the Syntax in S-expression .. 15

4.2 Adding and Getting a Resource Form ... 16

5. RDFS Vocabulary and Semantics ... 19

5.1 Resource Classes, Metaclasses, and Instances .. 19

5.2 rdf:type and rdfs:subClassOf .. 21

5.3 rdfs:subPropertyOf .. 24

5.4 Properties and Slots ... 24

5.5 Adding Resource Objects and Forward Reference ... 25

2 SWCLOS User’s Manual

5.6 Adding Slots .. 28

5.7 Adding Slot Values .. 28

5.8 Adding Multiple Types .. 29

5.9 Extension of property and slot definition... 29

6. String, Number, Datatype, and Lang ... 31

6.1 Literal ... 31

6.2 XSD Datatypes in SWCLOS ... 32

6.3 xml:lang in SWCLOS .. 35

7. RDF Collection .. 38

7.1 RDF Container ... 38

7.2 List ... 39

8. Domain and Range .. 43

8.1 Adding Domain and Range Constraints .. 43

8.2 Domain and Range Constraint Satisfaction ... 45

9. RDFS Axioms and Entailments ... 47

9.1 RDF and RDFS Axioms .. 47

9.2 RDFS Entailment ... 49

9.3 RDF Entailment Rules ... 50

9.4 RDFS Entailment Rules ... 50

10. RDF/XML Parser and Writer ... 55

10.1 RDF/XML Parser ... 55

10.2 RDF/XML Writer .. 56

11. N-Triples .. 57

11.1 N-Triple Parser .. 57

3

11.2 Adding N-Triples .. 58

11.3 N-Triple Writer ... 60

12. OWL in SWCLOS .. 62

12.1 OWL Extension of RDF and RDFS .. 62

12.2 Description Logic and OWL in SWCLOS .. 63

12.3 OWL Property Restrictions ... 65

12.4 Substantial and non-Substantial Relationship ... 66

12.5 Axiomatic Complete Relations ... 66

13. OWL Axioms and Entailment Rules ... 69

13.1 OWL Axioms .. 69

13.2 OWL Semantics and Entailment Rules ... 70

13.2.1 Intersection of Concepts (owl:intersectionOf) .. 74

13.2.2 Union of Concepts (owl:unionOf) .. 75

13.2.3 Negation of Concept (owl:complementOf) ... 76

13.2.4 Instance Enumeration for Concept (owl:oneOf) ... 77

13.2.5 Functional Property (owl:FunctionalProperty) ... 77

13.2.6 Inverse Functional Property (owl:InverseFunctionalProperty) ... 78

13.2.7 Symmetric Property (owl:SymmetricProperty) .. 78

13.2.8 Transitive Property (owl:TransitiveProperty) ... 79

13.2.9 Equivalency as Individuals (owl:sameAs) .. 80

13.2.10 Difference as Individuals (owl:differentFrom) ... 80

13.2.11 Inverse Relation of Property (owl:inverseOf) ... 81

13.2.12 Equivalency for Classes (owl:equivalentClass) .. 81

13.2.13 Difference for Classes (owl:disjointWith)... 81

4 SWCLOS User’s Manual

13.2.14 Value Restriction (owl:allValuesFrom) .. 82

13.2.15 Full Existential Restriction (owl:someValuesFrom) .. 82

13.2.16 Filler Restriction (owl:hasValue) ... 82

14. OWL APIs ... 84

14.1 Subsumption in OWL .. 84

14.2 Membership in OWL ... 86

14.3 The Most Specific Concepts .. 87

1 Introduction

1. Introduction

SWCLOS is a software toolkit for lisp programmers who want to process knowledge in Lisp. The name is

an acronym of Semantic Web Common Lisp Object System. As the name implies, SWCLOS is built on top

of Common Lisp Object System (CLOS) for Semantic Webs. In SWCLOS, every entity in vocabulary of

RDF, RDFS, and OWL, including user-defined one, denotes a CLOS object, and the computational

semantics are based on RDF(S) and OWL rather than CLOS, whereas it still conforms to object-oriented

paradigm.

SWCLOS is an amalgam of Semantic Web Technology and the Object-Oriented Programming language.

Compared with the other reasoners for Semantic Webs, SWCLOS seems to have unique features. We may

say pros and cons of SWCLOS are ascribed to CLOS and the nature of Lisp. If you believe you are a lisp

programmer and you need to develop an application for Semantic Technology, SWCLOS is the solution.

Furthermore, if you have ever programmed CLOS programs, SWCLOS is the best choice. SWCLOS

provides OWL Full level ontology meta-modeling facilities using CLOS meta-programming capability.

You can encode CLOS programs for Semantic Webs on top of SWCLOS as you usually do in Lisp,

whereas you must understand the difference of semantics between the standard CLOS and RDF(S)/OWL.

This document is user’s manual for SWCLOS programmers. Your program in SWCLOS can read ontology

files in RDF/XML format, N-Triple format, and lisp S-expression which is specified for SWCLOS. Then,

you can handle SWCLOS objects in Lisp, and write computational results in the various formats mentioned

above. Therefore, you can communicate with others in such formats for Semantic Webs. If you are a CLOS

programmer and want to understand what Semantic Technology is, SWCLOS provides you with a good

chance to learn and get started Semantic Technology.

2 SWCLOS User’s Manual

2. SWCLOS Basics

2.1 How to Get SWCLOS

SWCLOS is an Open Source Program that was originally developed at GALAXY EXPRESS

CORPORATION in Japan, and Seiji Koide, who is the developer of SWCLOS, has been continued

updating it. The latest version is available from Koide's home page at National Institute of Informatics

(NII)1.

The SWCLOS current version is developed on Allegro Common Lisp 8.1 Windows version that is

delivered by Franz Inc. We hope someone ports it to other lisp systems, although it is probably hard,

because partly the implementation is concerned with ACL features.

2.2 Proprietary Rights

GALAXY EXPRESS CORPORATION holds all copyrights and allows anyone to use anyhow AS IS,

except modifying the package name of gx and gx-user, and the object name galaxy. 'GX' is the rocket

name from GALAXY EXPRESS CORPORATION. See the README file in delivery.

2.3 How to Start SWCLOS

After compiling and loading SWCLOS into the ACL modern lisp version, it is much better to enter gx-user

package in the lisp listener window to use SWCLOS. Please note that SWCLOS requires

case-sensitive-lower on case mode of lisp reader to distinguish upper and lower case of letters. This

features is not ANSI-standard today, but we hope it will be so, soon.

cg-user(1): (in-package gx-user)
#<The gx-user package>
gx-user(2):

Franz has prepared with a good tutorial for the case of letters. See the tutorial2.

2.4 Monotonicity of Knowledge

In Semantic Webs you assume that the knowledge always increases and the interpretation become

monotonously more precise and richer. SWCLOS leverages the monotonicity principle in Semantic Webs

to accept the forward reference. In the current version, there are no delete functions for entities in

ontologies, and there is no undo functionality. Such functions will be provided at the next version.

Please note that (setf (slot-value ...) ...) do not overwrite the previous slot value. The

slotvalue setting function just adds a new value into the slot. This is a reflection of the monotonicity

1 http://www-kasm.nii.ac.jp/~koide/SWCLOS2-en.htm
2 http://www.franz.com/support/tutorials/casemode-tutorial.htm

3 SWCLOS Basics

principle. Do not fear it. You can make slot unbound, so you can reset any values after unbinding, if you

would like so.

2.5 Open World Assumption and Ternary-Value Logic

Semantic Webs assume that the World Wide Webs are dynamic, changeable, and open in the sense that no

one knows all of WWWs. From the viewpoint of Logic, Close World Assumption is a base of inference.

Therefore, people who are accustomed to logic thinking should mind this point.

The primary function of Description Logics (DLs) is i) to classify objects to classes, ii) to determine

whether or not a class is subsumed by another class. In SWCLOS, this work is performed by i) gx:typep

and ii) gx:subtypep in the RDF universe and subsumed-p in the OWL universe. These functions return

two values; the first value is yes/no for query and the second represents the certainty. Therefore, the pair of

return values <t,t> expresses boolean true, <nil,t> expresses boolean false, and <nil,nil> means unknown.

Note that this ternary-value logic is an extension of ANSI Common Lisp native specification on cl:subtypep,

which returns two values described above. See the document of ANSI Common Lisp3. However, you do

not need to mind how to use ternary value logic. If you use only the first return value, your program does

not care of unknown and it is regarded as boolean false. If you are interested how to compute ternary-value

logic in SWCLOS, see the source code you obtained.

3 http://www.franz.com/support/documentation/8.1/ansicl/dictentr/subtypep.htm

4 SWCLOS User’s Manual

3. URI, QName, and Resource

The Resource Description Framework (RDF)4 is a language for representing information about resources

in the World Wide Webs, and it has a special syntax in XML called RDF/XML5 in short. In RDF, every

resource, except literals and blank nodes, is identified with URIs. This idea originates from the meta-data

markup for web resources. However, you do not need to mind in Semantic Webs or ontology descriptions

whether resources in RDF really exist on the Webs or not.

A URI in RDF denotes an entity in the universe of discourse, namely a virtual world in computer that

reflects an idea on the real world. A URI in SWCLOS is bound with a CLOS object that represents a part of

ontology on the denotation of a URI. You can input a URI object in SWCLOS using angle bracket reader

macro '<', where URI reading is terminated by '>'. Note that the expression starting a sharp character and

enveloped with '<' and '>' is an object expression in Lisp.

gx-user(3): <http://www.w3.org/2000/01/rdf-schema#Resource>
#<uri http://www.w3.org/2000/01/rdf-schema#Resource>
gx-user(4): (uri-value <http://www.w3.org/2000/01/rdf-schema#Resource>)
#<rdfs:Class rdfs:Resource>

The QName is an abbreviation of URI with the namespace function for XML. 6 For example,

"http://www.w3.org/2000/01/rdf-schema#Resource" is abbreviated to "rdfs:Resource". Here, the

fragment-less URI or "http://www.w3.org/2000/01/rdf-schema" is mapped to "rdfs", a prefix of QName,

while a fragment "Resource" is called local part of QName. Franz Inc. provides URI APIs, in which a URI

is implemented of CLOS objects typed to net.uri:uri77. In SWCLOS, a part of URI that is corresponding to

a prefix part of QName is connected to a lisp package, whereby a URI corresponds to a QName as lisp

symbol in a package. Thus, a URI may have one by one mapping to a lisp symbol (QName), and vice versa.

See the followings.

gx-user(5): (uri2symbol <http://www.w3.org/2000/01/rdf-schema#Resource>)
rdfs:Resource
gx-user(6): (symbol2uri 'rdfs:Resource)
#<uri http://www.w3.org/2000/01/rdf-schema#Resource>

At the line 5 in the demonstration above, the uri is converted to the corresponding QName, and at line 6,

the reverse operation is directed. Note that such correspondence has been established when SWCLOS loads

an ontology including URIs, or you input URIs as RDF entity in the lisp top level window.

The substance of RDF can be modeled as labeled uni-directional graph of edge and node called RDF graph.

4 http://www.w3.org/TR/rdf-primer/
5 http://www.w3.org/TR/rdf-syntax-grammar/
6 http://www.w3.org/TR/1999/REC-xml-names-19990114/
7 http://www.franz.com/support/documentation/8.1/doc/classes/uri/uri.htm

5 URI, QName, and Resource

A start node of edge is called subject, an end node is called object, and an edge is called predicate in triple.

So, a triple subject/predicate/object in text stands for the minimal structure in graph. A set of triples in text

stands for a whole RDF graph.

A predicate in triple is a URI or QName, and it turns out a resource in RDF that is called property in RDF

vocabulary. Note that any edge must be named by a URI in RDF. Furthermore, it must have a QName in

SWCLOS, because it turns a slot name in CLOS. A subject in triple designates a non-literal resource, that is,

a node represented by a URI or a blank node. The blank node has no URI but may be assigned with a blank

node ID. An object in triple is either a resource (with or without URI) or a literal. The following shows an

example of statement in N-Triple.

<John_Doe> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <Man> .

In SWCLOS, a resource or an entity in RDF is realized by a CLOS object. A denotation of triple

subject/predicate/object is represented by a subjective CLOS object and its slot of which the slot name is

corresponding to a predicate. The slot value is an objective CLOS object (called resource) or lisp data

(literal). The subjective CLOS object may be bound to the URI, if it is not a blank node. Its URI can be

converted to a QName, and a named resource object is also bound to the QName symbol. See the following

demonstration.

gx-user(7): rdfs:Resource
#<rdfs:Class rdfs:Resource>
gx-user(8): (uri-value <http://www.w3.org/2000/01/rdf-schema#Resource>)
#<rdfs:Class rdfs:Resource>
gx-user(9): <<http://www.w3.org/2000/01/rdf-schema#Resource>>
#<rdfs:Class rdfs:Resource>

Note that at line 9, the special reader macro for double angle brackets '<<' reads the character sequence of

URI up to characters '>>' and then a bound value to the converted URI is returned. A CLOS object that

represents a resource in RDF is called resource object in SWCLOS.

3.1 URI

SWCLOS utilizes the URI APIs of Allegro Common Lisp (ACL). Please see the details here8. To

implement value-bindable URI, a subclass of net.uri:uri9 is defined with an extra value slot. Every URI in

SWCLOS is interned to ensure the uniqueness of URI in system.

uri [Class]

A subclass of net.uri:uri. It has the definition of extra slot for value, to which the
corresponding resource object is stored.

8 http://www.franz.com/support/documentation/8.1/doc/uri.htm
9 http://www.franz.com/support/documentation/8.1/doc/classes/uri/uri.htm

6 SWCLOS User’s Manual

uri thing [Method]

Four methods are defined for this generic function: when thing is an instance of gx:uri, it is
returned. If it is an instance of net.uri:uri, its class is changed to gx:uri and interned. When
thing is a string, it is interned as uri and its class is changed to gx:uri. Otherwise, it signals
an error.

uri-value uri [Function]

This function returns a value in its value slot. This function is settable.

There are several utilities for handling all uri entities. See print-all-entity-uris, do-all-entity-uris, and

list-all-entity-uris in the doc folder.

3.2 QName

A URI in SWCLOS may be converted to the corresponding QName10. The prefix of QName in XML is

mapped to a lisp package in SWCLOS and the local part is mapped to a symbol name in the package. A

QName symbol is exported, because an exported lisp symbol has the same appearance as the QName in

XML. A QName symbol is used to designate a resource name in S-expression. In fact, the description at the

top level in SWCLOS requires a QName symbol instead of a URI with define macros such as defConcept

and defIndividual in S-expression. Some URIs that have no prefix definition cannot be converted to

QNames and remain as URI.

The mapping rule from URI to QName in SWCLOS is as follows.

 If a URI has a fragment, SWCLOS attempts to create a QName symbol of which name is the fragment

and of which package is associated to the fragment-less URI. If SWCLOS knows the mapping from the

fragment-less URI to the package name, the system automatically creates the QName symbol with its

URI, otherwise, in order to create the mapping from the fragment-less URI to the package name, the

system invokes the function that is bound to symbol *uri2symbol-package-mapping-fun* with the

fragment-less URI.

 If a URI has no fragment, then the irregular conversion procedure is carried out as follows. SWCLOS

firstly invokes the function bound to *uri2symbol-name-mapping-fun*. If the returned value is a

symbol, it is used. If the returned value is a string, a symbol is created with the name and the associated

package to the URI. If SWCLOS does not know the associated package, then the system invokes the

function that is bound to symbol *uri2symbol-package-mapping-fun*, and create a symbol.

 To the symbol *uri2symbol-package-mapping-fun*, currently as default, the function that makes a

query to users for package name is bound.

10 http://www.w3.org/TR/xml-names11/#ns-qualnames

7 URI, QName, and Resource

 When the function bound to *uri2symbol-name-mapping-fun* is invoked, currently as default, if a

URI has a fragment-less path, the procedure for a fragment-less path parses the path into a directory and

a name. The name of path is a tail part in the path description and the other part is a directory. The name

is used for QName local part. The directory is used for package association. Otherwise, in case of both

no fragment in the URI and no name in the path, a query to users is invoked for QName symbol name.

See the following demonstration.

gx-user(17): (uri2symbol <http://somewhere/maindir/subdir/JohnSmith>)
swsd:JohnSmith
gx-user(18): (uri2symbol <http://somewhere/JohnSmith>)
sw:JohnSmith
gx-user(19): (uri2symbol <http://JohnSmith/>)
no:J.S.

At line 17, prefix query to users is carried out for "http://somewhere/somedirectory/subdir/", and "swsd" is

replied by a user. At line 18 for "http://somewhere/", "sw" is replied. At line 19, the local name is required

at first, then "J.S." is supplied, then, "no" is replied for the prefix query.

3.3 URI Named Space

A uri reference is unique in WWWs, and then XML namespace11 supports the uniqueness of QName with

a local part, which is unique in a name space. In SWCLOS, a local part of QName corresponds to symbol

name in a package, and a namespace for a prefix part corresponds to a lisp package. To realize such

mapping, we need the connection between a prefix part in URI and a lisp package, and when

URI-to-symbol mapping is irregular, we further need the mapping from a URI to a symbol name in the lisp

package. An instance of uri-namedspace, that is a subclass of net.uri:uri, has two extra slots, package and

environment, and it enables such named space environments for the URI name space. See the following

demonstration.

gx-user(2): (defpackage :ex
(:documentation "http://somewhere/main/sub/file"))

#<The ex package>
gx-user(3): (set-uri-namedspace-from-pkg (find-package :ex))
#<The ex package>
gx-user(4): (get-uri-namedspace <http://somewhere/main/sub/file>)
#<uri-namedspace http://somewhere/main/sub/file>
gx-user(5): (uri2package "http://somewhere/main/sub/file")
#<The ex package>
gx-user(6): (uri2symbol "http://somewhere/main/sub/file#JohnSmith")
ex:JohnSmith

In the above demonstration, a URI string is set to a new package named "ex" as its documentation option at

11 http://www.w3.org/TR/1999/REC-xml-names-19990114/

8 SWCLOS User’s Manual

first, and then the regular mapping is set as prefix named space in system at line 3. So, URI to package

mapping is established as shown at line 5. In regular mapping for a URI with fragment, regular URI to

QName conversion is carried out in default rules without the URI’s symbol mapping environment.

A user may set any user-defined functions to global variable *uri2symbol-name-mapping-fun* and

uri2symbol-package-mapping-fun in order to implement application-oriented rules for the irregular

mapping in default. See the detail in the description of the documentation file of program in the doc folder

and the source program.

When SWCLOS reads RDF/XML files, the namespace directions with PrefixedAttName12 'xmlns:' and

DefaultAttName13 'xmlns' make the mapping from a URI to the package name. On the other hand, from the

standpoint of lisp expression, SWCLOS users can direct the mapping from a package to a URI in the

package documentation as demonstrated above, in which a user put a corresponding URI as documentation

of package.

Sometime you may be embarrassed at an error message of no package for a base-URI or a default

namespace, when SWCLOS reads an RDF/XML file. It happens if an RDF/XML file does not include any

Prefix name in the file for the file itself. For such a case, you must supply two sentences, something like

"xmlns:base = 'somewhere'" and "xmlns:PREFIX = 'somewhere'" into RDF attributes in the file.

Each uri-namedspace is stored in a hasharray which is bound to a global variable *NameSpaces*. The

converting functions, uri2symbol and symbol2uri use these mappings bound to *NameSpaces*.

NameSpaces [Global Var]

A variable where a hashtable is set. The hashtable is for interning prefix URIs that are
instances of uri-namedspace. See the document of interning URIs14. The interning into this
hashtable is carried out at the occurrence of the first mapping from a fragment-less URI, a
name-less URI, or a specially directed URI to a package. See uri2symbol.

uri-namedspace [Class]

Subclass of net.uri:uri class. This subclass has two extra slot definitions; package slot

definition and env slot definition. The associated lisp package is stored into the package slot

and the irregular associations in the namespace between URIs and QName symbol names

are stored into the env slot of this instance object.

12 http://www.w3.org/TR/REC-xml-names#NT-PrefixedAttName
13 http://www.w3.org/TR/REC-xml-names#NT-DefaultAttName
14 http://www.franz.com/support/documentation/8.1/doc/uri.htm#interning-uris-1

9 URI, QName, and Resource

list-all-uri-namedspaces [Function]

This function returns a list of all uri-namedspaces in the system.

set-uri-namedspace prefix-uri [Function]

This function changes prefix-uri to a namedspace and registers it to system. You need to set
a lisp package into the uri-namedspace package slot before the usage.

get-uri-namedspace prefix-uri [Function]

This function retrieves the uri-namedspace from prefix-uri and returns it. If prefix-uri is not
an uri, cl:nil is returned.

set-uri-namedspace-from-pkg pkg [Function]

This function registers the namespace associated to pkg. The pkg must have a uri string in
pkg's document slot.

default-namespace [Global Var]

When a default namespace is indicated by DefaultAttName 'xmlns' in RDF/XML files and
the system reads it, the namedspace URI is set to this variable. This is often used in scoping
of let form.

base-uri [Global Var]

When a base URI is indicated by 'xml:base' in RDF/XML files and the system reads it, the
URI is set to this variable. This is often used in scoping of let form.

uri2symbol-package-mapping-fun [Global Var]

When there is no associated package for a URI, the function bound to this variable is
invoked, and the return value is used as package for the corresponding QName symbol. This
mechanism is useful to implement user-specific or application specific conversion as
irregular mapping rule. The function bound to this symbol has to have one parameter, i.e., a
URI.

uri2symbol-name-mapping-fun [Global Var]

When there is no associated name for a URI, the function bound to this variable is invoked,
and the return value is used as name for QName symbol. This mechanism is useful to
implement user-specific or application-specific conversion as irregular rule. The function
bound to this symbol has to have one parameter, i.e., a URI.

uri2symbol uri [Function]

converts uri to the corresponding QName symbol and returns it. If uri is null (cl:nil) or null
string, it returns cl:nil. If uri is a string, its parsed uri is used. *NameSpaces* is consulted
for the association between a fragment-less or name-less URI and package. In the case of
irregular mapping, the functions bound to *uri2symbol-package-mapping-fun* and

10 SWCLOS User’s Manual

uri2symbol-namemapping-fun are called and the return value is used. See the mapping
rule described above.

symbol2uri symbol [Function]

returns a URI from rdf:about slot of this resource object if this symbol is defined as QName
and the resource object is bound to this symbol. Otherwise this function retrieves the URI
string from the symbol package of symbol, then returns a URI associated to symbol in the
env slot if the association exists, or returns a URI that is made from package-corresponding
(fragment-less) URI and symbol-name (as URI fragment).

