
ISSN 1346-5597

NII Technical Report

Asynchronous Pipeline Controller Based on
Early Acknowledgement Protocol

Chammika Mannakkara and Tomohiro Yoneda

NII-2008-009E
Sept. 2008

1

PAPER
Asynchronous Pipeline Controller Based on Early
Acknowledgement Protocol

Chammika MANNAKKARA†, Nonmember and Tomohiro YONEDA†, Member

SUMMARY A new pipeline controller based on Early Acknowl-

edgement protocol is proposed for bundled-data asynchronous circuits.

The Early Acknowledgement protocol indicates acknowledgement by the

falling edge of the acknowledgement signal in contrast to the 4-phase pro-

tocol which indicates it on the rising edge. Thus, it can hide the overhead

caused by a resetting phase of the handshake cycle. Since we have de-

signed our controller assuming several timing constraints, we first analyze

the timing constraints under which our controller correctly works, and dis-

cuss the appropriateness. Advantages of employing the Early Acknowl-

edgement protocol in a pipeline controller is demonstrated by comparing

performance of the proposed controller with that of two other pipeline con-

trollers, namely, a very high-speed 2-phase controller and an ordinary 4-

phase controller, both analytically and experimentally. We have obtained

interesting results in the case of a non-linear pipeline with a Conditional

Branch operation. Since Early Acknowledgement protocol employs return-

to-zero control signals like 4-phase protocol, our controller for Conditional

Branch operation is simple in construction identically to the 4-phase con-

troller. A 2-phase controller for the same operation needs to have a little

complicated mechanism to handle the 2-phase operation due to non-return-

to-zero control signals. For such simplicity of the implementation, our con-

troller has a slightly better performance compared to the 2-phase controller

when each stage has a processing element. Thanks to the superiority of the

Early Acknowledgement protocol, our controller substantially outperforms

the 4-phase controller too.

key words: Asynchronous Pipelines, Early Acknowledgement Protocol,
Bundled-Data Asynchronous Circuits

1. Introduction

A host of asynchronous pipeline controllers has been pro-
posed over the years [4, 5, 6, 10, 15, 17]. Mainly they use
either 2-phase signalling protocol or 4-phase signalling pro-
tocol.

In 2-phase or transition signalling protocol, events (re-
quests and acknowledgements) are identified at a transition
of the control signals either from low-to-high or high-to-
low, and the levels of control signals have no significance.
Hence, as shown in Fig. 1(a), a whole request-acknowledge
cycle is completed when both signals make the same tran-
sition from one state to the other. The MOUSETRAP [4],
a simple and robust linear pipeline controller, is based on
this protocol, which proved to operate on ultra-high speeds.
However, when using transition signalling protocol, usu-
ally translations from 2-phase to 4-phase are required at
some points, because in many cases, environment circuits
use level sensitive controls.

In the 4-phase protocol as shown in Fig. 1(b), a given
cycle has two phases, the working phase and the resetting
phase. From the rising edge of request to the rising edge

†National Institute of Informatics, Graduate University for Ad-
vanced Studies, Tokyo, Japan

(a) 2 − phase

cycleN

(c) Early Ack.

(b) 4 − phase

ack

req

req

ack

req

ack

working

phase

resetting phase

cycleN cycleN+1

working

phase

cycleN+1

working
phase

cycleN cycleN+1

protocol

protocol

protocol

Fig. 1 Handshake Protocols.

of acknowledgement is the working phase where a request
is handled and completion is notified. The return-to-zero
of both request and acknowledgement signals constitutes
the resetting phase. The different sequencing of these 4-
phase signalling transitions leads to different controllers for
a range of cost and performance options as shown in [6].