Note that all resource names or QName symbols are exported. Therefore, in a dedicated package for a

resource namespace, the following code is an example that lists up all defined URI in the namespace.

gx-user(7): (loop for x being each external-symbol
in (find-package :rdfs)

collect (symbol2uri x))
(#<uri http://www.w3.org/2000/01/rdf-schema#subPropertyOf>
#<uri http://www.w3.org/2000/01/rdf-schema#Datatype>
#<uri http://www.w3.org/2000/01/rdf-schema#domain>
#<uri http://www.w3.org/2000/01/rdf-schema#label>
#<uri http://www.w3.org/2000/01/rdf-schema#seeAlso>
#<uri http://www.w3.org/2000/01/rdf-schema#Container>
#<uri http://www.w3.org/2000/01/rdf-schema#subClassOf>
#<uri http://www.w3.org/2000/01/rdf-schema#isDefinedBy>
#<uri http://www.w3.org/2000/01/rdf-schema#Resource>
#<uri http://www.w3.org/2000/01/rdf-schema#range> ...)

list-all-entities-in performs almost same work.

gx-user(4): (list-all-entities-in :rdfs)
(rdfs:subPropertyOf rdfs:Datatype rdfs:domain rdfs:label rdfs:seeAlso

rdfs:Container rdfs:subClassOf rdfs:isDefinedBy
rdfs:Resource rdfs:range ...)

list-all-entities-in space [Method]

space must be a package, a package name, a package name string, or a uri. This method
returns a list of all of external symbols in space. Note that even if a user defined external
symbols in space without RDF resource definition, they are listed. See also
list-all-resources.

Precisely speaking, we have some semantic gap between a URI namespace and a lisp package. The lisp

package is always global in the current session. Namely, a lisp package for the namespace should be unique

anywhere and anytime. The URI is also globally unique, but its namespace is a temporal setting for the URI

abbreviation in the scope of a RDF/XML file or a Web page. In a RDF/XML file, a settled namespace for a

URI is scoped within the file, and it is legal that someone set a different name of namespace for the

identical URI in another RDF/XML file. Thus, in ideal the two files should be correctly merged regardless

11 URI, QName, and Resource

of namespaces but regarding URIs. For example, if you have two ontology files, one has a namespace

'wine' for some URI and another has a namespace 'vin' for the same URI, the system must read both in the

same namespace. However, Lisp cannot read symbols in different packages into some one package. To

solve this problem, the lisp package nicknames are utilized here. When SWCLOS detects the mapping

different package names onto a same URI, the newly indicated prefix turns out a nickname for the

previously mapped package. Even so, note that the first encountered package name is a nominal name and

nickname's prefixes do not appear in S-expression.

3.4 Resource

In addition to the URI-value mapping mentioned at Section 3.1, a CLOS object as resource can be set as

symbol-value to the QName symbol if it has a QName, or to an assigned nodeID symbol if it is anonymous.

To test whether a CLOS object is a resource object or not, you may use lisp native type predicate cl:typep15

as follows. Note to use gx:typep predicate, if you need a type-testing predicate that exactly obeys RDFS

semantics.

gx-user(2): (cl:typep rdfs:Resource rdfs:Resource)
t
gx-user(3): (cl:typep rdfs:Class rdfs:Resource)
t
gx-user(4): (cl:typep rdf:Property rdfs:Resource)
t

In the example above, three resource objects, named rdfs:Resource, rdfs:Class, and rdf:Property, are tested

whether they are instances of class rdfs:Resource.

Predicate rsc-object-p (see page 20) is prepared for testing whether an CLOS object is a resource object or

not. It is same as (cl:typep x rdfs:Resource) in the semantics but it is faster a bit and simplifies your code.

Note that object? is used for testing a QName symbol or a nodeID symbol to which a resource object is

bound.

gx-user(5): (object? 'rdfs:Resource)
t
gx-user(6): (object? 'rdfs:Class)
t
gx-user(7): (object? 'rdf:Property)
t

object? symbol [Function]

returns true if symbol has a resource object, otherwise returns false.

To list up all resources defined in the system, you can use list-all-resources as follows.

15 http://www.franz.com/support/documentation/8.1/ansicl/dictentr/typep.htm

12 SWCLOS User’s Manual

gx-user(8): (list-all-resources t)
(#<rdfs:Class rdfs:Resource> #<rdfs:Class rdfs:Container>
#<rdfs:Class rdf:Alt> #<rdfs:Class rdf:Seq> #<rdfs:Class rdf:Bag>
#<rdfs:Class gx::ill-structured-XMLLiteral> #<rdfs:Class rdf:Statement>
#<rdfs:Class rdf:List> #<rdf:List rdf:nil> #<rdfs:Class rdfs:Literal>
...)

list-all-resources [with-system-rdf-object-p] [Function]

This function lists up all of resources that are defined as instance of rdfs:Resource. An
instance of rdf:XMLLiteral is not included in the list. with-system-rdf-object-p is optional
and RDF(S) and OWL resources are included if true is supplied, otherwise only user-defined
resources are included.

In most cases, a resource object is named with a QName. The method name gets the name from a resource

object and returns its QName symbol. The resource object is set to the QName symbol. On the other hand,

resource objects that have no name are called anonymous resource, or blank node, or bnode in short, and

you can access them through uri-value function rather than symbol value.

gx-user(2): (name rdfs:Resource)
rdfs:Resource
gx-user(3): (addObject rdfs:Resource '((rdf:about "NothingElseURI")))
#<rdfs:Resource :anonymous>
gx-user(4): <<NothingElseURI>>
#<rdfs:Resource :anonymous>
gx-user(5): (slot-value <<NothingElseURI>> 'rdf:about)
"NothingElseURI"
gx-user(6): (anonymous-p <<NothingElseURI>>)
t

Note that in the above demonstration, an anonymous object is created at line 3, whose URI string is

"NothingElseURI". So, <<NothingElseURI>> at line 4 is parsed to a URI, and the resource object is

retrieved through uri-value and returned it.

named-p resource [Function]

returns true if a resource object resource has a name, otherwise false. If resource is not a
resource object, it returns false.

anonymous-p resource [Function]

returns true if resource has no name, otherwise false. If resource is not a resource object, it
returns false.

name resource [Method]

13 URI, QName, and Resource

returns the name of resource, if named. Otherwise cl:nil. Note that this method is different
from cg:name16 in ACL.

3.5 NodeID

A nodeID is used for referring anonymous node, especially in N-Triple notation. It looks like QName that

has '_' as prefix and meaningless local name such as 'a01'. However, a nodeID is not associated to any URI

and has no global identification. There is a package dedicated for nodeID in SWCLOS, its package name is

'_', and a nodeID is also a lisp symbol in SWCLOS. You can bind any blank node to a nodeID symbol in

the current session, but there is no way to store and reload the information on nodeID bindings by

SWCLOS. The following functions are for the nodeID. However, there are useful functions no more on

NodeIDs in SWCLOS. Be careful to use NodeIDs with respect to the identity of blank nodes according to

RDF Semantics17.

nodeID? name [Function]

name should be a symbol. This function returns true if name can be regarded as a nodeID,
namely its package name is '_', otherwise returns false. This function does not care of a
bound value of name.

nodeID2symbol str [Function]

interns a nodeID symbol whose name is str in the nodeID package, exports and returns it.
Users must ensure the uniqueness of the nodeID in this function usage.

make-unique-nodeID str [Function]

interns a nodeID symbol whose name begins with str and has succeeding digits, exports and
returns it. The system assures the uniqueness of the nodeID in the current system.

As well as character '<' being a reader macro on for URI, character '_' is also a reader macro so that the

character sequence of the succeeding colon and other characters makes an exported lisp symbol, and the

symbol is handed to eval function if it is bound. Otherwise new anonymous resource object is created and

bound to the symbol, then the symbol is handed to eval function. See the following demonstration.

gx-user(2): _:a01
#<|rdfs:Resource| :anonymous>

16 http://www.franz.com/support/documentation/8.1/doc/operators/cg/n/name.htm
17 http://www.w3.org/TR/rdf-mt/

14 SWCLOS User’s Manual

gx-user(3): (quote _:a01)
_:a01
gx-user(4): (cl:list _:a01 _:a02)
(#<|rdfs:Resource| :anonymous> #<|rdfs:Resource| :anonymous>)
gx-user(5): (eq _:a01 _:a01)
t
gx-user(6): (eq _:a01 _:a02)
common-lisp:nil

Where |rdfs:Resource| denotes the alternative to rdfs:Resource in SWCLOS, which is designated

instead of rdfs:Resource when rdfs:Resource is specified as class of instances. It is expected that

rdfs:Resource should be an abstract class in CLOS and finally all slots are defined at subclasses of

rdfs:Resource, even if some slot definitions might be tentatively designated to rdfs:Resource.

|rdfs:Resource| is useful to suppress making wasteful slot definitions at rdfs:Resource.

15 RDF Resource Objects

4. RDF Resource Objects

4.1 Resource Objects and the Syntax in S-expression

In RDF graph model, a node is represented by either resource nodes or literals. A resource node is either a

named node, which has a globally unique URI, or a blank node, which has no URI. A literal is a kind of

string or number, or an instance of XMLLiteral. Figure 4.1, which is taken from RDF/XML Syntax

Specification18, shows an example of RDF graph. In the figure, a rectangle represents a literal and an

ellipse represents an anonymous blank node or a resource node that contains a URI inside. In SWCLOS,

Figure 4.1 is expressed as follows in S-expression.

Figure 4.1 RDF Graph Example (from RDF/XML Syntax Specification)

(rdf:Description
(rdf:about "http://www.w3.org/TR/rdf-syntax-grammar")
(ex:editor
(rdf:Description
(ex:homePage
(rdf:Description (rdf:about "http://purl.org/net/dajobe/")))

(ex:fullName "Dave Beckett")))
(dc:title "RDF/XML Syntax Specification (Revised)"))

Whereas rdf:about in SWCLOS looks like a property in RDF, it is not a property in RDF but an XML

attribute that takes a place in RDF/XML format resource definition. The ex:editor, ex:homePage,

ex:fullName, and dc:title are RDF properties in QName representation for the corresponding URIs on the

edges in the figure. The terminology 'rdf:Description' that appears in S-expression for RDF graph

representation just denotes a sequence for RDF description. With addForm function, this statement turns

out a resource object. See the syntax in BNF described below. Precisely, the assertion above produces three

CLOS objects, that is, two named resource objects and one anonymous resource object, in addition to two

lisp strings.

18 http://www.w3.org/TR/rdf-syntax-grammar/

16 SWCLOS User’s Manual

4.2 Adding and Getting a Resource Form

SWCLOS allows users to add such a form as mentioned in the previous section, that is, nested

object-centered representation of RDF graph into the lisp environment. However, if a resource name is not

supplied, the created object is anonymous. See the following example. If you type the lines as the

demonstration, a dialogue window will pop up twice at the line 5 for package name of uri

"http://purl.org/net/" and "http://www.w3.org/TR/". Please note to push 'cancel' button in this case. If you

gave some package name for the query, SWCLOS would create the package and make a symbol, e.g.,

package-name-you-input:dajobe. Then, you would obtain a different look at line 6, where the symbol name

package-name-you-input:dajobe would appear instead of '(rdf:Description (rdf:about

"http://purl.org/net/dajobe/"))' for the anonymous object.

gx-user(3): (defpackage ex)
#<The ex package>
gx-user(4): (defpackage dc)
#<The dc package>
gx-user(5): (addForm '(rdf:Description
(rdf:about "http://www.w3.org/TR/rdf-syntax-grammar")
(ex::editor
(rdf:Description
(ex::homePage
(rdf:Description (rdf:about "http://purl.org/net/dajobe/")))

(ex::fullName "Dave Beckett")))
(dc::title "RDF/XML Syntax Specification (Revised)")))

Warning: Entail by rdf1: ex::editor rdf:type rdf:Property.
Warning: Entail by rdf1: dc::title rdf:type rdf:Property.
Warning: Entail by rdf1: ex::homePage rdf:type rdf:Property.
Warning: Entail by rdf1: ex::fullName rdf:type rdf:Property.
#<|rdfs:Resource| :anonymous>
gx-user(6): (pprint

 (get-form <<http://www.w3.org/TR/rdf-syntax-grammar>>))

(rdf:Description (rdf:about "http://www.w3.org/TR/rdf-syntax-grammar")
(ex:editor
(rdf:Description
(ex:homepage
(rdf:Description (rdf:about "http://purl.org/net/dajobe/")))

(ex:fullName "Dave Beckett")))
(dc:title "RDF/XML Syntax Specification (Revised)"))

Do not care about those warnings at line 5 at this time. It will be explained at Section 5.5. In this example,

an RDF graph shown in Figure 4.1 is inputted through a form in S-expression in SWCLOS, and three

objects are created in the environment. You can backwardly generate the form in RDF graph from the

subjective resource object using get-form in the lisp top level.

The value of property 'ex:editor' is anonymous. The value of 'ex:homePage' is also anonymous, because

SWCLOS did not obtain the name by your cancellation for its package name. Note that SWCLOS cannot

17 RDF Resource Objects

identify anonymous objects by name, even if they have the URI in rdf:about attribute.

Function addForm interprets a form according to the following BNF syntax, where {A--Z} means any

character from A to Z, and {SomeElements - element} means the possibility of SomeElements minus

element. Also note 'xyz' means a sequence of character x, y, and z. #¥x means a character x.

form ::= number | string | uri | qname | langedString | datatypeString |
 '(' ws* lang-tag ws+ string ws* ')' | '(' ws* datatype ws+ datum ws* ')' |
 '(' ws* '@' ws+ lang-tag ws+ string ws* ')' |
 '(' ws* '^^' ws+ datatype ws+ datum ws* ')' |
 '(' ws* 'rdf:Description' [ws+ nform] {ws+ lang-form | ws+ slot-form}* ws* ')' |
 '(' ws* type-tag [ws+ nform] {ws+ lang-form | ws+ slot-form}* ws* ')'
lang-form ::= '(' ws* 'xml:lang' ws+ lang-tag ws* ')'
slot-form ::= '(' ws* 'rdf:about' ws+ uri ws* ')' | '(' ws* 'rdf:ID' ws+ name ws* ')' |

'(' ws* 'rdf:nodeID' ws+ bname ws* ')' | '(' ws* ':name' ws+ name ws* ')' |
'(' ws* role {ws+ lang-tag}? {ws+ form}+ ws* ')'

langedString ::= string '@' language
language ::= {a--z}+ {'-' {a--z0--9}+}*, conforming to IETF BCP 4719
lang-tag ::= ':' {a--z}+ {'-' {a--zA--Z0--9}+}*, conforming to IETF BCP 47
datatypeString ::= string '^^' datatype
datatype ::= symbol - 'cl:nil' - 't', conforming to xsd datatype (see Section 6)
nform ::= name | '(' ws* ':name' ws+ name ws* ')'
role ::= symbol - 'cl:nil' - 't'
type-tag ::= symbol - 'cl:nil' - 't'
symbol ::= qname | unexported-qname
qname ::= {prefixName ':'}* name
unexported-qname ::= prefixName '::' name
prefixName ::= {nameStartChar - #¥: - #¥_} nameChar*
name ::= nameStartChar nameChar*
bname ::= '_:' name
nameStartChar ::= See XML 1.1 NameStartChar20.
nameChar ::= See XML 1.1 NameChar21.
string ::= #¥" scharacter* #¥"
scharacter ::= {echaracter -- #¥"} | '¥"'
echaracter ::= character | #¥Tab | #¥Newline | #¥Return
character ::= #¥¥ | {#¥Space -- #¥[} | {#¥] -- #x10FFFF}, up to the limit of UNICODE
ws ::= #¥Space | #¥Tab | #¥Newline
uri ::= string conformable to URI in W3C22
datum ::= string or lisp object that conforms to designated datatype
number ::= number character sequence in Lisp

19 ftp://ftp.isi.edu/in-notes/bcp/bcp47.txt
20 http://www.w3.org/TR/xml11/#NT-NameStartChar
21 http://www.w3.org/TR/xml11/#NT-NameChar
22 http://www.ietf.org/rfc/rfc1630.txt

18 SWCLOS User’s Manual

addForm form [role] [Function]

typically returns a resource object for form. In the top level, role is not supplied. Otherwise,
role must be supplied in recursive call with form as role's filler.

 When form is a lisp number, a lisp string, an instance of rdf:inLang, and an instance of
rdfs:Literal, it is returned.

 When form is a uri, it is returned if role is null (at top level), rdf:about,
rdfs:isDefinedBy, or the role's range is xsd:anyURI or its subtype, else the uri is
converted to the QName symbol and addForm is recursively called with the converted
QName symbol.

 When form is a symbol, its resource object (symbol value) is returned if it exists, else
the resource is created using the range entailment rule.

 When form is a resource object, it is returned.
 If form is a lang-form, the language environment is changed to the designated language.

The scoping of language environment is inside this function calling.
 If form is a lang-taged form, an rdf:inLang structure instance is created and returned.
 If form is a type-taged form, then datum is interpreted as type-tag if possible and returns

the result, otherwise signals an error.
 When this function interprets a slot form or '(role filler)', it recursively calls itself with

parameter filler for form and role for role, and returns the result.
 Otherwise, this function recursively calls for each of slot forms and the list of evaluated

slots is obtained, then function addObject is invoked for the class(es) that is/are
computed from type-tag and entailment rules with the evaluated slots. The result of
addObject is returned.

A user usually does not use this function directly, instead a user should use defIndividual or
defConcept (defResource) or defProperty macro for resource definition. See also
addForm in documentation in the doc folder.

get-form resource [Function]

generates and returns the form of resource in S-expression.

19 RDFS Vocabulary and Semantics

5. RDFS Vocabulary and Semantics

The RDF ontology description language, RDF Schema (RDFS), is a semantic extension of RDF. It provides

a device to describe groups of same kind resources (classes) and the inclusiveness among these groups.

RDFS provides the minimal set for describing concepts for ontology. The vocabulary contains

rdfs:Resource and rdfs:Class, which provide the classification notion together with the property rdf:type,

and the subsumption notion of classification with the property rdfs:subClassOf. These semantics of RDFS

is similar to the CLOS perspective, namely rdf:type to instance-class relation and rdfs:subClassOf to

subclass-superclass relation. Therefore, RDFS classes are mapped onto CLOS classes and RDFS instances

are mapped onto CLOS instances in SWCLOS.

5.1 Resource Classes, Metaclasses, and Instances

Figure 5.1 shows the relationship in RDF(S) vocabulary. A broken curved line stands for rdf:type relation,

and a solid straight line stands for rdfs:subClassOf relation. rdfs:Resource is a superclass of all other classes,

and rdfs:Class is a class of all classes, including rdfs:Class itself. A class of classes is called metaclass in

CLOS. So, rdfs:Class and rdfs:Datatype in RDFS vocabulary are metaclasses in CLOS.

Figure 5.1 RDFS Hierarchy Graph

20 SWCLOS User’s Manual

The notion of metaclass, class, and instance is very important in CLOS. Therefore, predicates for these

categories on RDF resources are prepared. See the followings.

gx-user(33): (rsc-object-p rdfs:Class)
t
gx-user(34): (rsc-object-p rdfs:Resource)
t
gx-user(35): (rsc-object-p rdf:Property)
t
gx-user(36): (rsc-object-p rdfs:comment)
t
gx-user(37): (rsc-object-p "This is a comment.")
common-lisp:nil
gx-user(38): (rsc-object-p "This is also a comment."@en)
common-lisp:nil
gx-user(39): (rsc-object-p "1"^^xsd:nonNegativeInteger)
t
gx-user(40): (rsc-object-p 1)
common-lisp:nil
gx-user(41): (rsc-object-p <Foo>)
common-lisp:nil
gx-user(42): (rsc-object-p <<Foo>>)
t
gx-user(43): (rdf-class-p rdfs:Class)
t
gx-user(44): (rdf-class-p rdfs:Resource)
t
gx-user(45): (rdf-class-p rdf:Property)
t
gx-user(46): (rdf-class-p rdfs:comment)
common-lisp:nil
gx-user(47): (rdf-metaclass-p rdfs:Class)
t
gx-user(48): (rdf-metaclass-p rdfs:Resource)
common-lisp:nil
gx-user(48): (rdf-instance-p rdf:Property)
common-lisp:nil
gx-user(49): (rdf-instance-p rdfs:comment)
t
gx-user(50): (rdf-class-p rdf:List)
t
gx-user(51): (rdf-instance-p rdf:nil)
t

rsc-object-p x [Function]

returns true, if x is not a literal but an resource object in RDF. Actually, this function returns
true, if x is an instance of rdfs:Resource in CLOS. This is same as (cl:typep x rdfs:Resource),
but more efficient a little bit.