Pipeline controller presented in this paper employs the
Early Acknowledgement protocol introduced in [9], where
its original idea was presented in [3]. This protocol is an im-
provement over the simple 4-phase protocol, and can hide
the resetting phase of the signalling. In this protocol, the
acknowledgement is indicated by the falling edge of the ac-
knowledgement signal whereas in the 4-phase protocol it is
indicated with a rising edge. As shown in Fig. 1(c), the ac-
knowledgement signal goes high at any time point when the
request signal goes high, thereby allowing the request sig-
nal to be reset on an early acknowledgement. The actual ac-
knowledgement which is indicated by the falling edge of ac-
knowledgement signal delimits the end of the current trans-
action and resets the acknowledgement signal for the next
request-acknowledge cycle. Hence, this protocol eliminates
the resetting phase inherent in the 4-phase protocol and yet
retains its simplicity by maintaining the return-to-zero con-
trol signals.

In this paper∗, we present a new asynchronous pipeline
controller based on Early Acknowledgement protocol. A
controller based on Early Acknowledgement protocol for

∗This paper is an extended version of [1] published in the
ACSD 2008 proceedings

2

non-linear Conditional Branch operation is also presented.
For both cases, we show a set of timing constraints to be
satisfied for the proper operation of the proposed controller.
These timing constraints are necessary for our controller,
because we have designed it using several reasonable tim-
ing assumptions in order to simplify the circuit and obtain
better performance. Finally, this paper shows the analytical
and experimental performance comparison with the existing
2-phase and 4-phase controllers.

The rest of the paper is organized as follows. Section
2 shows the design of our controller and its detailed opera-
tion in the case of linear pipelines, as well as the analysis of
the timing constraints and performance. The performance
comparison to the 2-phase and 4-phase linear controllers is
given in Section 3. The design and analysis of Conditional
Branch non-linear controller is given in Section 4. Section 5
shows the experimental results for the comparison of three
controllers, and Section 6 gives conclusions and future work
in the this research.

2. Pipeline controller for Early Acknowledgement Pro-
tocol

The pipeline controller we present in this paper is an im-
provement of the controller that we proposed earlier in [2].
The new controller has reduced the overhead of the previ-
ously proposed controller under two timing constraints in-
troduced.

2.1 Pipeline Operation of Early Acknowledgement Proto-
col

First, we will define a few naming conventions that we use
for Early Acknowledgement controller, 2-phase and 4-phase
controllers throughout the rest of this paper. A general di-
agram of a pipeline using bundled data scheme with logic
processing in-between stages is shown in Fig. 2. In the
interface of the controller, RinN is the request from the in-
put stageN−1 and AinN is the corresponding acknowledge-
ment signal for the input side. Similarly, RoutN and AoutN
are the request and acknowledgement to and from the output
stageN+1. The local clock signal of the stage generated by
the controller is clkN .

The logic processing delay (tlogic) between stages of
the pipeline is accounted for by the worst-case matched de-
lay (tMD) inserted in the request line between stages. For
2-phase protocol the delay can be symmetric such as a string
of buffers, where as for 4-phase protocol (hence, for Early
Acknowledgement protocol as well) the delays are asym-
metric with a quicker resetting time as shown in Fig. 3.
tMD↑ represents the variable delay for the rising transition
and tMD↓ represents the delay for the falling transition. Ac-
cording to our implementation tMD↓ equals to tAND↓.

Fig. 4 shows the operational waveforms of the Early
Acknowledgement controller. As explained in the previ-
ous section, in the case of Early Acknowledgement proto-
col, we use the falling edge of acknowledgement signal to

indicate the completion of working phase. Hence, the data
D on dataN will be captured to stageN at the falling edge
of AinN (i.e., clkN = AinN), which implies data is ex-
pected to be ready on the falling edge of the RinN . The
captured data on data′

N will become valid at dataN+1 after
the processing in-between the two stages. In order for the
next stage of the pipeline (stageN+1) to be able to capture
this valid dataN+1 by the falling edge of AinN+1, RinN+1

is properly delayed by a delay element MD. That is, tMD

is determined according to the processing delay tlogic. Note
that it can be observed that the overhead of the controller
(i.e., the transition times for Rout, Aout, and so on) can be
entirely hidden in the required matched delay (tMD), pro-
vided that the processing delay is greater than the controller
overhead.