21 RDFS Vocabulary and Semantics

rdf-class-p thing [Function]

returns true, if thing is a class of resource in RDF. Actually, this function returns true, if
thing is rdfs:Class or an instance of rdfs:Class in CLOS.

rdf-metaclass-p thing [Function]

returns true, if thing is a metaclass of resource. Actually, this function returns true, if thing is
rdfs:Class or an instance and simultaneously subclass of rdfs:Class in CLOS.

strict-class-p thing [Function]

returns true, if thing is a class but not a metaclass of resource.

rdf-instance-p thing [Function]

returns true, if thing is an instance of rdfs:Resource but not an instance of rdfs:Class.

resource? symbol [Function]

returns true, if symbol is a symbol and its value is a resource.

class? symbol [Function]

returns true, if symbol is a symbol and its value is a class of resource.

metaclass? symbol [Function]

returns true, if symbol is a symbol and its value is a meta class of resource.

strict-class? symbol [Function]

returns true, if symbol is a symbol and its value is a class but not a metaclass of resource.

instance? symbol [Function]

returns true, if symbol is a symbol and its value is an instance of resource.

5.2 rdf:type and rdfs:subClassOf

Figure 5.1 depicts class-instance relations described with rdf:type property. Class-subclass relations are

described with rdfs:subClassOf property, and property-subproperty relations are described with

rdfs:subPropertyOf in RDFS vocabulary.

To get rdf:type property value of resources, you may use gx:type-of and cl:class-of23 function. Note that

gx:type-of is customized type-of function for resources instead of cl:type-of so that it brings RDFS

semantics, but cl:class-of is a native function in CLOS. Therefore, while gx:type-of for rdfs:Class returns

rdfs:Class in RDFS semantics, cl:class-of for rdfs:Class returns actual metaclass object of rdfs:Class in

23 http://www.franz.com/support/documentation/8.0/ansicl/dictentr/class-of.htm

22 SWCLOS User’s Manual

CLOS as shown below.

gx-user(10): (type-of 1)
xsd:byte
gx-user(11): (type-of "1"^^xsd:integer)
xsd:integer
gx-user(14): (type-of rdf:Property)
rdfs:Class
gx-user(15): (class-of rdf:Property)
#<_rdfsClass rdfs:Class>
gx-user(16): (type-of rdfs:comment)
rdf:Property
gx-user(17): (class-of rdfs:comment)
#<rdfs:Class rdf:Property>
gx-user(18): (type-of rdfs:Datatype)
rdfs:Class
gx-user(19): (class-of rdfs:Datatype)
#<_rdfsClass rdfs:Class>
gx-user(20): (type-of rdfs:Class)
rdfs:Class
gx-user(21): (class-of rdfs:Class)
#<metaRDFSclass _rdfsClass>

type-of resource [Function]

returns the name of the class of resource. This function is almost same as cl:type-of, but
exactly obeys RDFS semantics. The return value for rdfs:Class object is the name of itself.

To get instances of a class, the function collect-direct-instances-of retrieves the direct instances of a class,

and the function collect-all-instances-of collects all instances from the class and its subclasses.

gx-user(31): (collect-direct-instances-of rdf:List)
(#<rdf:List rdf:nil>)
gx-user(32): (collect-all-instances-of rdfs:Class)
(#<rdfs:Class |rdfs:Resource|> #<rdfs:Class rdf:Alt>
#<rdfs:Class rdf:Seq> #<rdfs:Class rdf:Bag>
#<rdfs:Class rdfs:ContainerMembershipProperty>
#<rdfs:Class rdfs:Literal> #<rdfs:Class rdfs:Container>
#<rdfs:Class gx::shadow-class> #<rdfs:Class rdf:List>
#<rdfs:Class gx::ill-structured-XMLLiteral> ...)

collect-direct-instances-of class [Method]

class is a symbol or a class object. This method returns instances that are directly defined to
class. Note that this does not affect literal classes.

collect-all-instances-of class [Method]

class is a symbol or a class object. This method returns instances that are defined to class
and subclasses of class. For OWL classes, this method collects not only direct instances of
class and its subclasses but also indirect instances by OWL semantics.

Note that gx:typep also accepts URIs, QName symbols, and literal data in different semantics from

23 RDFS Vocabulary and Semantics

cl:typep.

gx-user(7): (typep <http://somewhere/> rdfs:Resource)
t
t
gx-user(8): (typep "This is literal." rdfs:Resource)
t
t
gx-user(9): (typep 1 rdfs:Resource)
t
t
gx-user(10): (typep "This is literal." rdfs:Literal)
t
t
gx-user(11): (typep 1 rdfs:Literal)
t
t

typep resource type [Function]

returns true if resource is a member of type in RDF semantics.

The class-subclass relation in RDF is defined with rdfs:subClassOf property, and the relation is similar to

the CLOS class-subclass relation. However, gx:subtypep is available to test class-subclass relation in the

semantics of RDF. Namely, it accepts URIs, QName symbols, and data types in different way from

cl:subtypep. See the followings.

gx-user(35): (subtypep rdf:Alt rdfs:Container)
t
t
gx-user(36): (subtypep rdf:Alt rdfs:Resource)
t
t
gx-user(37): (subtypep <http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt>

rdfs:Resource)
t
t
gx-user(38): (subtypep xsd:integer rdfs:Literal)
t
t
gx-user(39): (subtypep xsd:integer rdfs:Resource)
t
t

subtypep type1 type2 [Function]

returns true if type1 is a subtype of type2 in RDF semantics.

The rdfs:subClassOf value of a resource class is retrieved using slot-value with slot-name rdfs:subClassOf.

gx-user(40): (slot-value rdf:Alt 'rdfs:subClassOf)
#<rdfs:Class rdfs:Container>

24 SWCLOS User’s Manual

5.3 rdfs:subPropertyOf

The properties, which are instances of rdf:Property, have super-property and sub-property notion, although

CLOS instances do not have the super-sub relation on slots. Therefore, the super-sub notion upon properties

is implemented in SWCLOS. subproperty-p tests the super-sub relation on property. superproperty-of

and subproperty-of functions retrieve direct super-properties and sub-properties of a parameter. The detail

of property is explained at Section 8.

gx-user(3): (subproperty-p rdfs:isDefinedBy rdfs:seeAlso)
t
gx-user(4): (subproperty-of rdfs:seeAlso)
(#<rdf:Property rdfs:isDefinedBy>)
gx-user(5): (superproperty-of rdfs:isDefinedBy)
(#<rdf:Property rdfs:seeAlso>)

subproperty-p property1 property2 [Function]

returns true, if property1 is an subproperty of property2. Otherwise, false is returned.

superproperty-of property [Function]

returns a direct superproperty of property, if exists. Otherwise, cl:nil is returned.

subproperty-of property [Function]

returns a direct subproperty of property, if exists. Otherwise, cl:nil is returned.

5.4 Properties and Slots

In RDF, the property is the first-class entity that exists as resource. Therefore, the property resource exists

as CLOS object, an instance of the class rdf:Property, in SWCLOS.

An RDF triple, subject/predicate/object is realized by a subjective object, a slot name, and its slot value in

SWCLOS. Therefore, getting an object value in a triple in RDF graph is equal to getting a slot value of the

slot name corresponding to the property name.

Note that the line 2 in the following example just demonstrates rdfs:comment resource object as the

first-class entity. The line 3 shows the role of property as predicate in triples. The line 4 shows the comment

value on rdfs:comment. Please see the difference and distinguish a property as an resource object and a

property as predicate or a role of binary relationship.

gx-user(2): rdfs:comment
#<rdf:Property rdfs:comment>
gx-user(3): (slot-value rdfs:Resource 'rdfs:comment)
"The class resource, everything."
gx-user(4): (slot-value rdfs:comment 'rdfs:comment)
"A description of the subject resource."

25 RDFS Vocabulary and Semantics

However, rdf:type has very special semantics. It specifies the type of object, and it is transformed to a

class-instance relation in CLOS. Therefore, we get rdf:type value in several ways.

gx-user(2): (slot-value rdfs:comment 'rdf:type)
#<rdfs:Class rdf:Property>
gx-user(3): (class-of rdfs:comment)
#<rdfs:Class rdf:Property>
gx-user(4): (type-of rdfs:comment)
rdf:Property
gx-user(5): (-> rdfs:comment rdf:type)
rdf:Property

The function '->' allows users to traverse over an RDF graph according to a given path and returns the

value (node name or literal) at the arrival point.

gx-user(6): (-> rdfs:comment rdf:type rdf:type)
rdfs:Class
gx-user(7): (-> rdfs:comment rdf:type rdf:type rdfs:comment)
"The class of classes."
gx-user(8): (-> rdfs:comment rdf:type rdf:type rdfs:comment rdf:type)
xsd:string

-> node edge1 ... [Function]

starting at node, this function traverses over the RDF graph according to the path given as
parameters, edge1 ... , and returns the arrival node. In case of multiple paths are possible,
this function takes one route encountered at first. If there is no route which coincides with
path, cl:nil is returned. If an edge is a list, i.e., a specifier for edge, in which the first is a
property name and the second is a type specifier as filter, then a route where the designated
type satisfies the edge value as type is chosen. Note that this search has no backtrack.

5.5 Adding Resource Objects and Forward Reference

In CLOS, a class must be defined before making its instance. A CLOS programmer cannot add a slot value

to an instance object without the slot definition upon the class. In contrast, adding a triple,

subject/predicate/object, is a basic manner in constructing ontology in RDF. It implies that SWCLOS must

add a slot value without the slot definition in the class. Therefore, SWCLOS enabled the piecewise slot

addition for objects. Furthermore, the capability for forward referencing is required. Namely, SWCLOS

must be able to accept undefined classes and instances as referent. Fortunately we have the principle of

monotonicity in Semantic Webs and many entailment rules in RDF, RDFS and OWL. SWCLOS exploited

the principle of monotonicity and a number of entailment rules in order to realize the forward referencing

for objects. See SWCLOS papers [Koide04,Koide05,Koide06,Koide09] on theoretical details. In this

document, we explain the usage of this piecewise adding functionality.

26 SWCLOS User’s Manual

Figure 5.2 illustrates a part of Wine Ontology described in RDFS rather than OWL. You may make this

RDF graph in a usual manner of CLOS object definition, namely in order from abstract classes to special

classes and from classes to instances. However, SWCLOS allows you to define any object in any order

with the premise of monotonicity principle. SWCLOS ensures the final result shown in Figure 5.2, when all

pieces of knowledge are inputted.

Figure 5.2 RDF Graph in Wine Ontology

The followings are an example to create the RDF graph shown in Figure 5.2.

gx-user(2): (defpackage vin)
#<The vin package>
gx-user(3): (defIndividual vin::ElyseZinfandel

(rdf:type vin::Zinfandel)
(vin::hasMaker vin::Elyse))

Warning: Entail by rdf1: vin::hasMaker rdf:type rdf:Property.
Warning: Range entail by rdf:type: vin::Zinfandel rdf:type rdfs:Class.
#<vin:Zinfandel vin:ElyseZinfandel>
gx-user(4): vin:Elyse
#<|rdfs:Resource| vin:Elyse>
gx-user(5): (defIndividual vin:Elyse (rdf:type vin::Winery))
Warning: Range entail by rdf:type: vin::Winery rdf:type rdfs:Class.
#<vin:Winery vin:Elyse>
gx-user(6): (defConcept vin:Zinfandel (rdfs:subClassOf vin::Wine))
Warning: Range entailX1 by rdfs:subClassOf: vin::Wine rdf:type rdfs:Class.
#<rdfs:Class vin:Zinfandel>
gx-user(7): (slot-value vin:Zinfandel 'rdfs:subClassOf)
#<rdfs:Class vin:Wine>

27 RDFS Vocabulary and Semantics

gx-user(8): (subtypep vin:Zinfandel rdfs:Resource)
t
t

At the beginning of the example above, a lisp package named 'vin' was created for Wine Ontology. Then,

vin:ElyseZinfandel, whose maker is vin:Elyse, was defined. Note that all of 'vin' vocabulary in Wine

Ontology are to be interned in 'vin' package before reading as QName. Otherwise, when you input a new

symbol as QName, you must use double colons, because you have no way to make exported symbols

directly with neither calling export function nor defining them at the time of the package definition. Since

SWCLOS interprets lisp symbols at the position of resources as QName and automatically exports them,

then you may specify the QName symbols with one colon afterwards.

The macro defIndividual is used to define an individual or an instance of resource. At line 3, vin:Zinfandel,

vin:hasMaker, and vin:Elyse are referred to but not defined as QName yet. So, SWCLOS reasoned out at

least that vin:Zinfandel must be an instance of rdfs:Class, vin:hasMaker must be an instance of rdf:Property,

and vin:Elyse must be an instance of rdfs:Resource using some of entailment rules in RDF and RDFS. See

Section 9. The line 3 in the above example not only made an instance slot for vin:ElyseZinfandel,

vin:hasMaker and vin:Elyse, but also automatically defined the CLOS slot definition of vin:hasMaker at the

class vin:Zinfandel.

The line 4 to 5 shows the type of vin:Elyse is changed from rdfs:Resource to vin:Winery. Note that

vin:Winery is a subclass of rdfs:Resource and shares rdfs:Class as its type with rdfs:Resource. The line 6 to

8 demonstrates that vin:Wine is added into the rdfs:subClassOf slot of vin:Zinfandel. Exactly, the

superclass of vin:Zinfandel is refined from rdfs:Resource to vin:Wine, because it is directed, and

rdfs:Resource as superclass of vin:Zinfandel is involved by the transitivity of subsumption through

vin:Wine. Thus, the automatic redefinition in SWCLOS is possible and knowledge monotonously increases.

The forward reference involves the entailment through the various entailment rules, and the statement of

explicit assertion refines the results of earlier entailing.

defIndividual name (role1 filler1) ... [Macro]

name is a QName symbol or unexported lisp symbol of this individual, and role is a
property name (symbol) including rdf:type etc., and filler is a value of the property. This
macro generates and evaluates the form like '(addForm (:name name) (role1 filler1) ...)'. If
an rdf:type value is not supplied, the most specific concepts of domain restrictions are
calculated and used. If there is no rdf:type indication and no domain restrictions, the default
value is rdfs:Resource. A filler may be a sub form in addForm calling sequence. See
addForm for the syntax detail. See page 17.

defConcept name (role1 filler1) ... [Macro]

28 SWCLOS User’s Manual

This macro works as same as defIndividual but the default rdf:type value is rdfs:Class.

defProperty name (role1 filler1) ... [Macro]

This macro works as same as defIndividual but the default rdf:type value is rdf:Property.

5.6 Adding Slots

In class-based Object-Oriented Programming Language like CLOS, slot structures in an instance must be

defined before making the instance. However, in RDF, a property as predicate and its value can be defined

at any RDF graph node (subject) within the domain restriction on the property. Therefore, it is enabled to

add any slot (pair of role and filler) to any resource object without the explicit slot definition in the class.

SWCLOS automatically adds the new slot definition in the class on the demand of new slot addition to an

individual.

There is no special function for users to add new slots into objects in SWCLOS. Instead you can add new

slots using defIndividual or defConcept macro, piecewisely. SWCLOS accepts such piecewise and

multiple definitions for multiple slots on a resource. After the above example, you can add a new slot

(vin:hasColor vin:Red) to vin:ElyseZinfandel as follows.

gx-user(9): (defIndividual vin:ElyseZinfandel (vin::hasColor vin::Red))
Warning: Entail by rdf1: vin::hasColor rdf:type rdf:Property.
#<vin:Zinfandel vin:ElyseZinfandel>
gx-user(10): (get-form vin:ElyseZinfandel)
(|rdfs:Resource| vin:ElyseZinfandel (rdf:type vin:Zinfandel)

(vin:hasMaker vin:Elyse) (vin:hasColor vin:Red))

5.7 Adding Slot Values

Setting a slot value shows very different behaviors in SWCLOS. (setf slot-value) is available but it does not

overwrite an old value. It just adds a new value into the slot value. Precisely, if both an old value and a new

value are not a list and different from each other, the result of adding is a list of old and new value. If both

are a list, the result is a union of both. If one of them is not a list, it is added (adjoin) to another value as a

set element. This is from the monotonicity principle in Semantic Webs.

gx-user(17): (defIndividual MyResource (myProp "original one"))
Warning: Entail by rdf1: myProp rdf:type rdf:Property.
#<|rdfs:Resource| MyResource>
gx-user(18): (slot-value MyResource 'myProp)
"original one"
gx-user(19): (setf (slot-value MyResource 'myProp) "added 1st")
("added 1st" "original one")

gx-user(20): (setf (slot-value MyResource 'myProp) "added 2nd")

29 RDFS Vocabulary and Semantics

("added 2nd" "added 1st" "original one")
gx-user(21): (slot-value MyResource 'myProp)
("added 2nd" "added 1st" "original one")

When you add same value that is already stored in the slot, nothing happens.

gx-user(22): (setf (slot-value MyResource 'myProp) "added 1st")
Warning: Ignored:#<|rdfs:Resource| MyResource> myProp "added 1st".
("added 2nd" "added 1st" "original one")
gx-user(23): (slot-value MyResource 'myProp)
("added 2nd" "added 1st" "original one")

5.8 Adding Multiple Types

A CLOS object belongs to only one class. However, an instance in RDF may be a member of multiple

classes. In order to solve this problem, we set up an invisible class that is an instance of metaclass

gx::shadowed-class. For example, suppose SaucelitoCanyonZinfandel1998 in Wine Ontology is an

instance of Zinfandel and Vintage, SWCLOS set a shadowed-class named Zinfandel.0 that has Zinfandel

and Vintage as its superclass.

gx-user(2): (defpackage vin)
#<The vin package>
gx-user(3): (defIndividual vin::SaucelitoCanyonZinfandel1998

(rdf:type vin::Zinfandel)
(rdf:type vin::Vintage))

Warning: Range entail by rdf:type: vin::Zinfandel rdf:type rdfs:Class.
Warning: Range entailX2 by rdf:type: vin::Vintage rdf:type rdfs:Class.
Warning: Multiple classing with

(#<rdfs:Class vin:Zinfandel> #<rdfs:Class vin:Vintage>) for
#<vin:Zinfandel vin:SaucelitoCanyonZinfandel1998>
#<vin:Zinfandel.0 vin:SaucelitoCanyonZinfandel1998>

gx-user(4): (typep vin:SaucelitoCanyonZinfandel1998 vin:Zinfandel)
t
t
gx-user(5): (typep vin:SaucelitoCanyonZinfandel1998 vin:Vintage)
t
t
gx-user(6): (type-of vin:SaucelitoCanyonZinfandel1998)
(vin:Vintage vin:Zinfandel)

5.9 Extension of property and slot definition

A set of all triples whose predicate is a specific property is called the extension of property in RDF24. A slot

in an instance of CLOS is captured as one element of the extension of a property of slot name. In CLOS,

we have the slot-definition objects that are allocated for a class metaobject and shared by its instances. A

24 http://www.w3.org/TR/rdf-mt#defexten

30 SWCLOS User’s Manual

slot definition object in a class holds a slot-name and a type constraint for the slot value. SWCLOS also

keeps the subject information on the property extension in the slot-definition objects. Furthermore, every

slot definition object for a RDF entity is linked to by a property resource object. Function

collect-all-extensions-of collects all elements in the extension of a property and lists up them.

gx-user(53): rdfs:comment
#<rdf:Property rdfs:comment>
gx-user(54): (find 'rdfs:comment (mop:class-slots rdfs:Class)

:key #'name)
#<gx::Property-effective-slot-definition rdfs:comment @ #x20a9520a>
gx-user(55): (cl:typep

(find 'rdfs:comment (mop:class-slots rdfs:Class)
:key #'name)

'mop:slot-definition)
t
gx-user(56): (collect-all-extensions-of rdfs:comment)
((#<rdf:List rdf:nil>
"The empty list, with no items in it. If the rest of a list is nil then the
list has no more items in it.")
(#<rdf:Property rdfs:domain> "A domain of the subject property.")
(#<rdf:Property rdfs:range> "A range of the subject property.")
(#<rdf:Property rdfs:subPropertyOf>
 "The subject is a subproperty of a property.")
(#<rdf:Property rdfs:subClassOf> "The subject is a subclass of a class.")
(#<rdf:Property rdf:type> "The subject is an instance of a class.")
(#<rdf:Property rdf:predicate>
"The predicate of the subject RDF statement.")
(#<rdf:Property rdf:subject> "The subject of the subject RDF statement.")
(#<rdf:Property rdf:object> "The object of the subject RDF statement.")
(#<rdf:Property rdf:first> "The first item in the subject RDF list.") ...)

collect-all-extensions-of property [Function]

collects an element of the extension of property and returns a list of role and filler pairs.

31 String, Number, Datatype, and Lang

6. String, Number, Datatype, and Lang

6.1 Literal

The string and number that appear in RDF are called literal. Every literal in RDF is an instance of

rdfs:Literal. The class rdf:XMLLiteral is a subclass of rdfs:Literal and a class of all XML Schema data,

which includes xsd:string and xsd:decimal and so on. It implies that every XML Schema data is also an

instance of rdfs:Literal, and every literal is also an instance of rdfs:Resource, because rdfs:Literal is a

subclass of rdfs:Resource.

gx-user(11): (subtypep xsd:string rdfs:Literal)
t
t
gx-user(12): (typep "this is a string." rdfs:Literal)
t
t
gx-user(13): (typep "this is an XML string."@en rdf:XMLLiteral)
t
t
gx-user(14): (typep 1.23 rdfs:Literal)
t
t
gx-user(15): (typep 1.23 xsd:float)
t
t
gx-user(16): (typep 1.23 rdfs:Literal)
t
t
gx-user(17): (typep "1.23"^^xsd:float xsd:float)
t
t
gx-user(18): (typep "1.23"^^xsd:float rdfs:Literal)
t
t
gx-user(19): (typep "this is a string." rdfs:Resource)
t
t
gx-user(20): (typep 1.23 rdfs:Resource)
t
t

Note that gx:typep and gx:subtypep are used in the above demonstration. SWCLOS can accept

language-taged string as shown in line number 13, and xsd-typed data notation as shown in line number 17

and 18 through special reader macro rdf::read-string for trailing character '@' and double characters '^^'

after a string, respectively, instead of Common Lisp original reader macro for string. In read-eval-print loop

(REPL) of lisp, a lexical token of string is read, the evaluation immediately returns the string object, if it is

a plane string, then it is printed by lisp system as string so that the same character sequence as input is

printed. As well as plane string, a language-taged string is read in SWCLOS's REPL. Then, the reader

32 SWCLOS User’s Manual

macro makes a form that creates an instance of rdf:inLang structure and hands it to the eval function in

REPL. So, the lisp system returns an instance of rdf:inLang structure. Similarly, for a string with xsd-type,

the reader macro works the same way for the designated xsd class.

gx-user(8): (quote "This is a test."@en)
(@ "This is a test." "en")
gx-user(9): (eval '"This is a test."@en)
"This is a test."@en
gx-user(10): "This is a test."@en
"This is a test."@en
gx-user(11): (quote "1.23"^^xsd:float)
(^^ "1.23" xsd:float)
gx-user(12): (eval '"1.23"^^xsd:float)
"1.23"^^xsd:float
gx-user(13): "1.23"^^xsd:float
"1.23"^^xsd:float

Method value-of allows users to get mapped value in lisp.

gx-user(15): (value-of "1.23"^^xsd:float)
1.23

@ content lang [Function]

makes an instance of rdf:inLang and returns it. content must be a string. lang may be a
string, or a symbol.

^^ value type [Function]

creates an instance of XML data type type with value and returns it. value is a string or a lisp
data that conforms to type. type may be an CLOS object or a symbol.

value-of datum [Method]

When datum is an instance of rdf:XMLLiteral, this method returns the value of datum.

6.2 XSD Datatypes in SWCLOS

In RDF semantics, specific ones out of built-in datatypes in XML Schema25 are introduced in RDF. In

SWCLOS, further limited numbers of datatypes out of datatypes in RDF are defined as lisp datatypes as

follows.

25 http://www.w3.org/TR/rdf-mt/#XSDtable

33 String, Number, Datatype, and Lang

Lisp Type Definition in Lisp Ex. in S-expression

xsd:unsignedByte (cl:unsigned-byte 8) 255

xsd:unsignedShort (cl:unsigned-byte 16) 65535

xsd:unsignedInt (cl:unsigned-byte 32) 4294967295

xsd:unsignedLong (cl:unsigned-byte 64) 18446744073709551615

xsd:nonNegativeInteger cl:unsigned-byte 0

xsd:byte (cl:signed-byte 8) 127

xsd:short (cl:signed-byte 16) 32767

xsd:int (cl:signed-byte 32) 2147483647

xsd:long (cl:signed-byte 64) 9223372036854775807

xsd:integer cl:integer 1234567890

xsd:positiveInteger (cl:integer 1 *) 1

xsd:nonPositiveInteger (cl:integer * 0) 0

xsd:negativeInteger (cl:integer cl:* -1) -1

xsd:float cl:single-float 1.0

xsd:double cl:double-float 1.0d0

xsd:decimal cl:rational (rational 1.0)

xsd:string cl:string "string?"

xsd:boolean (cl:member xsd:true xsd:false) xsd:false

xsd:anyURI net.uri:uri (uri "http://somewhere/")

xsd:anySimpleType (or xsd:boolean xsd:anyURI xsd:string
xsd:float xsd:double xsd:decimal)

"simple-type?"

Therefore, you can check a lisp datum in S-expression against the xsd types defined as lisp type as follows.

gx-user(7): (cl:typep 1 'xsd:positiveInteger)
t
gx-user(8): (cl:typep 1 'xsd:nonNegativeInteger)
t
gx-user(9): (cl:typep 1 'xsd:integer)
t
gx-user(10): (cl:typep 1 'xsd:int)
t
gx-user(11): (cl:typep 1 'xsd:decimal)
t
gx-user(12): (cl:typep 1 'xsd:unsignedByte)
t
gx-user(13): (cl:typep 1 'xsd:anySimpleType)
t

34 SWCLOS User’s Manual

Moreover, each xsd type in lisp has an RDF datatype object as symbol value of the datatype, and gx:typep

interprets a datum in lisp not only as lisp datatype but also as RDF datatype, if it is a plane literal

(non-typed-literal) or a lisp datum.

gx-user(14): xsd:positiveInteger
#<rdfs:Datatype xsd:positiveInteger>
gx-user(15): xsd:integer
#<rdfs:Datatype xsd:integer>
gx-user(16): (typep 1 xsd:positiveInteger)
t
t
gx-user(17): (typep 1 xsd:nonNegativeInteger)
t
t
gx-user(18): (typep 1 xsd:integer)
t
t
gx-user(19): (typep 1 xsd:int)
t
t
gx-user(20): (typep 1 xsd:decimal)
t
t
gx-user(21): (typep 1 xsd:unsignedByte)
t
t
gx-user(22): (typep 1 xsd:anySimpleType)
t
t

On the other hand, a typed literal in RDF is mapped to an instance of RDF data type class in SWCLOS, and

each typed-data instance is also interpreted by gx:typep as follows.

gx-user(8): (typep "1"^^xsd:integer xsd:integer)
ｔ
ｔ
gx-user(9): (typep "1"^^xsd:integer xsd:positiveInteger)
common-lisp:nil
t
gx-user(10): (typep "1"^^xsd:positiveInteger xsd:integer)
t
t
gx-user(11): (typep "1"^^xsd:positiveInteger xsd:positiveInteger)
t
t

Note that xsd:integer subsumes xsd:positiveInteger, so that "1"^^positiveInteger is an instance of

xsd:positiveInteger and xsd:integer, too, but "1"^^integer is not an instance of xsd:positiveInteger, although

the values of both in the value space are equal.

35 String, Number, Datatype, and Lang

Every datatype is an instance of rdfs:Datatype. Note that rdf:XMLLiteral and xsd:integer, etc. are a class.

So, rdfs:Datatype is a metaclass.

gx-user(21): (typep xsd:integer rdfs:Datatype)
t
t
gx-user(22): (typep rdf:XMLLiteral rdfs:Datatype)
t
t
gx-user(23): (strict-class-p xsd:integer)
t
gx-user(24): (rdf-metaclass-p rdfs:Datatype)
t

Function datatype? checks whether or not it is an XSD datatype for a symbol parameter, and datatype-p

checks for a datatype object (an instance of rdfs:Datatype).

gx-user(31): (datatype? 'xsd:integer)
t
gx-user(32): (datatype-p xsd:integer)
t

datatype? symbol [Function]

This predicate returns true if symbol is bound, and the symbol-value is an instance of
rdfs:Datatype.

datatype-p x [Function]

This predicate returns true if x is an instance of rdfs:Datatype.

6.3 xml:lang in SWCLOS

The xml:lang26 attribute in RDF syntax can be used on any node element or property element in

RDF/XML syntax to indicate that the included content is in the given language. See the following example,

which is taken from W3C RDF/XML Syntax Specification (Revised)27.

26 http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/#section-Syntaxlanguages
27 http://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax-languages

36 SWCLOS User’s Manual

In reading RDF/XML forms, the xml:lang attribute on node elements is parsed as it is an attribute. The

xml:lang attribute on property element is transformed as if it envelopes the role value as sub-role. Therefore,

the above RDF/XML forms are interpreted and transformed to the following S-expressions.

SWCLOS keeps and maintains the language environment according to the order and the nest structure of

RDF/XML language designation. Therefore, at the second rdf:Description form in the above example, the

German environment is set up at the language tag ':de' at first, then the English environment is established

in the German environment at the ':en' envelope. As a result, We obtain the followings.

gx-user(9): (read-rdf-file #'addRdfXml "SWCLOS/example08.rdf")
Warning: Entail by rdf1: dc:title rdf:type rdf:Property.
Warning: Entail by rdf1: dc:description rdf:type rdf:Property.
:done
gx-user(10): (slot-value
<<http://www.w3.org/TR/rdf-syntax-grammar>> 'dc:title)
("RDF/XML Syntax Specification (Revised)"
"RDF/XML Syntax Specification (Revised)"@en
"RDF/XML Syntax Specification (Revised)"@en-US)
gx-user(11): (slot-value <<http://example.org/buecher/baum>> 'dc:title)
("Der Baum"@de "The Tree"@en)
gx-user(12): (slot-value <<http://example.org/buecher/baum>> 'dc:description)
"Das Buch ist außergewöhnlich"@de

(rdf:Description (rdf:about <uri http://www.w3.org/TR/rdf-syntax-grammar>)
(dc:title "RDF/XML Syntax Specification (Revised)")
(dc:title (:en "RDF/XML Syntax Specification (Revised)"))
(dc:title (:en-us "RDF/XML Syntax Specification (Revised)")))

(rdf:Description (rdf:about <uri http://example.org/buecher/baum>)
(xml:lang :de)
(dc:title "Der Baum")
(dc:description "Das Buch ist außergewöhnlich")
(dc:title (:en "The Tree")))

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
<dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
<dc:title xml:lang="en">RDF/XML Syntax Specification (Revised)</dc:title>
<dc:title xml:lang="en-US">RDF/XML Syntax Specification (Revised)</dc:title>

</rdf:Description>
<rdf:Description rdf:about="http://example.org/buecher/baum" xml:lang="de">
<dc:title>Der Baum</dc:title>
<dc:description>Das Buch ist außergewöhnlich</dc:description>
<dc:title xml:lang="en">The Tree</dc:title>

</rdf:Description>
</rdf:RDF>

37 String, Number, Datatype, and Lang

Where such an expression as "Der Baum"@de and "The Tree"@en is an instance of rdf:inLang

structure, which is printed as it looks like a lexical form of plain literal with language option. See ISO

639-1 alpha-2 language code28 about the optional lang code.

rdf:inLang [Structure]

A structure for plain literal with language option. The instance has two values for lang slot
and content slot. Lisp prints this object like plain literal with option, content@lang.

lang? x [Function]

returns true if x is the keyword symbol that matches one of the ISO 639-1alpha-2 language
code.

28 http://www.loc.gov/standards/iso639-2/php/code_list.php

38 SWCLOS User’s Manual

7. RDF Collection

7.1 RDF Container

To represent collections of resources, RDF provides three ways as subclass of rdfs:Container.

 rdf:Bag is a collection type without ordering elements.

 rdf:Alt is a collection type without ordering elements. The first of elements is to be selected

alternatively among them.

 rdf:Seq is a collection type with ordering elements.

The first member of container is the value of the property rdf:_1, the second member is the value of the

property rdf:_2, and so on. This kind of property, rdf:_nnn, is called an ordinal property.

Figure 7.1 is an example of a collection of rdf:Bag, which is taken from Jena tutorial.

Figure 7.1 An Example of rdfs:Bag (from Jena Tutorial)

Then, the followings encode Figure 7.1.

gx-user(3): (defpackage somewhere)
#<The somewhere package>
gx-user(4): (defpackage vCard)
#<The vCard package>
gx-user(5): (defIndividual somewhere::JohnSmith

(rdf:about "http://somewhere/JohnSmith")
(vCard::FN "John Smith")
(vCard::N (rdfs:Resource (vCard::Given "John")

(vCard::Family "Smith"))))

39 RDF Collection

Warning: Entail by rdf1: vCard::FN rdf:type rdf:Property.
Warning: Entail by rdf1: vCard::N rdf:type rdf:Property.
Warning: Entail by rdf1: vCard::Given rdf:type rdf:Property.
Warning: Entail by rdf1: vCard::Family rdf:type rdf:Property.
#<|rdfs:Resource| somewhere:JohnSmith>
gx-user(6): (defIndividual somewhere::BeckySmith

(rdf:about "http://somewhere/BeckySmith")
(vCard:FN "Becky Smith")
(vCard:N (rdfs:Resource (vCard:Given "Becky")

(vCard:Family "Smith"))))
#<|rdfs:Resource| somewhere:BeckySmith>
gx-user(7): (defIndividual _:bag01 (rdf:type rdf:Bag)

(rdf::_1 somewhere:BeckySmith)
(rdf::_2 somewhere:JohnSmith))

Warning: Entail by rdf1: rdf:_1 rdf:type rdf:Property.
Warning: Entail by rdf1: rdf:_2 rdf:type rdf:Property.
#<rdf:Bag :anonymous>
gx-user(8): (get-form _:bag01)
(rdf:Bag (rdf:type rdf:Bag)

(rdf:_1 somewhere:BeckySmith)
(rdf:_2 somewhere:JohnSmith))

In SWCLOS, ordinal properties are initially not defined. However, if you put them in proper position, it is

automatically defined as an instance of rdfs:ContainerMembershipProperty.

In Figure 7.1, the top node is a blank node, then we put it a blank node identifier _:bag01. Note that a blank

node object is bound to a designated blank node ID. In SWCLOS, a node name is not mandatory even if in

the top level node, but it is preferable to put a node identifier for convenience.

7.2 List

In RDF semantics, we can make an instance of rdf:List with rdf:first, rdf:rest and rdf:nil.

Figure 7.2 shows an example of list structure in RDF, which is from RDF Primer29.

29 http://www.w3.org/TR/rdf-primer#figure16

40

SWCLOS

This RDF gr

gx-user(2
#<The eg
gx-user(3

#<The voc
gx-user(4
(rdf:abo
(vocab
(rdf:
(rd

(rd
(

Warning:
#<|rdfs:R

User’s Manu

Figur

raph is encod

2): (defpa
package>
3): (defpa

(:do
cab packag
4): (defIn
out "http:
::student
:List
df:first (

df:rest
rdf:List
(rdf:firs
(rdfs:R
(rdf:

(rdf:rest
(rdf:Li
(rdf:
(rdf
(r

(rdf:
Entail by
Resource|

ual

re 7.2 An RD

ded as follows

ackage eg

ackage voc
ocumentati
ge>
ndividual
://example
s

(rdfs:Reso
(rdf:abou

st
Resource
about "ht
t
ist
first
fs:Resourc
rdf:about
rest rdf:
y rdf1: vo
eg:course

DF Collection

s straightforw

(:documen

cab
ion "http:

eg::cours
e.org/cour

ource
ut "http:/

ttp://exam

ce
"http://e
nil))))))
ocab::stud
es/6.001>

n (list structu

wardly.

ntation "h

://example

ses/6.001
rses/6.001

//example

mple.org/s

example.or
))
dents rdf:

ure) (from R

http://exa

e.org/stud

1")

.org/stud

students/M

rg/student

:type rdf:

RDF Primer)

ample.org/

dents/voca

dents/Amy"

Mohamed"))

ts/Johann"

:Property.

/"))

ab/"))

)))

)

")))

.

41 RDF Collection

gx-user(5): (pprint (get-form eg:courses/6.001))
(|rdfs:Resource| eg:courses/6.001
(rdf:about #<uri http://example.org/courses/6.001>)
(vocab:students
(rdf:List
(rdf:first
(rdfs:Resource (rdf:about #<uri http://example.org/students/Amy>)))

(rdf:rest
(rdf:List
(rdf:first
(rdfs:Resource
(rdf:about #<uri http://example.org/students/Mohamed>)))

(rdf:rest
(rdf:List
(rdf:first
(rdfs:Resource
(rdf:about #<uri http://example.org/students/Johann>)))

(rdf:rest rdf:nil))))))))

You can get any data in list using path traverse function '->' as follows.

gx-user(6): (get-form (-> eg:courses/6.001 vocab:students rdf:rest
rdf:rest rdf:first))

(rdfs:Resource (rdf:about #<uri http://example.org/students/Johann>))
gx-user(7): (-> eg:courses/6.001 vocab:students rdf:rest rdf:rest rdf:rest)
#<rdf:List rdf:nil>

However, using rdf:List is very tedious for lisp programmers. We can use the lisp list to represent a

collection of resources in SWCLOS. You may represent the collection of students as follows, whereas the

RDF graph is not equal to Figure 7.2.

gx-user(7): (defIndividual eg::courses/6.002
(rdf:about "http://example.org/courses/6.002")
(vocab::students
(rdfs:Resource (rdf:about "http://example.org/students/Amy"))
(rdfs:Resource (rdf:about "http://example.org/students/Mohamed"))
(rdfs:Resource
(rdf:about "http://example.org/students/Johann"))))

#<|rdfs:Resource| eg:courses/6.002>
gx-user(8): (get-form eg:courses/6.002)
(|rdfs:Resource| eg:courses/6.002
(rdf:about "http://example.org/courses/6.002")
(vocab:students
(rdfs:Resource (rdf:about "http://example.org/students/Amy"))
(rdfs:Resource (rdf:about "http://example.org/students/Mohamed"))
(rdfs:Resource (rdf:about "http://example.org/students/Johann"))))

gx-user(9): (-> eg:courses/6.002 vocab:students)
(#<rdfs:Resource :anonymous> #<rdfs:Resource :anonymous>
#<rdfs:Resource :anonymous>)
gx-user(10): (mapcar #'get-form *)
((rdfs:Resource (rdf:about "http://example.org/students/Amy"))
(rdfs:Resource (rdf:about "http://example.org/students/Mohamed"))
(rdfs:Resource (rdf:about "http://example.org/students/Johann")))

42 SWCLOS User’s Manual

Even though this input form does not contain rdf:first and rdf:rest, it is very easy for lisp programmers to

imagine the above forms from the list structure in Figure 7.2.

43 Domain and Range

8. Domain and Range

8.1 Adding Domain and Range Constraints

Each property in RDF may have its own attributes about the domain and the range. The domain value

restricts the class of subject in triple of the extension of the property and the range value restricts the range

of the property value. See Figure 5.2. To define a domain and a range of a property, use defProperty as

follows.

gx-user(3): (defpackage vin)
#<The vin package>
gx-user(4): (defProperty vin::hasMaker

(rdfs:domain vin::Wine)
(rdfs:range vin::Winery))

Warning: Range entailX3 by rdfs:domain: vin::Wine rdf:type rdfs:Class.
Warning: Range entailX3 by rdfs:range: vin::Winery rdf:type rdfs:Class.
#<rdf:Property vin:hasMaker>

The defined domain and range value of property is retrieved by the accessor rdfs:domain and rdfs:range.

gx-user(6): (rdfs:domain vin:hasMaker)
#<rdfs:Class vin:Wine>
gx-user(7): (rdfs:range vin:hasMaker)
#<rdfs:Class vin:Winery>
gx-user(8): (rdfs:domain rdfs:comment)
#<rdfs:Class rdfs:Resource>
gx-user(9): (rdfs:range rdfs:comment)
#<rdfs:Class rdfs:Literal>

These accessor signals an error, if a property has no definition.

gx-user(10): (defProperty vin::hasColor
(rdfs:range vin::WineColor))

Warning: Range entailX3 by rdfs:range: vin::WineColor rdf:type rdfs:Class.
#<rdf:Property vin:hasColor>
gx-user(11): (rdfs:range vin:hasColor)
#<rdfs:Class vin:WineColor>
gx-user(12): (rdfs:domain vin:hasColor)
Error: The slot rdfs:domain is unbound in the object
#<rdf:Property vin:hasColor> of class #<rdfs:Class rdf:Property>.
[condition type: unbound-slot]

You may use function range-value and domain-value without signaling an error, even if a property has no

definition on domain or range value.

gx-user(13): (range-value vin:hasColor)
#<rdfs:Class vin:WineColor>
gx-user(14): (domain-value vin:hasColor)
common-lisp:nil

44 SWCLOS User’s Manual

rdfs:domain property [Accessor]

provides an access method for the domain value of property. This method signals an error, if
the value is unbound.

rdfs:range property [Accessor]

provides an access method for the range value of property. This method signals an error, if
the value is unbound.

domain-value property [Function]

returns the domain value of property. This function returns cl:nil, if the value is unbound.

range-value property [Function]

returns the range value of property. This function returns cl:nil, if the value is unbound.

The domain and range value is inherited from the super-properties defined through rdfs:subPropertyOf. In

the following example, function get-domain accesses and retrieves the domain value of superproperties of

vin:hasColor.

gx-user(19): (defProperty vin::hasColor
(rdfs:subPropertyOf vin::hasWineDescriptor))

Warning: Range entailX3 by rdfs:subPropertyOf:
vin::hasWineDescriptor rdf:type rdf:Property.
#<rdf:Property vin:hasColor>
gx-user(20): (get-domain vin:hasColor)
common-lisp:nil
gx-user(21): (defProperty vin:hasWineDescriptor

(rdfs:domain vin:Wine))
#<rdf:Property vin:hasWineDescriptor>
gx-user(22): (get-domain vin:hasColor)
#<rdfs:Class vin:Wine>

get-domain property [Function]

This function searches domains that are directly defined and inherited from its super
properties and returns the most specific domain values. So, the return value may be a single
value or a list of values. This function returns cl:nil if any defined domain is not found after
the exhaustive search. However, note that cl:nil for domain value means rdfs:Resource in
fact by RDFS semantics. If a disjoint pair of values found, domain-condition-unsatisfiable
error is signaled.

collect-domains properties [Function]

collects domains from each of properties using get-domain. A property must be a symbol.

45 Domain and Range

domainp property domain [Function]

returns true if property's domain is a subclass of domain, or if some of property's
super-properties have a subclass of domain.

get-range property [Function]

returns the range value from property and its super-properties. The inheritance rule is the
same as get-domain. This function may signal range-condition-unsatisfiable error.

collect-ranges properties [Function]

collects ranges from each of properties using get-range. A property must be a symbol.

rangep property range [Function]

returns true if property's range is a subclass of range, or if some of property's
super-properties have a subclass of range.