2.2 Controller Operation

Fig. 5 depicts the controller that we propose for Early Ac-
knowledgement protocol. We need to adjust the resetting
time of rst signal with an asymmetric delay RD. The im-
plementation of this delay is shown in Fig. 6. tRD↓ is the
delay that we need, and tRD↑ is just equal to tOR↑.

Fig. 7 shows the operation of the controller which con-
firms to the pipelined operation of Fig. 4. Initially, all the
control signals are low except for clk signal. When the input
stage raises the request Rin, the controller immediately ac-
knowledges the request by raising Ain. At first, this is made
possible as there are no pending requests at the output stage
through Rout (As for the blocked case, see below).

As the acknowledgement is provided by raising Ain,
rst -the input for A2 AND gate from the asymmetric delay
is also raised. When the input stage lowers the request on
response the acknowledgement and the data is expected to
be ready, the following events occur.

• Ain is lowered by the falling of Rin thorough A1,
• clk is raised, latching the new valid data from the input

stage to the current stage register, and
• complete is raised, generating the rising edge of the

output request Rout

Once Rout is driven high, it can be maintained high

RoutN RinN+1 RoutN+1RinN

AinN AoutN = AinN+1 AoutN+1

clkN clkN+1

dataN data′N dataN+1 data′N+1

stageN stageN+1

MD

logic

Fig. 2 A General Pipeline with Logic Processing.

3

MD

tMD↑

in out
outin

in

out
tMD↓

Fig. 3 Asymmetric Delay for MD.

with C-element† even after complete signal is lowered by
the self-resetting circuit of the controller. This also consti-
tutes a local timing constraint to be satisfied by tRD↓ of the
self resetting delay i.e., to hold complete signal high, long
enough to produce Rout high before resetting.

Since the controller has fully completed the handshake
cycle at the input side, it is free to make a new request on
Rin. However, as described earlier, the pending output re-

†The C-element used here with a negative input changes its
output only when the two inputs have different values, and its out-
put value is equal to that of the positive input.

RinN

AinN

RoutN

RinN+1

AinN+1/

tMD↑

tlogic

dataN

data′N

dataN+1

data′N+1

D

D

D

D

AoutN

Fig. 4 Behavior of Early Acknowledgement controller.

C

complete

Ain

Rin

Aout

Rout

clk

RD

A1

A2

rst

Fig. 5 Early Acknowledgement pipeline controller.

RD

tRD↓

in in out

in

out

out

tRD↑

Fig. 6 Asymmetric Delay for RD.

quest Rout high effectively blocks generating the acknowl-
edgement back to the input side.

Upon receiving acknowledgement high on Aout, Rout
will be lowered, and the blocked request at the input stage
will be handled raising Ain.

2.3 Timing Constraints

First, we will turn to the timing constraints required for the
desired operation as described in Section 2.2. For constraint
analysis, we assume that our controller is in a middle stage
of a pipeline and its environment (e.g. controllers in the pre-
vious and next stages) operates at a speed equal to or slower
than our controller. This is because we consider that the lin-
ear controller is the fastest, and assuming the environment
to be slower than it allows us to evaluate the impact on con-
straints when more complex operations are built around the
linear controller as detailed in Section 4.1. Fig. 8 shows
the fastest environment where the delays can be quantified
using the controller delays.

We identify two types of expressions throughout the
constraint analysis; the constraints and properties. The
equation numbers are appropriately prefixed with letter C or
P to distinguish between these types. Constraints are what
are required to be satisfied where as properties express con-
ditions that already hold. We utilize properties of the con-
troller and environment in validating the constraints during
our analysis.

Constraint 1. The first constraint imposes conditions
to prevent data overwriting. As described in the previous
section, in the operation of our controller, the pending out-
put request (Rout high) blocks any new requests on Rin.

Rin

Ain

rst

complete

Rout

Aout

tRD↓ tRD↑

Fig. 7 Controller Operation.

4

C

complete

Ain

Rin

Aout

Rout

clk

A1

A2

rst

C

A1

tMD

tMD

tRD

StageNStageN−1 StageN+1

Fig. 8 Fastest environment for the constraint analysis.