8.2 Domain and Range Constraint Satisfaction

As mentioned in the description of get-domain and get-range above, any disjoint pair of domains and

ranges with respect to a specific property causes the unsatisfiable condition error. The satisfiability

checking is very important especially in OWL, because OWL provides users the definition of

owl:disjointWith relation on concepts (classes), while RDF provides only the intrinsic disjoitness with

respect to XML Schema data.

In the following demonstration, range-condition-unsatisfiable error happens, since xsd:float and

xsd:integer are disjoint and both are defined as domains with respect to hasInteger property.

gx-user(2): (defProperty hasFloat (rdfs:range xsd:float))
#<rdf:Property hasFloat>
gx-user(3): (defProperty hasInteger (rdfs:range xsd:integer)

(rdfs:subPropertyOf hasFloat))
#<rdf:Property hasInteger>
gx-user(4): (defResource foo (hasInteger 1))
Error: range condition unsatisfiable: disjoint clash:
#<rdfs:Datatype xsd:integer> #<rdfs:Datatype xsd:float>
[condition type: range-condition-unsatisfiable]

If domains and ranges involve some inclusiveness (gx:subtypep relation in RDF and subsumed-p relation

in OWL) among them, the most specific concepts (classes) or MSCs are returned. Namely, the return value

of get-domain and get-range is the most specific concept (if all concepts are related in the super-sub

relation) or a list of the most specific concepts (if some concepts are independent in the super-sub relation).

46 SWCLOS User’s Manual

After rebooting SWCLOS,

gx-user(2): (defProperty hasInteger (rdfs:range xsd:integer))
#<rdf:Property hasInteger>
gx-user(3): (defProperty hasPositiveInteger

(rdfs:range xsd:positiveInteger)
(rdfs:subPropertyOf hasInteger))
#<rdf:Property hasPositiveInteger>
gx-user(4): (get-range hasPositiveInteger)
#<rdfs:Datatype xsd:positiveInteger>
gx-user(5): (subtypep xsd:positiveInteger xsd:integer)
t
t

In this case, xsd:positiveInteger is chosen as range constraint of property subproperty

hasPositiveInteger in two constraints, xsd:integer and xsd:positiveInteger, because

xsd:positiveInteger is more specific than xsd:integer.

47 RDFS Axioms and Entailments

9. RDFS Axioms and Entailments

9.1 RDF and RDFS Axioms

In SWCLOS, all RDF and RDFS axioms are implemented. For example, the following shows RDF

axiomatic triples30.

gx-user(2): (typep rdf:type rdf:Property)
t
t
gx-user(3): (typep rdf:subject rdf:Property)
t
t
gx-user(4): (typep rdf:predicate rdf:Property)
t
t
gx-user(5): (typep rdf:object rdf:Property)
t
t
gx-user(6): (typep rdf:first rdf:Property)
t
t
gx-user(7): (typep rdf:rest rdf:Property)
t
t
gx-user(8): (typep rdf:value rdf:Property)
t
t
gx-user(9): (typep rdf:nil rdf:List)
t
t

The following shows a part of RDFS axiomatic triples31.

gx-user(14): (rdfs:domain rdf:type)
#<rdfs:Class rdfs:Resource>
gx-user(15): (rdfs:domain rdfs:domain)
#<rdfs:Class rdf:Property>
gx-user(16): (rdfs:domain rdfs:range)
#<rdfs:Class rdf:Property>
gx-user(17): (rdfs:domain rdfs:subPropertyOf)
#<rdfs:Class rdf:Property>
gx-user(18): (rdfs:domain rdfs:subClassOf)
#<_rdfsClass rdfs:Class>
gx-user(19): (rdfs:domain rdf:subject)
#<rdfs:Class rdf:Statement>

gx-user(24): (rdfs:range rdf:type)
#<_rdfsClass rdfs:Class>

30 http://www.w3.org/TR/rdf-mt#RDF_axiomatic_triples
31 http://www.w3.org/TR/rdf-mt#RDFS_axiomatic_triples

48 SWCLOS User’s Manual

gx-user(25): (rdfs:range rdfs:domain)
#<_rdfsClass rdfs:Class>
gx-user(26): (rdfs:range rdfs:range)
#<_rdfsClass rdfs:Class>
gx-user(27): (rdfs:range rdfs:subPropertyOf)
#<rdfs:Class rdf:Property>
gx-user(28): (rdfs:range rdfs:subClassOf)
#<_rdfsClass rdfs:Class>

gx-user(31): (rdfs:subClassOf rdf:Alt)
#<rdfs:Class rdfs:Container>
gx-user(32): (rdfs:subClassOf rdf:Bag)
#<rdfs:Class rdfs:Container>
gx-user(33): (rdfs:subClassOf rdf:Seq)
#<rdfs:Class rdfs:Container>
gx-user(34): (rdfs:subClassOf rdfs:ContainerMembershipProperty)
#<rdfs:Class rdf:Property>
gx-user(35): (rdfs:subPropertyOf rdfs:isDefinedBy)
(#<rdf:Property rdfs:seeAlso>)
gx-user(36): (typep rdf:XMLLiteral rdfs:Datatype)
t
t
gx-user(37): (rdfs:subClassOf rdf:XMLLiteral)
#<rdfs:Class rdfs:Literal>
gx-user(38): (rdfs:subClassOf rdfs:Datatype)
#<_rdfsClass rdfs:Class>

The followings also show important axiomatic triples on RDFS.

gx-user(39): (typep rdfs:Resource rdfs:Class)
t
t
gx-user(40): (typep rdfs:Class rdfs:Resource)
t
t
gx-user(41): (typep rdfs:Resource rdfs:Resource)
t
t
gx-user(42): (typep rdfs:Class rdfs:Class)
t
t
gx-user(43): (typep rdf:XMLLiteral rdfs:Class)
t
t
gx-user(44): (typep rdfs:Datatype rdfs:Class)
t
t

The class-instance relation in RDF is directly defined with rdf:type property. The notion of RDF class is

different from the class notion in CLOS, but the subsumption relation among objects is the same as that in

CLOS. The straightforward mapping of rdf:type relation to CLOS class instance relation conveys gains and

benefits such as the potential of CLOS is available. However, this straightforward mapping causes only one

49 RDFS Axioms and Entailments

obstacle to implement RDF on top of CLOS, namely rdfs:Class that is an instance of rdfs:Class itself.

Allegro Common Lisp rejects such membership loop among classes, whereas cl:standard-object is an

instance of itself in CLOS. Therefore, to work around this obstacle, the internal class, _rdfsClass, is

introduced as a class of rdfs:Class and simultaneously as a subclass of rdfs:Class. Note that this twisted

relation of class/instance and superclass/subclass between rdfs:Class and _rdfs:Class in CLOS produces a

membership loop of rdfs:Class as well as the relation between rdfs:Resource and rdfs:Class in CLOS. See

the followings.

gx-user(2): (cl:typep rdfs:Resource rdfs:Class)
t
gx-user(3): (cl:subtypep rdfs:Class rdfs:Resource)
t
t
gx-user(4): (cl:typep rdfs:Resource rdfs:Resource)
t
gx-user(5): (cl:typep rdfs:Class '_rdfsClass)
t
gx-user(6): (cl:subtypep '_rdfsClass rdfs:Class)
t
t
gx-user(7): (cl:typep rdfs:Class rdfs:Class)
t

Note that the membership loop on rdfs:Class is really implemented in CLOS semantics by means of a trick

called twisted relation between rdfs:Class and its direct class _rdfsClass.

9.2 RDFS Entailment

The RDFS entailment32 directs that every resource in RDF is typed to rdfs:Resource. The following shows

some examples.

gx-user(13): (typep rdfs:Resource rdfs:Resource)
t
t
gx-user(14): (typep rdfs:Class rdfs:Resource)
t
t
gx-user(15): (typep rdf:nil rdfs:Resource)
t
t
gx-user(16): (typep rdfs:comment rdfs:Resource)
t
t
gx-user(17): (typep "This is a plain literal." rdfs:Resource)
t
t

32 http://www.w3.org/TR/rdf-mt#rdfs_entailment

50 SWCLOS User’s Manual

gx-user(18): (typep 1 rdfs:Resource)
t
t
gx-user(19): (typep <http://www.somewhere> rdfs:Resource)
t
t

9.3 RDF Entailment Rules

There are two RDF entailment rules33, rdf1 and rdf2 as follows.

gx-user(9): (defIndividual uuu (aaa yyy))
Warning: Entail by rdfs1: aaa rdf:type rdf:Property.
#<|rdfs:Resource| uuu>
gx-user(10): (typep aaa rdf:Property)
t
t
gx-user(11): (defIndividual vvv (aaa (xsd:integer 1)))
#<|rdfs:Resource| vvv>
gx-user(12): (get-form vvv)
(|rdfs:Resource| vvv (aaa "1"^^xsd:integer))
gx-user(13): (typep (slot-value vvv 'aaa) rdf:XMLLiteral)
t
t

In any input triple, a predicate is an instance of rdf:Property (entailment rule rdf1). When an object of an

input triple is a well-typed XML literal, SWCLOS creates an data object that is an instance of

rdf:XMLLiteral typed to the designated type (entailment rule rdf2).

9.4 RDFS Entailment Rules

There are 13 rules in RDFS34, as shown in Table 9.1.

Table 9.1 The OWL Axioms
Name If Then

rdfs1
uuu aaa lll .
where lll is a plain literal (with or without a
language tag) .

_:nnn rdf:type rdfs:Literal .
where _:nnn identifies a blank node
allocated to lll by rule lg.

rdfs2 aaa rdfs:domain xxx .
uuu aaa yyy . uuu rdf:type xxx .

rdfs3 aaa rdfs:range xxx .
uuu aaa vvv . vvv rdf:type xxx .

rdfs4a uuu aaa xxx . uuu rdf:type rdfs:Resource .
rdfs4b uuu aaa vvv . vvv rdf:type rdfs:Resource .

rdfs5 uuu rdfs:subPropertyOf vvv .
vvv rdfs:subPropertyOf xxx . uuu rdfs:subPropertyOf xxx .

33 http://www.w3.org/TR/rdf-mt/#RDFRules
34 http://www.w3.org/TR/rdf-mt/#RDFSRules

51 RDFS Axioms and Entailments

rdfs6 uuu rdf:type rdf:Property . uuu rdfs:subPropertyOf uuu .

rdfs7 aaa rdfs:subPropertyOf bbb .
uuu aaa yyy . uuu bbb yyy .

rdfs8 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf rdfs:Resource .

rdfs9 uuu rdfs:subClassOf xxx .
vvv rdf:type uuu . vvv rdf:type xxx .

rdfs10 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf uuu .

rdfs11 uuu rdfs:subClassOf vvv .
vvv rdfs:subClassOf xxx . uuu rdfs:subClassOf xxx .

rdfs12 uuu rdf:type rdfs:ContainerMembershipProperty . uuu rdfs subPropertyOf rdfs member .
rdfs13 uuu rdf:type rdfs:Datatype . uuu rdfs:subClassOf rdfs:Literal .

However a lisp string and number is interpreted as a plain literal in RDFS by SWCLOS. Therefore, rdfs1

rule is implicitly realized for a plain literal.

For a plain literal with language tag, SWCLOS creates an instance object of rdf:inLang, then the result for

a literal with language tag also satisfies rdfs1 rule.

gx-user(4): (defIndividual uuu (aaa (:en "This is an English text.")))
Warning: Entail by rdf1: aaa rdf:type rdf:Property.
#<|rdfs:Resource| uuu>
gx-user(5): (get-form uuu)
(|rdfs:Resource| uuu (aaa (:en "This is an English text.")))
gx-user(6): (slot-value uuu 'aaa)
"This is an English text."@en
gx-user(7): (typep (slot-value uuu 'aaa) rdfs:Literal)
t
t

Rdfs2 is a domain entailment as follows. SWCLOS proactively performs this entailment rule. In other

words, SWCLOS newly creates an instance or refines the existing instance according to this rule.

gx-user(2): (defProperty aaa (rdfs:domain xxx))
Warning: Range entailX3 by rdfs:domain: xxx rdf:type rdfs:Class.
#<rdf:Property aaa>
gx-user(3): (defIndividual uuu (aaa yyy))
#<xxx uuu>
gx-user(4): (typep uuu xxx)
t
t

Rdfs3 is a range entailment which is the same as domain rule rdfs2.

gx-user(2): (defProperty aaa (rdfs:range xxx))
Warning: Range entailX3 by rdfs:range: xxx rdf:type rdfs:Class.
#<rdf:Property aaa>

gx-user(3): (defIndividual uuu (aaa vvv))
Warning: Range entailX3 by aaa: vvv rdf:type xxx.
#<|rdfs:Resource| uuu>

52 SWCLOS User’s Manual

gx-user(4): (typep vvv xxx)
t
t

Rdfs4a rule entails a subject in any triple is an instance of rdfs:Resource. In a description of form for

addForm input parameter, individual's type is designated by a class specifier in the form. If

'rdf:Description' is indicated for class description, or cl:nil is passed for the resource object creation as no

type indication, rdfs4a rule may be applicable. However, there is a sensitive question in SWCLOS. In

RDF(S) semantics, rdfs:Resource is a type of every resource, despite that a resource is an instance of

rdfs:Class or an instance of rdfs:Resource. On the other hand, in CLOS level at SWCLOS implementation,

we have two possibilities for the instance of rdfs:Resource. It may be either as an instance of rdfs:Resource

CLOS class (namely instance), or as an instance of rdfs:Class metaclass (namely class). As a default in

SWCLOS, an instance of rdfs:Resource as CLOS instance of rdfs:Resource is created. Thus, SWCLOS

changes the category of created object from instance to class later on, if a metaclass is indicated for the

object at the proper definition.

Rdfs4b has the same logic and the same question as rdfs4a for the range entailment. See the following

example.

gx-user(2): (addForm '(cl:nil (:name uuu) (aaa xxx)))
Warning: Entail by rdf1: aaa rdf:type rdf:Property.
#<|rdfs:Resource| uuu>
gx-user(3): (typep uuu rdfs:Resource)
t
t
gx-user(4): (typep xxx rdfs:Resource)
t
t

Rdfs5 is a transitivity rule on rdfs:subPropertyOf. We implemented it on properties in SWCLOS.

gx-user(2): (defProperty uuu (rdfs:subPropertyOf vvv))
Warning: Range entailX3 by rdfs:subPropertyOf: vvv rdf:type rdf:Property.
#<rdf:Property uuu>
gx-user(3): (defProperty vvv (rdfs:subPropertyOf xxx))
Warning: Range entailX3 by rdfs:subPropertyOf: xxx rdf:type rdf:Property.
#<rdf:Property vvv>
gx-user(4): (subproperty-p uuu xxx)
t

Rdfs6 is very natural rule on rdfs:subPropertyOf as well as rdfs10 on rdfs:subClassOf.

gx-user(9): (subproperty-p uuu uuu)
t

Rdfs7 may be a little bit confusing.

53 RDFS Axioms and Entailments

gx-user(2): (defProperty aaa (rdfs:subPropertyOf bbb))
Warning: Range entailX3 by rdfs:subPropertyOf: bbb rdf:type rdf:Property.
#<rdf:Property aaa>
gx-user(3): (defIndividual uuu (aaa yyy))
#<|rdfs:Resource| uuu>
gx-user(4): (slot-value uuu 'bbb)
Error: The slot bbb is missing from the object #<|rdfs:Resource| uuu> of
class #<rdfs:Class |rdfs:Resource|> during operation slot-value
[condition type: program-error]
gx-user(5): (-> uuu bbb)
#<|rdfs:Resource| yyy>

In the form, (slot-value uuu 'bbb), although getting a slot value of bbb that is attached to uuu

object was attempted, the value yyy is attached by slot named aaa, then CLOS signaled an slot missing

alarm. The function '->' is for RDF graph traversing and getting the value at the final place arrived. It takes

account of not only designated properties as travel path but also their super-properties.

Rdfs8 means that the default superclass of instance of rdfs:Class metaclass is rdfs:Resource.

gx-user(2): (defResource uuu (rdf:type rdfs:Class))
#<rdfs:Class uuu>
gx-user(3): (subtypep uuu rdfs:Resource)
t
t

Rdfs9 subsumption rule and rdfs10 are natively equipped with in CLOS.

gx-user(2): (defResource uuu (rdfs:subClassOf xxx))
Warning: Range entailX1 by rdfs:subClassOf: xxx rdf:type rdfs:Class.
#<rdfs:Class uuu>
gx-user(3): (defIndividual vvv (rdf:type uuu))
#<uuu vvv>
gx-user(4): (typep vvv xxx)
t
t
gx-user(5): (cl:typep vvv xxx)
t
gx-user(6): (subtypep uuu uuu)
t
t
gx-user(7): (cl:subtypep uuu uuu)
t
t

Rdfs11 transitivity rule of rdfs:subClassOf is also natively equipped with in CLOS.

gx-user(2): (defResource uuu (rdfs:subClassOf vvv))
Warning: Range entailX1 by rdfs:subClassOf: vvv rdf:type rdfs:Class.
#<rdfs:Class uuu>
gx-user(3): (defResource vvv (rdfs:subClassOf xxx))
Warning: Range entailX1 by rdfs:subClassOf: xxx rdf:type rdfs:Class.

54 SWCLOS User’s Manual

#<rdfs:Class vvv>
gx-user(4): (subtypep uuu xxx)
t
t
gx-user(5): (cl:subtypep uuu xxx)
t
t

Rdfs12 is a special rule for rdfs:ContainerMembershipProperty. SWCLOS proactively adds the entailment

that an instance of rdfs:ContainerMembershipProperty is a subproperty of rdfs:member.

gx-user(2): (defIndividual uuu (rdf:type rdfs:ContainerMembershipProperty))
#<rdfs:ContainerMembershipProperty uuu>
gx-user(3): (subproperty-p uuu rdfs:member)
t

The last rule rdfs13 is for data type definition.

gx-user(2): (defResource uuu (rdf:type rdfs:Datatype))
Warning: Datatype uuu is defined. Please define lisp type with same name.
#<rdfs:Datatype uuu>
gx-user(3): (subtypep uuu rdfs:Literal)
t
t

SWCLOS satisfies rdfs13 by creating an instance of rdfs:Datatype. However, the lisp system cannot

interpret this type until the same name lisp type is defined.

55 RDF/XML Parser and Writer

10. RDF/XML Parser and Writer

So far, only S-expression is used to represent RDF ontology. It is convenient for lisp programmers to

handle pieces of knowledge in RDF. However, SWCLOS, of course, allows users to read RDF/XML format

files and print out SWCLOS contents in RDF/XML format.

10.1 RDF/XML Parser

parse-rdf is a parser for RDF/XML format files. It is useful to check RDF/XML syntax, but it does not

interpret anything in semantics. In the following example, you might misunderstand that parse-rdf just

prints out an RDF/XML format file, but it is not a reality. parse-rdf produces a list of XML element of lisp

structure from RDF/XML file, namely XMLDecl35 , doctypedecl36 , Comment37 , and RDFdecl38 element

as lisp structure. In Common Lisp, the print form of lisp structure is programmable. So, the structure print

function of XMLDecl is programmed so as to print out a XMLDecl form in XML, the print function of

doctypedecl structure is to ":doctypedecl ...", a Comment structure to a Comment form, and an RDFdecl

structure to an RDFdecl form. In short, parse-rdf reads RDF/XML format file, parses RDF/XML format,

makes structures, and returns them in a list. Then, you see RDF/XML-like forms of such structures in the

list.

If you want to handle just RDF data without the interpretation of RDFS and OWL from RDF/XML format

files, parse-rdf is available to do so. However, in order to interpret contents in RDF/XML files, you may

use read-rdf-file with an accepter function, which is usually addRdfXml. See the followings.

gx-user(2): (with-open-file (p "SWCLOS/RDFS/JenaEx.rdf") (parse-rdf p))
(<?xml version="1.0" ?> #<doctypedecl ... >
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"
xmlns:somewhere="http://somewhere/">

<rdf:Description rdf:about="http://somewhere/JohnSmith">
<vCard:FN>John Smith</vCard:FN>
<vCard:N>
<rdf:Description>
<vCard:Family>Smith</vCard:Family>
<vCard:Given>John</vCard:Given>

</rdf:Description>
</vCard:N>

</rdf:Description>
</rdf:RDF>)
gx-user(3): (read-rdf-file #'addRdfXml "SWCLOS/RDFS/JenaEx.rdf")
Warning: Entail by rdf1: vCard:FN rdf:type rdf:Property.
Warning: Entail by rdf1: vCard:N rdf:type rdf:Property.

35 http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-XMLDecl
36 http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-doctype
37 http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-comments
38 http://www.w3.org/TR/rdf-syntax-grammar/#RDF

56 SWCLOS User’s Manual

Warning: Entail by rdf1: vCard:Family rdf:type rdf:Property.
Warning: Entail by rdf1: vCard:Given rdf:type rdf:Property.
:done
gx-user(4): somewhere:JohnSmith
#<|rdfs:Resource| somewhere:JohnSmith>

parse-rdf stream [Function]

parses RDF/XML from stream and makes the internal representation of RDF. This function
returns a list of several XML structures. Note that *base-uri* and *default-namespace* in
the environment are updated through content from stream.

read-rdf-file accepter-fun [file [code]] [Function]

This function reads and parses a file that contains RDF/XML format data, then passes
attributes in RDFdecl, parsed XMLDecl, parsed doctypedecl, parsed Comments, and parsed
Descriptions to accepter-fun. The code is a character code of file, of which the default is
utf-8. If file has its encoding description in XMLDecl, the direction in file supersedes the
code.

addRdfXml description [Function]

This function accepts an instance of lisp structure Description, which may be generated
from the RDF parser, and transform it to S-expression form, then interprets the form by
addForm. This function returns the result of addForm.

10.2 RDF/XML Writer

To print out RDF data in RDF/XML format, the function write-xml is available. See the following

example.

gx-user(3): (write-xml somewhere:JohnSmith)
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:somewhere="http://somewhere/"
xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" >

<rdf:Description rdf:about="http://somewhere/JohnSmith" >
<vCard:FN>John Smith</vCard:FN>
<vCard:N>
<rdf:Description>
<vCard:Family>Smith</vCard:Family>
<vCard:Given>John</vCard:Given>

</rdf:Description>
</vCard:N>

</rdf:Description>
</rdf:RDF>

write-xml x [stream] [Function]

This function accepts a resource object or a list of resource objects, and print out them in
RDF/XML format. Note that this function returns no value. If stream is not supplied,
standard-output is used as default.

57 N-Triples

11. N-Triples

Note that N-Triple module is separated from RDF system. You must additionally load it to use it.

11.1 N-Triple Parser

N-Triples are textual expression of RDF graph. A line in N-Triples represents one triple of

subject/predicate/object. The syntax of N-Triple39 requires URI references and does not allow QNames.

However, we relaxed the syntax to allow non-ASCII character sets and QNames instead of node URIs.

The graph at Figure4.1 is expressed in N-Triples as follows. Note that there is one period at the end of each

line, where the tilde, locally here, means the line continuation.

<http://www.w3.org/TR/rdf-syntax-grammar> ~
<http://www.example.org/terms/editor> _:a01 .

_:a01 <http://www.example.org/terms/homePage> <http://purl.org/net/dajobe/> .
_:a01 <http://www.example.org/terms/fullName> "Dave Becket" .
<http://www.w3.org/TR/rdf-syntax-grammar> ~
<http://purl.org/dc/elements/1.1./title> ~
"RDF/XML Syntax Specification (Revised)" .

To represent a blank node, you need to use a nodeID in N-Triples. As you see, the strict syntax of N-Triple

is tedious for using URIs. So, we have relaxed it so as to accept the corresponding QNames instead of the

URIs.

<http://www.w3.org/TR/rdf-syntax-grammar> ex:editor _:a01 .
_:a01 ex:homePage <http://purl.org/net/dajobe/> .
_:a01 ex:fullName "Dave Becket" .
<http://www.w3.org/TR/rdf-syntax-grammar> dc:title ~
"RDF/XML Syntax Specification (Revised)" .

The function read-NTriple-file reads the relaxed N-Triple format file, and parses each line to three strings

of subject/predicate/object. This function is usually used with addTriple-from-file, then

addTriple-from-file accepts and interprets subject/predicate/object strings, including strings that stands for

QNames. URIs for resources cause to invoke uri2symbol in reading, and QNames for resources cause to

invoke a query for users in case that the namespace is unknown. In the example below, this shows a right

and bottom corner part of Figure7.1.

In the following demonstration, dialogue windows are popped up by uri2symbol, and 'vCard' and

'somewhere' are replied.

gx-user(2): (read-NTriple-file #'addTriple-from-file "SWCLOS/RDFS/JenaEx.nt")
Warning: Entail in _:a001 vCard:Family "Smith":
..... vCard:Family rdf:type rdf:Property.

39 http://www.w3.org/TR/rdf-testcases/#ntriples

58 SWCLOS User’s Manual

Warning: Entail in _:a001 vCard:Family "Smith":
..... _:a001 rdf:type rdfs:Resource
Warning: Entail in _:a001 vCard:Given "John":
..... vCard:Given rdf:type rdf:Property.
Warning: Entail in somewhere:JohnSmith vCard:N _:a001:
..... vCard:N rdf:type rdf:Property.
Warning: Entail in somewhere:JohnSmith vCard:N #<|rdfs:Resource| :anonymous>:
..... somewhere:JohnSmith rdf:type rdfs:Resource.
Warning: Entail in somewhere:JohnSmith vCard:FN "John Smith":
..... vCard:FN rdf:type rdf:Property.
:done
gx-user(3): (get-form _:a001)
(|rdfs:Resource| (vCard:Family "Smith") (vCard:Given "John"))
gx-user(4): (get-form somewhere:JohnSmith)
(|rdfs:Resource| somewhere:JohnSmith
(vCard:N (|rdfs:Resource| (vCard:Family "Smith") (vCard:Given "John")))
(vCard:FN "John Smith"))

read-NTriple-file accepter-fun [file [code]] [Function]

This function reads and parses a file that contains N-Triple format data, then passes three
strings of subject/predicate/object to accepter-fun. The code is a character code of file. The
default value of code is ':utf-8'.

addTriple-from-file subject predicate object [Function]

subject, predicate, and object are strings. This function interprets three parameters, and adds
the triple data into memory. Actually, this function interns three symbol of parameters, and
invokes addTriple.

11.2 Adding N-Triples

The method addTriple adds an N-Triple, i.e., one subject/predicate/object, into memory. In fact, there are

many methods of addTriple. One method is a piece of building blocks, and each method burdens with a

part of a whole work parted into pieces. In the followings, addTriple methods are categorized by

combination patterns of parameter, but note that one category is also a collection of several methods.

addTriple (subject rdf:Property) (predicate (eql rdfs:range)) object [Method]

When object is a datatype symbol, then invokes addInstance and adds a new range
constraint object to subject. When object is an resource object symbol, recursively calls with
the symbol value of object. Otherwise it recursively calls with an objective resource object
that is created by the range entailment of property predicate if the range constraint is
available, else created as instance of rdfs:Resource.

addTriple subject (predicate (eql rdfs:subClassOf)) object [Method]

In the case that subject and object are defined as resource, if subject is already subclass of
object, then nothing is done, else this method redefines superclasses of subject with

59 N-Triples

addClass with the most specific concepts of previous superclasses and object. In the case
that subject is a symbol of resource object, this function recursively calls with the symbol
value, otherwise newly defines subject with the domain entailment of rdfs:subClassOf.
When both subject and object are symbols and object is undefined, invokes the next upper
method.

addTriple subject (predicate (eql rdfs:subPropertyOf)) object [Method]

If both subject and object are defined as property, then defines the superproperty by
invoking addInstance. When subject is already a subproperty of object, nothing happens. If
object is defined but subject is undefined, it recursively calls with the domain entailment of
rdfs:subPropertyOf. Otherwise, invokes the next upper method.

addTriple (subject symbol) (predicate (eql rdf:type)) object [Method]

invokes addClass if object is a metaclass, or invokes addInstance if object is a class. When
subject is already an instance of the object, nothing happens. This method may involve the
range entailment on rdf:type for an undefined object.

addTriple subject (predicate rdf:Property) object [Method]

In case of defined subject, if object is a symbol already defined as resource object, this
function recursively calls with the object symbol value, else if object is defined, then
redefines with recursion and eventually invokes addClass or addInstance, otherwise
defines with the range entailment of property predicate. When subject is undefined, it
recursively calls with the domain entailment. If the domain and range entailment is not
available, rdfs:Resource or rdfsClass is used instead. In case that object is a lisp number or
string, the range checking is performed.

addTriple subject (predicate symbol) object [Method]

When predicate is undefined, then defines it as instance of rdf:Property. This function
recursively calls with getting the value of predicate.

addTriple subject (predicate net.uri:uri) object [Method]

This function translates predicate URI to a QName, then recursively calls with the predicate
QName. This function also adds predicate URI to rdf:about slot of predicate object.

addTriple (subject net.uri:uri) predicate object [Method]

This function translates subject URI to a QName, then recursively calls with the subject
QName. This function also adds subject URI to rdf:about slot of subjective object.

For convenience to programmers, three define macros are prepared in S-expression. defTriple and /.

and ./ are completely the same for N-Triple definition. After the example above of read-NTriple-file, the

followings demonstrate the example of defTriple.

60 SWCLOS User’s Manual

gx-user(2): (defpackage vCard)
#<The vCard package>
gx-user(3): (defTriple <http://somewhere/JohnSmith> vCard::FN "John Smith")
Warning: Entail in #<uri http://somewhere/JohnSmith> vCard:FN "John Smith":
..... vCard:FN rdf:type rdf:Property.
Warning: Entail in somewhere:JohnSmith vCard:FN "John Smith":
..... somewhere:JohnSmith rdf:type rdfs:Resource
#<|rdfs:Resource| somewhere:JohnSmith>
gx-user(4): (defTriple somewhere:JohnSmith vCard::N _:a001)
Warning: Entail in somewhere:JohnSmith vCard:N _:a001:
..... vCard:N rdf:type rdf:Property.
#<|rdfs:Resource| somewhere:JohnSmith>
gx-user(5): (defTriple _:a001 vCard::Family "Smith")
Warning: Entail in _:a001 vCard:Family "Smith":
..... vCard:Family rdf:type rdf:Property.
#<|rdfs:Resource| :anonymous>
gx-user(6): (defTriple _:a001 vCard::Given "John")
Warning: Entail in _:a001 vCard:Given "John":
..... vCard:Given rdf:type rdf:Property.
#<|rdfs:Resource| :anonymous>
gx-user(7): (get-form somewhere:JohnSmith)
(|rdfs:Resource| somewhere:JohnSmith
(rdf:about #<uri http://somewhere/JohnSmith>) (vCard:FN "John Smith")
(vCard:N (|rdfs:Resource| (vCard:Family "Smith") (vCard:Given "John"))))

defTriple subject predicate object [Macro]

/. subject predicate object [Macro]

./ subject predicate object [Macro]

This macro makes the form '(addTriple subject predicate object)'.

11.3 N-Triple Writer

The resource forms are also obtained as list of triples and also printed out in N-Triple format as well as the

object-centered form by get-form and write-xml. The function get-triple returns a list of relaxed N-Triples

in S-expression that are composed QNames rather than URIs, and write-nt prints them in exact N-Triples

format. See the followings.

gx-user(12): (get-triple somewhere:JohnSmith)
((somewhere:JohnSmith rdf:type |rdfs:Resource|)
(somewhere:JohnSmith vCard:FN "John Smith")
(somewhere:JohnSmith vCard:N _:gx2)
(_:gx2 rdf:type |rdfs:Resource|)
(_:gx2 vCard:Family "Smith")
(_:gx2 vCard:Given "John"))

61 N-Triples

gx-user(13): (setf (documentation (find-package :vCard) t)
"http://www.w3.org/2001/vcard-rdf/3.0")

"http://www.w3.org/2001/vcard-rdf/3.0"
gx-user(14): (set-uri-namedspace-from-pkg (find-package :vCard))
#<The vCard package>
gx-user(15): (write-nt somewhere:JohnSmith)
<http://somewhere/JohnSmith> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ~
<http://www.w3.org/2000/01/rdf-schema#Resource> .

<http://somewhere/JohnSmith> <http://www.w3.org/2001/vcard-rdf/3.0#FN> "John Smith" .
<http://somewhere/JohnSmith> <http://www.w3.org/2001/vcard-rdf/3.0#N> _:gx3 .
_:gx3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ~
<http://www.w3.org/2000/01/rdf-schema#Resource> .

_:gx3 <http://www.w3.org/2001/vcard-rdf/3.0#Family> "Smith" .
_:gx3 <http://www.w3.org/2001/vcard-rdf/3.0#Given> "John" .
gx-user(16): (write-nt '_:gx3)
_:gx3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ~
<http://www.w3.org/2000/01/rdf-schema#Resource> .

_:gx3 <http://www.w3.org/2001/vcard-rdf/3.0#Family> "Smith" .
_:gx3 <http://www.w3.org/2001/vcard-rdf/3.0#Given> "John" .

Note that at the line number 16 in the example above, a quoted nodeID symbol is provided to write-nt

rather than nodeID itself.

get-triple resource [Function]

returns the definition of resource in S-expression of triples. Some nodeIDs are named as
'gxnnn' for anonymous nodes in triple.

write-triple triple [stream] [Function]

This function prints out triple, which is a list of three element subject/predicate/object.

write-nt resource [stream] [Function]

This function gets triples of resource with get-triple and prints out them using write-triple.
For anonymous resource, a nodeID to which a resource object is bound must be given. This
functions returns no value.

62 SWCLOS User’s Manual

12. OWL in SWCLOS

The OWL Web Ontology Languages, which are the extension of RDF and RDFS, are the W3C

Recommendation for Web Ontology description. There are three sub-languages of OWL, that is, OWL

Light, OWL DL, and OWL Full. The OWL Light specification is prepared for an easy realization by

implementers. However, the capability of ontology description is lower than other OWL languages. The

capability of ontology description of OWL DL is underpinned by Description Logic (DL). The satisfiability

checking and the entailment rules by DL is very powerful and useful to describe a consistent ontology, but

the inference on datatype is out of scope of DL, and ones cannot treat classes as an instance of some class

in the same way of RDFS. OWL Full provides full power for ontology description, where the class is not

discriminated to the instance, and ones can treat classes as instance in the same way as RDFS. However, it

is difficult to implement the OWL Full metamodeling capability in the framework of Logics.

SWCLOS is a language for Object-Oriented Programming (OOP) that is built on top of CLOS. CLOS

allows ones metamodeling, namely, programmers can treat classes as instance of some class. Thus, if you

are familiar with meta-programming of CLOS, you can encode metamodeling of ontology in SWCLOS.

With SWCLOS you will get the performance of OWL Full.

12.1 OWL Extension of RDF and RDFS

In theory, OWL is an extension of RDF and RDFS. Therefore, any OWL file, including the OWL

specification file that is described in RDF/XML, must be readable as RDF rather than OWL. In practice,

we can obtain, with the OWL specification file owl.rdf40 from W3C, OWL entities as RDF resource

objects in the RDF universe. See the following demonstration, in which only RDFS module of SWCLOS

has been loaded initially.

cg-user(1): (in-package gx-user)
#<The gx-user package>
gx-user(2): (read-rdf-file #'addRdfXml "SWCLOS/OWL/OWL.RDF")
Warning: Entail by rdf1: owl:imports rdf:type rdf:Property.
Warning: Entail by rdf1: owl:versionInfo rdf:type rdf:Property.
Warning: Entail by rdf1: owl:priorVersion rdf:type rdf:Property.
Warning: Implicit range entailment: owl:Ontology rdf:type rdfs:Class.
Warning: Entail by rdf1: owl:unionOf rdf:type rdf:Property.
Warning: Entail by rdf1: owl:complementOf rdf:type rdf:Property.
:done
gx-user(3): (get-form owl:Thing)
(owl:Class owl:Thing (rdfs:label "Thing")

(owl:unionOf owl:Nothing (owl:Class (owl:complementOf owl:Nothing))))
gx-user(4): (get-form owl:Nothing)
(owl:Class owl:Nothing

(rdf:about #<uri http://www.w3.org/2002/07/owl#Nothing>)
(rdfs:label "Nothing") (owl:complementOf owl:Thing))

40 http://www.w3.org/2002/07/owl.rdf

63 OWL in SWCLOS

gx-user(5): (typep owl:Class rdfs:Class)
t
t
gx-user(6): (subtypep owl:Class rdfs:Class)
t
t
gx-user(7): (subtypep owl:Class rdfs:Resource)
t
t
gx-user(8): (subtypep owl:Thing rdfs:Resource)
t
t
gx-user(9): (subtypep owl:Class owl:Thing)
common-lisp:nil
t

In this demonstration, after boot up SWCLOS without OWL modules, invoking read-rdf-file caused to

load owl.rdf file. Some results by reading owl.rdf were demonstrated with get-form on owl:Thing and

owl:Nothing.

However, this ontology does not result any capability upon OWL entailments and includes some

ambiguities of inclusiveness between the RDF universe and the OWL universe. An OWL reasoner must be

equipped with OWL semantics so as to realize many OWL entailments as well as clear-cut relation between

the RDF universe and the OWL universe. OWL module of SWCLOS provides OWL functionalities with

the owl.rdf file. After this section, OWL realization on SWCLOS is explained.

12.2 Description Logic and OWL in SWCLOS

The syntax and semantics of Description Logic (DL) is compactly described at Appendix of "The

Description Logic Handbook" [DLH]. In this section, OWL DL semantics is explained partly using DL

terminologies and partly using OWL terminologies. Note that the following remarks in Table 12.1.

Table 12.1 Terminology in OWL

Terminologies in DL Description in S-expression of SWCLOS

concept class

role property

top concept owl:Thing bottom concept owl:Nothing

concept inclusion (owl:Class C (rdfs:subClassOf D))

concept equality (owl:Class C (owl:equivalentClass D))

role inclusion (rdf:Property R (rdfs:subPropertyOf S))

role equality (rdf:Property R (owl:equivalentProperty S))

intersection of concepts (owl:intersectionOf C1 ... Cn)

union of concepts (owl:unionOf C1 ... Cn)

64 SWCLOS User’s Manual

negation of concepts (owl:complementOf C)

value restriction (owl:Restriction (owl:onPropertyOf R) (owl:allValuesFrom C))

limited existential quantification (owl:Restriction (owl:onPropertyOf R) (owl:someValuesFrom owl:Thing))

full existential quantification (owl:Restriction (owl:onPropertyOf R) (owl:someValuesFrom C))

at-least number restriction (owl:Restriction (owl:onPropertyOf R) (owl:minCardinality n))

at-most number restriction (owl:Restriction (owl:onPropertyOf R) (owl:maxCardinality n))

exact number restriction (owl:Restriction (owl:onPropertyOf R) (owl:cardinality n))

same-as agreement (owl:Thing u1 (owl:sameAs u2))

one-of or nominal (owl:Thing (owl:oneOf I1 ... In))

To define a concept in OWL, defConcept is used as defResource in RDFS. Both macros generate

completely same forms, but the purpose of 'defConcept' macro is just syntax sugar for OWL. See the

following example after loading OWL module, where the concept Woman and Man are defined. In addition,

an anonymous class that stands for the concept of negation of Woman, is defined. Since the negation of

Woman represents a set of all individuals of Man, the concept Man is defined as the intersection of Person

and the negation of Woman. The following demonstration also shows the entailment of intersection of

concepts.

gx-user(7): (defConcept Woman (owl:intersectionOf Person Female))
Warning: Range entailX3 by owl:intersectionOf: Person rdf:type owl:Class.
Warning: Range entailX3 by owl:intersectionOf: Female rdf:type owl:Class.
#<owl:Class Woman>
gx-user(8): (defConcept Man (owl:intersectionOf

Person
(owl:Class (owl:complementOf Woman))))

#<owl:Class Man>
gx-user(9): (defIndividual John_Doe (rdf:type Man))
#<Man John_Doe>
gx-user(10): (defIndividual Jane_Doe (rdf:type Woman))
#<Woman Jane_Doe>
gx-user(11): (typep John_Doe Female)
common-lisp:nil
t
gx-user(12): (typep Jane_Doe Female)
t
t

The concept that is not defined but referred is called atomic concept, e.g., Person and Female in the above

demonstration, while a complex concept is defined using other concepts (complex or atomic), e.g., Woman

and Man. The atomic concept in SWCLOS exists as object but does not have slot values except

rdfs:subClassOf and owl:equivalentClass.

65 OWL in SWCLOS

12.3 OWL Property Restrictions

A complex concept is often composed of concepts and restrictions. A restriction, which is an instance of

owl:Restriction, works as constraint for a specific property and a specific concept. A property restriction is

anonymous and has only two slots of owl:onPropertyOf and restriction types, i.e., owl:allValuesFrom,

owl:someValuesFrom, owl:hasValue, owl:maxCardinality, owl:minCardinality, and owl:cardinality. In the

following example, the concept Mother is defined as the intersection of Woman and the restriction such that

the property hasChild must exist in Woman individuals and one value of the property hasChild must be an

instance of Person at least.

gx-user(13): (defConcept Mother
(owl:intersectionOf

Woman
(owl:Restriction (owl:onProperty hasChild)

(owl:someValuesFrom Person))))
Warning: Range entailX3 by owl:onProperty: hasChild rdf:type rdf:Property.
#<owl:Class Mother>
gx-user(14): (defConcept Father

(owl:intersectionOf
Man
(owl:Restriction (owl:onProperty hasChild)

(owl:someValuesFrom Person))))
#<owl:Class Father>

The property restriction in the intersection is useful to make a sub concept that is specialized by the

property restriction. In the above case, the concept Mother is defined as Woman who has the slot hasChild,

in which one slot value at least must be an instance of a Person. Exactly speaking on the above

demonstration, it is possible to have something but Person in the hasChild slot in the above definition. Note

that it is needed to add the value restriction (owl:allValuesFrom) on hasChild for Person, if you want to

restrict that all of children must be a Person, exactly in OWL semantics.

Note that owl:Restriction in OWL is specialized to subclass restrictions in SWCLOS, i.e.,

owl:hasValueRestriction, owl:someValuesFromRestriction, owl:allValuesFromRestriction, or

owl:cardinalityRestriction. The reason is mainly for human readability of an anonymous object of

owl:Restriction. SWCLOS provides the customization of printing restrictions. See the followings.

gx-user(15): (-> Father owl:intersectionOf)
(#<owl:Class Man> #<∃hasChild.Person>)

In CLOS, we have the type option in the slot definition. Therefore, we have implemented the

allValuesFrom functionality and the someValuesFrom functionality through this type option in the slot

definition as well as the range value constraint in RDFS. Furthermore, in order to implement the cardinality

constraint, we set two new slot option, maxcardinality and mincardinality in the slot definition as

OwlProperty-slot-definition.

66 SWCLOS User’s Manual

12.4 Substantial and non-Substantial Relationship

Whereas the subsumption relationship is decided with only rdfs:subClassOf in RDFS, the subsumption

decidability is very complicated in OWL. There are many properties that rule subsumption, such as

rdfs:subClassOf, owl:intersectionOf, owl:unionOf, owl:equivalentClass, owl:equivalentProperty,

rdfs:subPropertyOf, etc. From the viewpoint of DL, they have same strength for subsumption decidability.

However, from the viewpoint of Ontology Engineering, generally we have to discriminate substantial ones

and non-substantial ones for subsumption. For instance, the wife and husband relation is weaker than

man/person or woman/person relation. The former is not substantial but the latter is substantial.