This requires Rout to go high before the a new request (Rin
high) is received. Thus the timing constraint can be formu-
lated as follows:

tRin↓→Rin↑ ≥ tRin↓→Rout↑ . (C1)

The left-hand-side of the above constraint can be given as:

tRin↓→Rin↑ = tAND↓ + tAin↓→Rin↑ . (P2)

Note that Ain ↓ is always caused by Rin ↓ through A1 AND
gate. Since the delays incurred from the environment at the
input and output sides are considered to be either equal to
or larger than the delays incurred by a linear controller as
mentioned previously, the following holds (see Fig. 8).

tAin↓→Rin↑ ≥ tC↑ + tMD↑ . (P3)

Thus, (P2) can be rewritten as:

tRin↓→Rin↑ ≥ tAND↓ + tC↑ + tMD↑ . (P4)

As for the right-hand-side of (C1), we need to consider
two cases that different events cause Rout ↑.

Case 1: If Aout ↓ is early enough compared to next
Rin ↑, and Rout ↑ is caused by complete ↑, the following
holds:

tRin↓→Rout↑ =max(0,−tAin↑→Rin↓ + tOR↑)
+ tAND↑ + tC↑ . (P5)

The max operator is used to get the larger of delays from
2 concurrent paths. The first path corresponds to the de-
lays from the input side, and the second path comprises
of delays local to the controller in the self-resetting loop.
Since the second path is actually originated from Ain ↑,
tRin↓→Ain↑ = −tAin↑→Rin↓ is used. Again, from the de-
lay assumption of the environment,

tAin↑→Rin↓ ≥ tC↓ + tAND↓ (P6)

holds (see Fig. 8). The occurrence of tMD↓ is replaced with
equivalent gate delay tAND↓ in above environment property.
Thus, (P5) can be rewritten as:

tRin↓→Rout↑ ≤max(0,−(tC↓ + tAND↓) + tOR↑)
+ tAND↑ + tC↑ . (P7)

From (P4) and (P7), a conservative version of the constraint
(C1) is obtained in the form of constraints for the variable
parameter tMD↑, the matched delay to be inserted between
two stages of the pipeline, as follows:

tAND↓ + tC↑ + tMD↑ ≥ tAND↑ + tC↑
that is, tMD↑ ≥ tAND↑ − tAND↓ (C8)

and

tAND↓ + tC↑ + tMD↑ ≥ −(tC↓ + tAND↓) + tOR↑
+ tAND↑ + tC↑

that is, tMD↑ ≥ tAND↑ + tOR↑
− (tC↓ + 2 · tAND↓) . (C9)

Case 2: If Aout ↓ is late and causes Rout ↑, the fol-
lowing holds:

tRin↓→Rout↑ = − (tAND↑ + tAin↑→Rin↓)
+ tRout↓→Aout↓ + tC↑ . (P10)

From the delay assumption (P6), this can be rewritten as:

tRin↓→Rout↑ ≤− (tAND↑ + tC↓ + tAND↓)
+ tRout↓→Aout↓ + tC↑ . (P11)

From (P4) and (P11), another conservative version of the
constraint (C1) for tMD↓ is obtained as follows:

tAND↓ + tC↑ + tMD↑ ≥ −(tAND↑ + tC↓ + tAND↓)
+ tRout↓→Aout↓ + tC↑

that is, tMD↑ ≥ tRout↓→Aout↓ − (tC↓
+ tAND↑ + 2 · tAND↓) . (C12)

All the constraints derived for tMD↑ in cases 1 and 2
(i.e. (C8), (C9) and (C12)) can be satisfied in the preferred
application of our controller where there are processing el-
ements within the pipeline and hence the matched delay
tMD↑ is sufficiently large to meet the above constraints.

5

Constraint 2. The next is a timing constraint to be sat-
isfied by the self resetting delay. complete signal should not
be self-reset before Rout high is produced. This constraint
imposes conditions on minimum delay for the self resetting
loop tRD↓ to satisfy the above condition. We can formulate
this constraint as follows.

tRin↓→complete↓ ≥ tRin↓→Rout↑ . (C13)

From Fig. 7, the causality relation for Rin ↓, Ain ↓, RD ↓,
and complete ↓ is straight. Thus, the left-hand-side of the
above constraint can be given as:

tRin↓→complete↓ = tAND↓ + tRD↓ + tAND↓
= tRD↓ + 2 · tAND↓ . (P14)

The right-hand-side of the above constraint is the same
as that of (C1). Thus, exactly the same two cases as those
shown for Constraint 1 are considered, and the following
three constraints are obtained for (C13).

Case 1: From (P14) and (P7), a conservative version of
the constraint (C13) is obtained as follows:

tRD↓ + 2 · tAND↓ ≥ tAND↑ + tC↑
that is, tRD↓ ≥ tAND↑ + tC↑ − 2 · tAND↓ (C15)

and

tRD↓ + 2 · tAND↓ ≥ −(tC↓ + tAND↓) + tOR↑
+ tAND↑ + tC↑

that is, tRD↓ ≥ tOR↑ + tAND↑ + tC↑
− (tC↓ + 3 · tAND↓) . (C16)

Case 2: From (P14) and (P11), another conservative
version of the constraint (C13) for tRD↑ is obtained as fol-
lows:

tRD↓ + 2 · tAND↓ ≥ −(tAND↑ + tC↓ + tAND↓)
+ tRout↓→Aout↓ + tC↑

that is, tRD↓ ≥ tRout↓→Aout↓ + tC↑
− (tAND↑ + tC↓ + 3 · tAND↓) .

(C17)

The constraints derived for tRD↓ in cases 1 and 2 (i.e.
(C15), (C16) and (C17)) should be considered selecting the
minimum delay for the self-resetting loop.

2.4 Performance

Here, we derive equations for two important performance
factors of the pipeline i.e. forward latency(L) and cycle
time(T). More importantly, we will show which compo-
nents of the latter performance metric can be hidden in case
of a pipeline with logic processing where the Early Ac-
knowledgement protocol has a competitive edge. We as-
sume that the controller in the middle stage of a pipeline
with the same controllers in the previous and next stages. In
contrast to the constraint analysis, we assume the controllers

are operating at maximal speed in the performance analysis.
With these two assumptions the maximum performance of
our controller can be derived.

Fig. 9 depicts the Signal Transition Graph(STG) for
our controller in desired operation, when it meets the above
specified constraints. Thick arrows indicate the signal tran-
sitions generated from the environment (previous and next
stage controllers) of the controller where as regular arrows
indicate transitions made by the controller. Transitions are
annotated with the gate delays associated with them. For the
delays from the environment, the delays incurred from the
controllers of previous and next stages are used. Dashed ar-
rows are for the clock signals of the controller stage and the
following stage (clkN and clkN+1) as well as for the data
path between the stages, which are not directly in the con-
trol path of main control logic, but useful in measuring the
cycle time in terms of logic processing delay (tlogic). For
clarity, not all the transition arcs for these two clock signals
are shown.

Cycle time is defined as the interval between two suc-
cessive data items passing through a pipeline stage when the
pipeline is operating at maximum speed. We can measure
the gate delays between two successive clk rising edges for
this purpose or equivalently the delay between two succes-
sive falling edges of Rin.

First, we will identify the critical cycle of the con-
troller using the STG branch and merge points. The path
Rin− → Rout+ → Aout+ → Rout− → Ain+ is
more critical than Rin− → Ain− → Rin+ → Ain+
as the delays in the former is larger. Similarly, the path
Rout− → Ain+ → Rin− → Rout+ is more critical
than the path Rout− → Aout− → Rout+. Hence, the
critical cycle of the controller lies on the path marked with a
thin dashed cycle. In fact, it is required to unfold the STG to
previous and next stages as well to formally show that this
path with the delays shown in the STG is indeed the critical
path defining the cycle time of the controller. The details
of the inductive proof which arrives at the same conclusion
were left out. The cycle time can be obtained from the crit-
ical path as a function of gate delays and required matched
delay (tMD) as follows.