On the other hand, from the viewpoint of CLOS, rdfs:subClassOf relation is mapped onto class-subclass

relation, and a CLOS object as rdfs:subClassOf property value is also placed in the direct-superclasses list

slot in the class metaobject. Then, in case that a property prop1 is a subproperty of rdfs:subClassOf, or a

equivalent property of rdfs:subClassOf, whether or not should we place the property value into the

direct-superclasses list in the class to which the property prop1 is attached? In other words, what property

should cause the structural variation in CLOS superclass-subclass relation, and what property should not

cause the structural variation? For instance, food:Wine is equivalent to vin:Wine, and food:Wine in Food

Ontology does not have any slots, and vin:Wine in Wine Ontology has many slots. If we add vin:Wine into

the direct-superclasses list of food:Wine, then food:Wine inherits all slot definitions in the superclasses of

vin:Wine. So, should we put the same slots as vin:Wine to food:Wine or not? In SWCLOS, we specified

that rdfs:subClassOf, owl:intersectionOf, and owl:unionOf should cause the structural variation of CLOS,

but other properties such as owl:equivalentClass, owl:equivalentProperty, including subproperties and

equivalent properties of rdfs:subClass, owl:intersectionOf, and owl:unionOf, should not cause the structural

variation. The predicate gx:subtypep supports the subsumption by class-subclass relation in RDFS

semantics, and subsumed-p reasons the subsumption using other subsumption-related properties in OWL.

From the standpoint of ontology engineering, the effects of substantial properties may propagate to other

entities, but the result of non-substantial properties should not cause any side effects in ontology. Thus,

such discrimination rule of substantial and non-substantial subsumption allows ones to add and delete the

relation of rdfs:subPropertyOf, owl:equivalentClass, etc., and keeps easy to maintain ontologies.

12.5 Axiomatic Complete Relations

Among many properties in OWL, only four properties, i.e., owl:intersectionOf, owl:unionOf,

owl:complementOf, and owl:oneOf make axiomatic complete relations. In other words, these properties

define complete equivalency upon the binary relation of concepts. For example, the following states the

definition of WhiteBordeaux, and if something is a Bordeaux and WhiteWine, it should be concluded to be

a WhiteBordeaux.

67 OWL in SWCLOS

gx-user(2): (defpackage vin)
#<The vin package>
gx-user(3): (defConcept vin::WhiteBordeaux (rdf:type owl:Class)

(owl:intersectionOf vin::Bordeaux vin::WhiteWine))
Warning: Range entailX3 by owl:intersectionOf:

vin::Bordeaux rdf:type owl:Class.
Warning: Range entailX3 by owl:intersectionOf:

vin::WhiteWine rdf:type owl:Class.
#<owl:Class vin:WhiteBordeaux>
gx-user(4): (defIndividual aWine (rdf:type vin:Bordeaux vin:WhiteWine))
Warning: Multiple classing with

(#<owl:Class vin:Bordeaux> #<owl:Class vin:WhiteWine>) for
#<vin:Bordeaux aWine>

#<vin:WhiteBordeaux aWine>

Similarly, the following assertion defines WineColor, which has the enumerative membership of White,

Rose, and Red of complete relation, so that it states that the instance of WineColor is exactly one of the

three, and not to be the others.

gx-user(5): (defConcept vin::WineColor (rdf:type owl:Class)
(owl:oneOf vin::White vin::Rose vin::Red))

#<owl:Class vin:WineColor>
gx-user(6): vin:White
#<vin:WineColor vin:White>

Therefore, it is not necessary to mind Open World Assumption upon such axiomatic complete relation

properties. If we find the contents of the definition body matches the database, then we may conclude the

definition is applicable to the database without a worry about other statements.

See the following example. SWCLOS concludes that QueenElizabethII should be a woman, because there

is a terminology that a person who has gender female is a woman, and it is asserted that QueenElizabethII

is an instance of Person and hasGender Female. Here, note that SWCLOS proactively made the entailment

without demand or query from users.

gx-user(2): (defConcept Person (rdf:type owl:Class)
(owl:intersectionOf
Human
(owl:Restriction (owl:onProperty hasGender)

(owl:cardinality 1))))
Warning: Range entailX3 by owl:intersectionOf: Human rdf:type owl:Class.
Warning: Range entailX3 by owl:onProperty: hasGender rdf:type rdf:Property.
#<owl:Class Person>
gx-user(3): (defConcept Woman (rdf:type owl:Class)

(owl:intersectionOf
Person
(owl:Restriction (owl:onProperty hasGender)

(owl:hasValue Female))))
#<owl:Class Woman>

68 SWCLOS User’s Manual

gx-user(4): (defIndividual QueenElizabethII (rdf:type Person)
(hasGender Female))

Warning: Entailed in refining: #<Person QueenElizabethII> to Woman.
#<Woman QueenElizabethII>

69 OWL Axioms and Entailment Rules

13. OWL Axioms and Entailment Rules

13.1 OWL Axioms

The OWL vocabulary is defined in the OWL definition file41. The contents are listed in the table below. In

the table, the namespace 'owl' at QNames is omitted. 'Resource' stands for rdfs:Resource, and 'Property'

stands for rdf:Property. 'type' stands for rdf:type. 'subPropertyOf' stands for rdfs:subPropertyOf. 'domain'

and 'range' stand for rdfs:domain and rdfs:range. 'List' stands for rdf:List.

Table 13.1 The OWL Axioms

OWL Axioms in http://www.w3.org/2002/07/owl.rdf

(rdfs:Class Class (subClassOf rdfs:Class))

(Class Thing (unionOf Nothing (complementOf Nothing)))

(Class Nothing (complementOf Thing))

(Property equivalentClass (subPropertyOf subClassOf) (domain Class) (range Class))

(Property disjointWith (domain Class) (range Class))

(Property equivalentProperty (subPropertyOf subPropertyOf))

(Property sameAs (domain Thing) (range Thing))

(Property differentFrom (domain Thing) (range Thing))

(rdfs:Class AllDifferent)

(Property distinctMembers (domain AllDifferent) (range List))

(Property unionOf (domain Class) (range List))

(Property intersectionOf (domain Class) (range List))

(Property complementOf (domain Class) (range Class))

(Property oneOf (domain Class) (range List))

(rdfs:Class Restriction (subClassOf Class))

(Property onProperty (domain Restriction) (range Property))

(Property allValuesFrom (domain Restriction) (range Class))

(Property hasValue (domain Restriction))

(Property someValuesFrom (domain Restriction) (range Class))

(Property minCardinality (domain Restriction) (range xsd:nonNegativeInteger))

(Property maxCardinality (domain Restriction) (range xsd:nonNegativeInteger))

(Property cardinality (domain Restriction) (range xsd:nonNegativeInteger))

(rdfs:Class ObjectProperty (subClassOf Property))

(rdfs:Class DatatypeProperty (subClassOf Property))

41 http://www.w3.org/2002/07/owl.rdf

70 SWCLOS User’s Manual

(Property inverseOf (domain ObjectProperty) (range ObjectProperty))

(rdfs:Class TransitiveProperty (subClassOf ObjectProperty))

(rdfs:Class SymmetricProperty (subClassOf ObjectProperty))

(rdfs:Class FunctionalProperty (subClassOf Property))

(rdfs:Class InverseFunctionalProperty (subClassOf ObjectProperty))

(rdfs:Class AnnotationProperty (subClassOf Property))

(AnnotationProperty rdfs:label)

(AnnotationProperty rdfs:comment)

(AnnotationProperty rdfs:seeAlso)

(AnnotationProperty rdfs:isDefinedBy)

(rdfs:Class Ontology)

(rdfs:Class OntologyProperty (subClassOf Property))

(Property imports (type OntologyProperty) (domain Ontology) (range Ontology))

(Property versionInfo (type AnnotationProperty))

(Property priorVersion (type OntologyProperty) (domain Ontology) (range Ontology))

(Property backwardCompatibleWith (type OntologyProperty) (domain Ontology) (range Ontology))

(Property incompatibleWith (type OntologyProperty) (domain Ontology) (range Ontology))

(rdfs:Class DeprecatedClass (subClassOf rdfs:Class))

(rdfs:Class DeprecatedProperty (subClassOf Property))

(rdfs:Class DataRange)

However, this is not enough to reason OWL semantics. We added two axioms to the above definitions in

SWCLOS, as follows.

Table 13.2 Additional Axioms

name Additional OWL Axioms

axiom1 (Class Thing (subClassOf Resource))

axiom2 (rdfs:Class Class (subClassOf Thing))

Axiom1 enables owl:Thing to inherit slot definitions from rdfs:Resource instances, i.e., rdfs:label,

rdfs:comment, etc. Axiom2 is crucial to treat OWL classes as individual. Namely, it enables OWL classes

to have slots for instances of owl:Thing, i.e., owl:sameAs, owl:differentFrom, etc.

13.2 OWL Semantics and Entailment Rules

To realize OWL semantics as an extension of RDFS, we developed the OWL module that is loaded after

RDFS modules in SWCLOS. The OWL module reads up the OWL definition file, and defines many

71 OWL Axioms and Entailment Rules

functions that implement the OWL entailment rules on top of RDFS/RDF semantics. In this section, such

entailment rules are explained.

The complete set of entailment rules in OWL is unknown. Table 13.3 shows entailment rules in OWL

which is disclosed by ter Horst [Horst]. These rules are realized in OWL module. In addition, we have

implemented some extra entailment rules shown in Table 13.4.

Table 13.3 Entailment Rules by ter Horst

Name If Then Note

rdfp1
p type FunctionalProperty .
u p v .
u p w .

v sameAs w . functional property

Rdfp2
p type InverseFunctionalProperty .
u p w .
v p w .

u sameAs v . inverse functional property

rdfp3 p type SymmetricProperty .
v p w . w p v . symmetric property

rdfp4
p type TransitiveProperty .
u p v .
v p w .

u p w . transitive property

rdfp5a v p w . v sameAs v .
self-evident sameAs

rdfp5b v p w . w sameAs w .
rdfp6 v sameAs w . w sameAs v . reflexive sameAs

rdfp7 u sameAs v .
v sameAs w . u sameAs w . transitive sameAs

rdfp8ax p inverseOf q .
v p w . w q v .

inverse of property
rdfp8bx p inverseOf q .

v q w . w p v .

rdfp9 v type Class .
v sameAs w . v subClassOf w . subsumption on

same classes

rdfp10 p type Property .
p sameAs q . p subPropertyOf q subsumption

on same properties

rdfp11
u p v .
u sameAs u' .
v sameAs v' .

u' p v' . property extension
through sameAs

rdfp12a v equivalentClass w . v subClassOf w . subsumption on
equivalentClass rdfp12b v equivalentClass w . w subClassOf v .

rdfp12c v subClassOf w .
w subClassOf v . v equivalentClass w . equivalency from

subsumption classes
rdfp13a v equivalentProperty w . v subPropertyOf w . subsumption on

equivalent property rdfp13b v equivalentProperty w . w subPropertyOf v .

rdfp13c v subPropertyOf w .
w subPropertyOf v . v equivalentProperty w . equivalency from

subsumption properties

rdfp14a
v hasValue w .
v onProperty p .
u p w .

u type v . filler restriction entailment

rdfp14bx v hasValue w .
v onProperty p . u p w . hasValue definition

72 SWCLOS User’s Manual

u type v .

rdfp15

v someValuesFrom w .
v onProperty p .
u p x .
x type w .

u type v . full existential
restriction entailment

rdfp16

v allValuesFrom w .
v onProperty p .
u type v .
u p x .

x type w . allvaluesfrom definition

The rule1a and rule1b is an alternative of rdfs4a and rdfs4b42 in the W3C RDF Semantics document. The

other rules are explained in the next succeeding sub-subsections.

42 http://www.w3.org/TR/rdf-mt/#rulerdfs4

73 OWL Axioms and Entailment Rules

Table 13.4 Additional Entailment Rules in OWL

Name If Then Note

rule1a v p w . v type Thing . default top in OWL

rule1b v p w . w type Thing .

rule2a u intersectionOf { v . . .} . v type Class . default metaclass for
intersection and union list rule2b u unionOf { v . . . } . v type Class .

rule3 u distinctMembers {v . . .} . v type Thing . default class for distinct

rule4
u disjointWith v .
u' subClassOf u .
v' subClassOf v .

u' disjointWith v' . permeation of disjointness

rule5 u complementOf v . v complementOf u . reflexive complementOf
rule6 u complementOf v . u disjointWith v . disjoint complementOf
rule7 u oneOf { x . . . } . x type u . oneOf entailment

rule8
p type SymmetricProperty .
p domain C .
p range D .

C equivalentClass D . domain/range equivalency
by SymmetricProperty

rule9 p equivalentProperty q . q equivalentProperty p . reflexive equivalentProperty

rule10 p equivalentProperty q .
q equivalentProperty r . p equivalentProperty r . transitive equivalentProperty

rule11a p equivalentProperty q .
p domain u . q domain u . domain by equivalentProperty

rule11b p equivalentProperty q .
p range u . q range u . range by equivalentProperty

rule12a p inverseOf q .
p domain u . q domain u . domain by inverseOf

rule12b p inverseOf q .
p range u . q range u . range by inverseOf

rule13 x differentFrom y . y differentFrom x . reflexive differentFrom

rule14
u intersectionOf { v w } .
x type v .
x type w .

x type u . intersection entailment

In the case of no interpretation for a set of input assertions, it is called clash or unsatisfiable. We

summarized unsatisfiability conditions in Table 13.5.

74 SWCLOS User’s Manual

Table 13.5 Unsatisfiability Rules in OWL
Name Unsatisfiable Conditions

oneof-condition-unsatisfiable
u oneOf { xi . . . } .
y type u .
y differentFrom xi . 1 <= i <= n .

sameas-condition-unsatisfiable or
differentfrom-condition-unsatisfiable

x sameAs y .
x differentFrom y .

disjointwith-condition-unsatisfiable or
equivalentclass-condition-unsatisfiable

u disjointWith v .
u equivalentOf v .

disjoint-instances-condition-unsatisfiable
u disjointWith v .
x type u .
x type v .

domain-condition-unsatisfiable
u disjointWith v .
x domain u .
x domain v .

range-condition-unsatisfiable
u disjointWith v .
x range u .
x range v .

complementof-condition-unsatisfiable
u complementOf v .
x type u .
x type v .

13.2.1 Intersection of Concepts (owl:intersectionOf)

The intersection of concepts is represented by owl:intersectionOf property in OWL. In Wine Ontology,

DryRedWine is defined as an intersection of DryWine and RedWine. Figure 13.1 shows the concept

intersection of DryWine and RedWine. The class DryWine stands for a set of DryWine individuals and the

class RedWine stands for a set of RedWine individuals. So, the class DryRedWine represents an

intersection of the two sets of individuals. Therefore, the class DryRedWine turns a subclass of DryWine

class and RedWine class.

gx-user(11): (get-form vin:DryRedWine)
(owl:Class vin:DryRedWine (owl:intersectionOf vin:DryWine vin:RedWine))
gx-user(12): (subsumed-p vin:DryRedWine vin:DryWine)
t
t
gx-user(13): (subsumed-p vin:DryRedWine vin:RedWine)
t
t

75 OWL Axioms and Entailment Rules

Figure 13.1 Intersection of DryWine and RedWine

In SWCLOS, the values of owl:intersectionOf slot are automatically placed into the

class-direct-superclasses list of subjective class metaobject. In the above example, vin:DryWine and

vin:RedWine are placed into the class-direct-superclasses list of vin:DryRedWine.

The range of owl:intersectionOf is defined as rdf:List in the axioms. Then, we added rule2a for the

member element of collection on owl:intersectionOf.

As described at Section 12.5, owl:intersectionOf is complete in definition. Therefore, if something is

known as an individual of DryWine and RedWine, then it is concluded that the thing is an individual of

DryRedWine. See rule14 and the following demonstration.

gx(14): (defIndividual MyWine (rdf:type vin:DryWine))
#<vin:DryWine MyWine>
gx(15): (defIndividual MyWine (rdf:type vin:RedWine))
#<vin:DryRedWine MyWine>

13.2.2 Union of Concepts (owl:unionOf)

Contrary to the intersection, the union of concepts makes subclasses of union members. See Figure 13.2,

where Fruit is defined as union of SweetFruit and NonSweetFruit in Food Ontology. Note that if

food:SweetFruit is disjoint with food:NonSweetFruit, there is no overlapping portion.

gx-user(15): (get-form food:Fruit)
(owl:Class food:Fruit (owl:unionOf food:SweetFruit food:NonSweetFruit))
gx-user(16): (subsumed-p food:SweetFruit food:Fruit)
t
t
gx-user(17): (subsumed-p food:NonSweetFruit food:Fruit)
t
t

76 SWCLOS User’s Manual

Figure 13.2 Union of SweetFruit and NonSweetFruit

There is no overlap exactly, when SweetFruit and NonSweetFruit are disjoint.

In SWCLOS, the subjective class metaobject is automatically placed into the class-direct-superclasses of

each class in the values of property owl:unionOf. In the example above, food:Fruit is placed into the

class-direct-superclasses list of food:SweetFruit and food:NonSweetFruit.

As well as owl:intersectionOf, we added rule2b for the element of the collection on owl:unionOf.

13.2.3 Negation of Concept (owl:complementOf)

The negation of a concept stands for all individuals in the universe except the individuals of the concept.

The owl:complementOf is a reflexive relation. Namely, if a concept C is a negation of concept D, then D is

also a negation of C. See rule5 in Table 13.4. In SWCLOS, the inverse relation of negation is also

registered into the negated class object.

Furthermore, a concept is disjoint with its negation. See rule6. In SWCLOS, the negation results to register

the disjoint relation each other in both concept objects.

gx-user(4): (get-form food:NonConsumableThing)
(owl:Class food:NonConsumableThing (owl:complementOf food:ConsumableThing))
gx-user(5): (defConcept food::PlasticSample

(rdfs:subClassOf food:NonConsumableThing))
#<rdfs:Class food:PlasticSample>
gx-user(6): (defIndividual food::PlasticChineseNoodle

(rdf:type food::PlasticSample))
#<food:PlasticSample food:PlasticChineseNoodle>
gx-user(7): (typep food::PlasticChineseNoodle food:ConsumableThing)
common-lisp:nil
t
gx-user(8): (typep food::PlasticChineseNoodle food:EdibleThing)
common-lisp:nil
t
gx-user(9): (disjoint-p food::PlasticSample food:EdibleThing)
t
t

77 OWL Axioms and Entailment Rules

13.2.4 Instance Enumeration for Concept (owl:oneOf)

Using owl:oneOf, a concept may be defined as the enumeration of individuals. For example, WineColor is

defined as a subclass of WineDescriptor and a concept whose individuals are only Red, White, and Rose.

See rule7 in Table 13.4.

gx-user(2): (defpackage vin)
#<The vin package>
gx-user(3): (defConcept vin::WineColor

(rdfs:subClassOf vin::WineDescriptor)
(owl:oneOf vin::Red vin::Rose vin::White))

Warning: Range entailX1 by rdfs:subClassOf:
vin::WineDescriptor rdf:type rdfs:Class.

#<owl:OneOf vin:WineColor>
gx-user(4): vin:Red
#<vin:WineColor vin:Red>
gx-user(5): vin:Rose
#<vin:WineColor vin:Rose>
gx-user(6): vin:White
#<vin:WineColor vin:White>
gx-user(7): (typep vin:Red vin:WineDescriptor)
t
t

The definition of owl:oneOf is also the complete definition. So, typically the subject of owl:oneOf should

be defined just once and not multi-defined. If the same members are enumerated in multiple definitions, it

is accepted without any warning in this version. If the disjoint members are enumerated, SWCLOS signals

an alarm. See oneof-condition-unsatisfiable in Table 13.5.

gx-user(8): (defConcept vin:WineColor
(owl:oneOf vin:Red vin:Rose Green))

Warning: owl:oneOf value (#<vin:WineColor vin:Red>
#<vin:WineColor vin:Rose> #<vin:WineColor vin:White>)
of #<rdfs:Class vin:WineColor> is doubly specified to
(#<vin:WineColor vin:Red> #<vin:WineColor vin:Rose>
#<vin:WineColor Green>).

#<owl:OneOf vin:WineColor>

13.2.5 Functional Property (owl:FunctionalProperty)

An instance of owl:FunctionalProperty entails that objects in triples are the same, if the subjects in triples

are the same. See the rule rdfp1 in Table 13.3 that is by ter Horst.

gx-user(5): (defProperty hasband (rdf:type owl:ObjectProperty)
(rdf:type owl:FunctionalProperty)
(rdfs:domain Woman)
(rdfs:range Man))

Warning: Range entailX3 by rdfs:domain: Woman rdf:type rdfs:Class.
Warning: Range entailX3 by rdfs:range: Man rdf:type rdfs:Class.
Warning: Multiple classing with

78 SWCLOS User’s Manual

(#<rdfs:Class owl:ObjectProperty>
#<rdfs:Class owl:FunctionalProperty>) for
#<owl:ObjectProperty hasband>

#<owl:ObjectProperty.0 hasband>
gx-user(6): (defIndividual MarieTherese (hasband LouisXIVdeFrance))
Warning: Range entailX3 by hasband: LouisXIVdeFrance rdf:type Man.
#<Woman MarieTherese>
gx-user(7): (defIndividual MarieTherese (hasband Roi-Soleil))
Warning: Range entailX3 by hasband: Roi-Soleil rdf:type Man.
#<Woman MarieTherese>
gx-user(8): (-> MarieTherese hasband)
(#<Man Roi-Soleil> #<Man LouisXIVdeFrance>)
gx-user(9): (owl-same-p LouisXIVdeFrance Roi-Soleil)
t

In SWCLOS, the inverse of owl:FunctionalProperty is registered to the object, and the predicate

owl-same-p and equivalent-property-p use the registered information.