T = 3 · tAND↑ + 2 · tC↓ + tC↑ + tMD↑ + tMD↓ . (18)

In order to obtain cycle time and forward latency in terms
of logic processing delay (tlogic) we need to express the re-
quired matched delay tMD for the operations in terms of
tlogic. When the data is latched with clkN+, the next stage
clock clkN+1+ needs to be made after tflop + tlogic delay,
where tflop is the delay of the date register. We can relate
tlogic to tMD by measuring the same delay in two paths to
the event of clkN+1+.

• Path on control cycle: Rin− → Rout+ → Aout+ →
Rout− → clkN+1+

T1 = tAND↑ + tC↑ + tMD↑ + tAND↑
+ tC↓ + tMD↓ + tAND↓ + tNOT↑ . (19)

6

Ain(-)

Rin(+)

Ain(+)

Rin(-)

Rout(-)

Aout(-)

Rout(+)

Aout(+)

clkN (+) clkN+1(+)
tflop + tlogic

tNOT↑
tMD↓ + tAND↓

tC↑ + tMD↑

tAND↑
tAND↑

tC↓ + tMD↓

tMD↓

tC↑

tMD↑ + tAND↑

tC↓tAND↑ + tC↑

tAND↓

+ tAND↓

+ tNOT↑

Fig. 9 STG for Early Acknowledgement Controller.

• Path on data cycle: Rin− → Ain− → clkN+ →
clkN+1+

T2 = tAND↓ + tNOT↑ + tflop + tlogic . (20)

To ensure the correct operation of the pipeline, T1 ≥
T2 must hold. Thus, from above two equations we can de-
rive an expression for the minimum value of tMD↑ as fol-
lows:

tMD↑ ≥ (tflop + tlogic)
− (2 · tAND↑ + tMD↓ + tC↑ + tC↓) . (21)

Thus, if

tlogic ≥ (2 · tAND↑ + tMD↓ + tC↑ + tC↓) − tflop (22)

holds, we can find the cycle time in terms of tlogic by substi-
tuting tMD↑ in equation (18) by the right hand side of (21)
the cycle time for the linear controller of Early Acknowl-
edgement protocol can be expressed as follows.

T l
EA = tflop + tlogic + tAND↑ + tC↓ . (23)

Note that in the above expressions tMD↓ is equal to tAND↓
from our implementation shown in Fig. 3. The convention
that we use for cycle time and forward latency consists of
the protocol in subscript (EA, 2P, 4P, respectively) and the
controller type (l, cb for linear and conditional branch type
controllers) in the superscript.

In the case where logic processing time is smaller and

the inequality (22) does not hold, we obtain the minimum
cycle time (maximum throughput) of this controller. directly
from equation (18) with tMD↑ = tMD↓ = 0, which is:

T l
EA|min = 3 · tAND↑ + 2 · tC↓ + tC↑ . (24)

The above cycle minimum time is valid since it is possible
to remove the matched delay without violating the timing
constraints derived for tMD↑. This could be confirmed in
our expriments as well.

Forward latency is the time taken by a data item to
emerge from an initially empty pipeline. Transitions that
take place in the forward latency path starting from the
Rin− of the STG is shown in the Fig. 9 in a thin dashed
line. When the inequality (22) holds, we can have the simi-
lar argument to obtain forward latency as follows.

Ll
EA = tAND↓ + tNOT↑ + tflop + tlogic . (25)

When the logic processing delay is small and inequality (22)
does not hold, the critical path for forward latency lies on
the path: Rin− → Rout+ → Aout+ → Rout− →
clkN+1+, which is:

L = tAND↑ + tC↑ + tMD↑ + tAND↑ + tC↓
+ tMD↓ + tAND↓ + tNOT↑ . (26)

Similar to the minimum cycle time, we can derive the mini-
mum forward latency on this path with tMD↑ = tMD↓ = 0,
which is:

Ll
EA|min = 2·tAND↑+tAND↓+tC↑+tC↓+tNOT↑ . (27)

7

In a general pipeline with logic processing, the condi-
tion (22) often holds. In that case, most of the delays needed
for the controller operations are hidden by the logic process-
ing delay, in the cycle time and forward latency as shown in
(23) and (25), respectively.