13.2.6 Inverse Functional Property (owl:InverseFunctionalProperty)

An instance of owl:InverseFunctionalProperty entails that subjects in triples are the same, if the objects in

triples are the same. See the rule rdfp2 in Table 13.3.

As well as owl:FunctionalProperty, the inverse of owl:InverseFunctionalProperty is registered to the object,

and the predicate owl-same-p and equivalent-property-p use the registered information.

gx-user(2): (defProperty hasWife (rdf:type owl:ObjectProperty)
(rdf:type owl:InverseFunctionalProperty)
(rdfs:domain Man)
(rdfs:range Woman))

Warning: Range entailX3 by rdfs:domain: Man rdf:type rdfs:Class.
Warning: Range entailX3 by rdfs:range: Woman rdf:type rdfs:Class.
#<owl:InverseFunctionalProperty hasWife>
gx-user(3): (defIndividual Bill (hasWife Hillary))
Warning: Range entailX3 by hasWife: Hillary rdf:type Woman.
#<Man Bill>
gx-user(4): (defIndividual 42ndPresident (hasWife Hillary))
#<Man 42ndPresident>
gx-user(5): (owl-same-p Bill 42ndPresident)
t

13.2.7 Symmetric Property (owl:SymmetricProperty)

An instance of owl:SymmetricProperty entails the reflexive relation of subject and object in triple. See the

rule rdfp3 in Table 13.3.

In SWCLOS, the reflexive relation of symmetric property is automatically added into memory. Namely, the

subject in triple is added to the role value of the object's predicate.

79 OWL Axioms and Entailment Rules

gx-user(2): (defpackage vin)
#<The vin package>
gx-user(3): (defProperty vin::adjacentRegion (rdf:type owl:ObjectProperty)

(rdf:type owl:SymmetricProperty)
(rdfs:domain vin::Region)
(rdfs:range vin::Region))

Warning: Range entailX3 by rdfs:domain: vin::Region rdf:type rdfs:Class.
Warning: #<rdfs:Class vin:Region> rdf:type owl:Class

by owl:SymmetricProperty entailment.
#<owl:SymmetricProperty vin:adjacentRegion>
gx-user(4): (defIndividual vin::MendocinRegion (rdf:type vin:Region)

(vin::locatedIn vin::CaliforniaRegion)
(vin:adjacentRegion vin::SonomaRegion))

Warning: Entail by rdf1: vin::locatedIn rdf:type rdf:Property.
Warning: Range entailX3 by vin:adjacentRegion: vin::SonomaRegion rdf:type

vin:Region.
#<vin:Region vin:MendocinRegion>
gx-user(5): (slot-value vin:MendocinRegion 'vin:adjacentRegion)
#<vin:Region vin:SonomaRegion>
gx-user(6): (slot-value vin:SonomaRegion 'vin:adjacentRegion)
#<vin:Region vin:MendocinRegion>

13.2.8 Transitive Property (owl:TransitiveProperty)

An instance of owl:TransitiveProperty entails the transitivity upon the property. For example,

vin:SonomaRegion is located in vin:CaliforniaRegion and vin:CaliforniaRegion is located in vin:USRegion,

then vin:SonomaRegion is located in vin:USRegion. See the rule rdfp4 in Table 13.3.

In SWCLOS, the transitivity is unified to the subsumption notion. The predicate subsumed-p is also effect

to the transitivity relation. See the following demonstration.

gx-user(7): (defProperty vin:locatedIn (rdf:type owl:ObjectProperty)
(rdf:type owl:TransitiveProperty)
(rdfs:domain owl:Thing)
(rdfs:range vin:Region))

#<owl:TransitiveProperty vin:locatedIn>
gx-user(8): (defIndividual vin::SantaCruzMountainsRegion

(vin:locatedIn vin::CaliforniaRegion))
Warning: Range entailX4 by vin:locatedIn:

#<|rdfs:Resource| vin:CaliforniaRegion> rdf:type vin:Region.
#<owl:Thing vin:SantaCruzMountainsRegion>
gx-user(9): (defIndividual vin:CaliforniaRegion (rdf:type vin:Region)

(vin:locatedIn vin::USRegion))
Warning: Range entailX3 by vin:locatedIn: vin::USRegion rdf:type vin:Region.
#<vin:Region vin:CaliforniaRegion>
gx-user(10): (subsumed-p vin::SantaCruzMountainsRegion vin:USRegion)
t
t

80 SWCLOS User’s Manual

13.2.9 Equivalency as Individuals (owl:sameAs)

The property owl:sameAs is used to represent the equivalency of two individuals. In OWL Full, the class

can be also captured as individual. Therefore, it is applicable to classes. See the rule rdfp5, rdfp6, rdfp7,

and rdfp9, rdfp10, rdfp11 in Table 13.3. In Semantic Webs, we do not stand on Unique Name Assumption,

which is usually taken in computer languages. Namely, two different URIs may denote the same thing or

may not. The statement of owl:sameAs means the two URIs can be captured as the same thing.

The relation of owl:sameAs is reflexive and transitive. It implies that owl:sameAs makes groups among

related entities. In SWCLOS, all members of a group are registered to each member object. The predicate

owl-same-p uses this registered information to check whether two objects are the same or not. See the

following demonstration, after loading Wine Ontology.

gx-user(4): (owl-same-p food:Red vin:Red)
t
gx-user(5): (owl-same-p vin:Red food:Red)
t

13.2.10 Difference as Individuals (owl:differentFrom)

The property owl:differentFrom is used to denote the difference of two individuals. In OWL Full, the class

is also captured as individual. Therefore, it is applicable to classes. In non-Unique Name Assumption of

Semantic Webs, two different URIs may be the same through owl:sameAs statements. Contrary,

owl:differentFrom states that two URIs are different and cannot be captured as the same thing.

The relation of owl:differentFrom is pairwise and reflexive. See rule7 in Table 13.4. In SWCLOS, each

object has the information of difference on the object. The owl:differentFrom property and owl:AllDifferent

statements create this information. The predicate owl-different-p uses this information. See the following

demonstration for Wine Ontology.

gx-user(17): (owl-different-p vin:Dry vin:OffDry)
t
t
gx-user(18): (owl-different-p vin:OffDry vin:Dry)
t
t
gx-user(19): (owl-different-p vin:DAnjou vin:Cotturi)
t
t
gx-user(20): (owl-different-p vin:Cotturi vin:DAnjou)
t
t

81 OWL Axioms and Entailment Rules

13.2.11 Inverse Relation of Property (owl:inverseOf)

owl:inverseOf takes two object properties as subject and object in triple, and defines the two is in the

inverse relation. See rdfp8ax and rdfp8bx in Table 13.3.

SWCLOS provides two slot value accessors, '->' and get-value that facilitate getting slot value(s) through

owl:inverseOf functionality.

gx-user(8): (defProperty hasChild (rdf:type owl:ObjectProperty)
(owl:inverseOf hasParent))

Warning: Range entailX3 by owl:inverseOf:
hasParent rdf:type owl:ObjectProperty.

#<owl:ObjectProperty hasChild>
gx-user(9): (defIndividual LeopoldMozart (rdf:type Musician)

(hasChild AmadeusMozart))
Warning: Range entail by rdf:type: Musician rdf:type rdfs:Class.
#<Musician LeopoldMozart>
gx-user(10): (-> AmadeusMozart hasParent)
#<Musician LeopoldMozart>

13.2.12 Equivalency for Classes (owl:equivalentClass)

The property owl:equivalentClass is used to represent the equivalency of two classes as class.

Namely, the equivalent classes share exactly the same set of individuals. See the rule rdfp12.

gx-user(14): (get-form food:Wine)
(owl:Class food:Wine (owl:equivalentClass vin:Wine))
gx-user(15): (owl-equivalent-p food:Wine vin:Wine)
t

13.2.13 Difference for Classes (owl:disjointWith)

The property owl:disjointWith is used to represent the difference of two classes as class. Namely two

classes never share any individual as a member of class. If two classes are disjoint, then each subclasses of

the classes also disjoint. See rule7 in Table 13.4.

gx-user(18): (get-form food:NonSweetFruit)
(owl:Class food:NonSweetFruit
(rdf:about
#<uri http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#NonSweetFruit>)
(rdfs:subClassOf food:EdibleThing)
(owl:disjointWith food:SweetFruit))

gx-user(19): (disjoint-p food:SweetFruit food:NonSweetFruit)
t
t

82 SWCLOS User’s Manual

13.2.14 Value Restriction (owl:allValuesFrom)

The value restriction plays a role of constraint for the instance slot value. See rdfp16 in Table 13.3.

SWCLOS entails that a filler that is restricted by owl:allValuesFrom should be an instance of the constraint.

gx-user(2): (get-form vin:Wine)
(owl:Class vin:Wine
(rdf:about
#<uri http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Wine>)

(rdfs:label (:en "wine") (:fr "vin"))
(rdfs:subClassOf food:PotableLiquid

(owl:Restriction (owl:onProperty vin:hasMaker)
(owl:cardinality "1"^^xsd:nonNegativeInteger))

(owl:Restriction (owl:onProperty vin:hasMaker)
(owl:allValuesFrom vin:Winery))

...
(owl:Restriction (owl:onProperty vin:locatedIn)
(owl:someValuesFrom vin:Region))))

gx-user(3): (defIndividual MyHomeMadeWine (rdf:type vin:Wine)
(vin:hasMaker MyHome))

Warning: allValuesFrom entailment:
change class #<|rdfs:Resource| MyHome> to #<owl:Class vin:Winery>.

#<vin:Wine MyHomeMadeWine>
gx-user(4): MyHome
#<vin:Winery MyHome>

13.2.15 Full Existential Restriction (owl:someValuesFrom)

On the other hand, the full existential restriction does not entail anything useful results about the filler type

in rigorous Open Word Assumption. We cannot conclude unsatisfiability even if an individual does not

have the restricted filler on the role of the full existential quantification, because there may be a piece of

such knowledge anywhere in the Web World. Moreover, the filler whose type is different from one that is

directed for the filler is acceptable. However, in the complete definition form such as owl:intersectionOf, if

a thing holds a filler that satisfies a full existential restriction, then the entailment can conclude that the

subject entity is typed to the class that is directed to hold the full existential restriction. See rdfp15 in Table

13.3.

Note that we can conclude unsatisfiability for the value restriction (owl:allValuesFrom), if an individual has

a role of the value restriction and one of the values does not satisfy the restriction, even in the open world.

However, you should note that an individual that has no slots on the value restriction property is also

satisfiable for the directed class.

13.2.16 Filler Restriction (owl:hasValue)

The hasValue restriction directs for individuals to have at least one designated value (not class restriction)

as slot value. It is rephrased that if a concept has a filler restriction on a role, the individuals must have the

83 OWL Axioms and Entailment Rules

same filler on the role at least one. However, this involves the same problem for rigorous Open World

Assumption as the full existential restriction mentioned above. Moreover, this implies the same entailment

for the subject entity as the full existential restriction mentioned above, for the constraint of filler itself

instead of filler class. See rdfp14bx and rdfp14a in Table 13.3.

gx-user(2): (get-form vin:TableWine)
(owl:Class vin:TableWine
(rdf:about
#<uri http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#TableWine>)

(owl:intersectionOf vin:Wine
(owl:hasValueRestriction (owl:onProperty vin:hasSugar)

(owl:hasValue vin:Dry))))
gx-user(3): (get-form vin:DryWine)
(owl:Class vin:DryWine
(owl:intersectionOf vin:Wine
(owl:hasValueRestriction (owl:onProperty vin:hasSugar)

(owl:hasValue vin:Dry))))
gx-user(4): (get-form vin:MariettaOldVinesRed)
(vin:RedTableWine vin:MariettaOldVinesRed
(vin:hasMaker vin:Marietta) (vin:hasFlavor vin:Moderate)
(vin:hasBody vin:Medium) (vin:locatedIn vin:SonomaRegion)
(vin:hasColor vin:Red) (vin:hasSugar vin:Dry))

gx-user(5): (typep vin:MariettaOldVinesRed vin:TableWine)
t
t
gx-user(6): (typep vin:MariettaOldVinesRed vin:DryWine)
t
t

In this demonstration, DryWine and TableWine is defined to have the filler restriction of Dry, and

MariettaOldVinesRed has a filler Dry for role hasSugar, then SWCLOS can conclude it is a TableWine and

a DryWine, too.

We would like to claim that correct but harsh treatment often tends to produce no results. Rigorous Open

Word Assumption will often not produce useful results. You may make your owl rule for the full existential

quantification and make a balance between Open World Assumption vs. Closed World Assumption. For

example, you might want to close the world around you when you felt making an ontology completed, and

you might want to check the unsatisfiability of the full existential quantification. We say that it is a sort of

auto-epistemic logic. The latest SWCLOS provides such pedantic function, but it should be discussed later

as a more advanced topic.

84 SWCLOS User’s Manual

14. OWL APIs

14.1 Subsumption in OWL

We discriminate the substantial inclusiveness on concepts that is decided through rdfs:subClassOf,

owl:intersectionOf, and owl:unionOf, against the non-substantial inclusiveness, that is deduced by

subsumption reasoning. The former is calculated through the CLOS class-subclass relationship, and the

latter is deduced by the subsumption algorithm described below in SWCLOS. The top concept, owl:Thing,

substantially subsumes every concept in the CLOS class-subclass relation, but the bottom concept,

owl:Nothing, is virtually subsumed by other concepts through this algorithm. We extended and modified

the basic structural subsumption algorithm, that is described in "The Description Logic Handbook" [DLH],

to one that contains disjunction (owl:unionOf), negation (owl:complementOf), equivalency (owl:sameAs

and owl:equivalentOf), functional and inverse-functional relation (owl:FunctionalProperty and

owl:InverseFunctionalProperty), the value restriction (owl:allValuesFrom), the full existential restriction

(owl:someValuesFrom), the filler restriction (owl:hasValue), and the number restriction

(owl:maxCardinality, owl:minCardinality, and owl:cardinality).

The algorithm is summarized as follows, for two concepts C and D;

1. If C is the bottom, then it returns true.

2. If D is the top, then it returns true.

3. If D is the bottom, then it returns false.

4. If C and D is the same, then it returns true.

5. If C and D have oneOf slots and C’s members are subset of D’s members, then it returns true, otherwise

false.

6. For some (cc) of equivalent classes of C and some (dd) of equivalent classes of D,

 If cc is a subclass of dd in CLOS, then it returns true.43

 If dd is a subclass of cc in CLOS, then it returns false.

 If dd has intersectionOf slot values, then the algorithm for intersection is performed. See the below.

 If both have unionOf slot values, then both unions are tested.

 If cc and dd are complement, then it returns false.

 If cc and dd are disjoint, then it returns false.

7. For some of same individuals of C and some of same individuals of D;

 If cc and dd shares a transitive property and cc is inferior to dd on the property, then return true.44

43 In CLOS, a subclass inherits slot definitions of all super classes. Therefore, we can assume that CLOS
class hierarchy reflects the hierarchy on the slot structures in the structural subsumption algorithm, if we do
not make abstract slot value constraints in the subclasses.
44 This is required to deduce California region is subsumed by US region.

85 OWL APIs

The algorithm for intersections is summarized as follows,

1. If every concept member of intersections of D subsumes some concept member of all superclasses of C,

and every restriction of D also subsumes some slot definition of C as follows, then return true. For

equivalent property between C's restriction and D's restriction;

 If D’s restriction is allValuesFrom, then if C’s slot definition restriction is a class or allValuesFrom

and D’s restriction subsumes C’s restriction, then return true else false. If C’s restriction is

someValuesFrom and the local situation is closed45, if D’s restriction subsumes C’s slot definition

restriction then it returns true else false. If C’s restriction is hasValue and the local situation is closed,

if C’s restriction is a type of D’s restriction, then it returns true else false. In other cases, more

precise discussion is required. See the source code.

 If D’s restriction is someValuesFrom, the coupling between the cardinality number constraint and

someValuesFrom constraint may happen. If the cardinality makes the situation closed, if C’s slot

definition restriction is also someValuesFrom and D’s restriction subsumes C’s restriction, then it

returns true else false. If C’s restriction is hasValue and the value is a type of D’s restriction, then it

returns true else false. In other cases, more precise discussion is required. See the source code.

 If D’s restriction is hasValue, the coupling between the cardinality number constraint and hasValue

constraint may happen. If the cardinality makes the situation closed, if C’s slot definition restriction

is also hasValue and the former subsumes the latter, then it returns true else false. In other cases,

more precise discussion is required. See the source code.

 If D’s restriction is cardinality and neither constraint of someValuesFrom nor hasValue exists in C,

but allValuesFrom constraint exists or does not exist in C, then if C’s slot definition restriction is also

cardinality and the span of D’s cardinality (minD maxD) covers the span of C’s cardinality (minC

maxC), then it returns true else false.

The following demonstrates the function of this algorithm after loading Wine Ontology.

gx-user(7): (subsumed-p vin:DryWhiteWine vin:WhiteNonSweetWine)
t
t
gx-user(8): (get-form vin:WhiteNonSweetWine)
(owl:Class vin:WhiteNonSweetWine
(owl:intersectionOf vin:WhiteWine
(owl:allValuesFromRestriction (owl:onProperty vin:hasSugar)
(owl:allValuesFrom (OneOf (owl:oneOf vin:Dry vin:OffDry))))))

gx-user(9): (get-form vin:DryWhiteWine)
(owl:Class vin:DryWhiteWine

(owl:intersectionOf vin:DryWine vin:WhiteWine))

45 For example, if there is a maxcardinality constraint, the constraint makes the situation closed for the
exact number of slot values.

86 SWCLOS User’s Manual

gx-user(10): (get-form vin:DryWine)
(owl:Class vin:DryWine

(owl:intersectionOf vin:Wine
(owl:hasValueRestriction (owl:onProperty vin:hasSugar)

(owl:hasValue vin:Dry))))

subsumed-p C D [Function]

returns true if concept C is subsumed by D, or returns false or unknown.

14.2 Membership in OWL

We extended the membership checking algorithm in OWL and it is implemented to gx:typep. The

followings demonstrate some membership relations among classes and things in OWL after loading Wine

Ontology.

gx-user(15): (typep vin:ElyseZinfandel vin:Zinfandel)
t
t
gx-user(16): (typep vin:ElyseZinfandel owl:Thing)
t
t
gx-user(17): (owl-thing-p vin:ElyseZinfandel)
t
gx-user(18): (typep vin:Zinfandel owl:Class)
t
t
gx-user(19): (typep vin:Zinfandel owl:Thing)
t
t
gx-user(20): (owl-class-p vin:Zinfandel)
t
gx-user(21): (owl-class-p owl:Class)
common-lisp:nil
gx-user(22): (owl-class-p owl:Restriction)
common-lisp:nil
gx-user(23): (owl-thing-p owl:Class)
common-lisp:nil
gx-user(24): (owl-thing-p owl:Restriction)
common-lisp:nil
gx-user(25): (owl-class-p owl:Thing)
t
gx-user(26): (owl-thing-p owl:Thing)
t
gx-user(27): (owl-class-p owl:Nothing)
t
gx-user(28): (owl-thing-p owl:Nothing)
common-lisp:nil

87 OWL APIs

An individual (instance) that is typed to owl:Thing and a concept (class) that is typed to owl:Class belong

to the OWL universe. However, note that owl:Class and owl:Restriction are not members in OWL universe.

Also note that owl:Thing itself belongs to OWL universe but owl:Nothing does not, even though the class

of owl:Nothing is owl:Class as well as owl:Thing, because owl:Nothing is complement of owl:Thing.

owl-class-p obj [Function]

This is almost same as '(cl:typep obj owl:Class)' but a little bit faster and concise
expression.

owl-thing-p obj [Function]

This is almost same as '(cl:typep obj owl:Thing)' but a little bit faster and concise
expression.

typep object type [Function]

tests the membership of object to type in the semantics of OWL.

14.3 The Most Specific Concepts

Computing the most specific concepts in a set of concepts is basic operation in DL and SWCLOS. We use

this routine very often in SWCLOS.

most-specific-concepts classes [Function]

returns the most specific concepts in RDF(S) and OWL semantics, or classes minus
duplicates and superclasses of other classes in classes. This function internally uses
subsumed-p and owl-equivalent-p. Note that this function does not check disjointness of
classes.

88 SWCLOS User’s Manual

References

[DLH] Baader, F., et al. (eds.): The Description Logic Handbook, Cambridge, (2003).

[Horst] ter Horst, H. J.: Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity.

The Semantic Web - ISWC2005, pp.668-684, Springer (2005).

[Koide04] Koide, S., Kawamura, M.: SWCLOS: A semantic web processor on common lisp object system.

In: 3rd International Semantic Web Conference (ISWC2004), Demos. (2004),

http://iswc2004.semanticweb.org/demos/32/.

[Koide05] Koide, S., Aasman, J., Haflich, S.: OWL vs. object oriented programming. In: Workshop on

SemanticWeb Enabled Software Engineering (SWESE) at the 4th International Semantic Web

Conference (ISWC 2005), Galway, Ireland (November 2005),

http://www.mel.nist.gov/msid/conferences/SWESE/propository/8owl-vs-OOP.rdf.

[Koide06] Koide, S., Takeda, H.: OWL-Full reasoning from an object oriented perspective. In: Asian

Semantic Web Conf., ASWC2006, Springer (2006) 263–277,

http://wwwkasm.nii.ac.jp/papers/takeda/06/koide06aswc.pdf.

[Koide09] Koide, S., Takeda, H.: Meta-circularity and mop in common lisp for OWL Full. In: ELW ’09:

Proceedings of the 6th European Lisp Workshop, New York, NY, USA, ACM (2009) 28–34.