3. Comparison to 2-phase and 4-phase Pipeline Con-
trollers

In order to demonstrate the advantage of Early Acknowl-
edgement protocol based controller, we have compared its
performance to 2-phase and 4-phase pipeline controllers.
The following sections describe the controllers used for this
comparison and their key features.

3.1 2-phase Controller: The MOUSETRAP

For the 2-phase or the transition signalling protocol, the
MOUSETRAP controller is selected for its simplicity and
high performance. As shown in Fig. 10, the controller con-
sists of a simple transparent latch and a XONR gate. The
same type of latches (instead of D-flipflops) and the latch
enable signal enable are used also for the data path.

D Q

E
N

enable

Rin Rout

Aout
Ain

Fig. 10 MOUSETRAP Controller.

In [4] the operation of the MOUSETRAP controller in
both high-speed pipeline and pipelines with logic processing
is described in detail. The most important point to note in
the view of Early Acknowledgement protocol and 4-phase
signalling protocol is that there is no resetting overhead in
the 2-phase protocol, hence in the controller as well. The
authors have derived the cycle time and the forward latency
of the MOUSETRAP controller. The derivation is presented
in Appendix A. The result are summaries as follows.

T l
2P = 2 · tlatch + tlogic + tXNOR↑ . (28)

Ll
2P = tlatch + tlogic . (29)

The minimum cycle time and forward latency can be derived
from the above equations when tlogic = 0 as follows.

T l
2P |min

= 2 · tlatch + tXNOR↑ . (30)

Ll
2P |min = tlatch . (31)

3.2 4-phase Controller

We have used the 4-phase controller proposed in [16] for
this comparison. The controller is shown in Fig. 11. G1 and
G2 are complex gates which comprises the controller.

Rin

Ain

Aout

Rout

clk

G1 G2

Fig. 11 4-phase Controller.

We could derive the cycle time and latency for this 4-
phase controller using the similar mechanism employed in
controller for Early Acknowledgement protocol. The formal
analysis for obtaining the above cycle time and latency is
described in Appendix B. The results can be summarized as
follows. When tlogic is large enough such that the inequality

tlogic ≥ tG1↑ + tG2↑ − tflop (32)

holds, the cycle time and the latency can be expressed as:

T l
4P = tflop + tlogic + tG1↑ + tG2↑

+ tG1↓ + tG2↓ + tAND↓ . (33)

Ll
4P = tflop + tlogic + tG1↑ . (34)

When tlogic is small that the above inequality does not hold,
The cycle time and latency take the following form.

T l
4P |min

= 2 · (tG1↑ + tG2↑) + tG1↓ + tG2↓ . (35)

Ll
4P |min

= 2 · tG1↑ + tG2↑ . (36)

3.3 Comparison of performance

The merits of using Early Acknowledgement controller
could be observed in case where tlogic satisfies the condi-
tion that we derived in (22). Then the cycle time for our
controller is given by (23). This can be compared analyti-
cally to the 2-phase and 4-phase protocols using equations
(28) and (33). It is not possible to compare the cycle times
without specific delays from technology libraries. However,
we can get an idea of the controller overhead on the over-
all cycle time in each case. Note that the data-path delay
for our controller and 4-phase controller is tflop + tlogic,
since we use D-flipflops on the data-path. In the case of the
MOUSETRAP controller data-path delay is tlatch + tlogic

due to the use of transparent latches. Any additional terms
appearing in the cycle-time expressions apart from the data-
path delays are incurred by the controller overhead. Hence,

8

our controller has an overhead of only two gate delays
(tAND↑ + tC↓) which is comparable to the 2-phase con-
troller’s overhead (tlatch +tXNOR↑). For 4-phase controller
the overhead is 5 gate delays which are incurred by the re-
setting phase.

However our controller does not exhibit the perfor-
mance advantage in FIFO types of pipelines where there is
no logic processing. In that case its minimum cycle time is
given by (24) where controller overhead is exposed in the
critical cycle of the controller. Compared to 2-phase con-
troller (30) it is clearly larger though it is in the same order
of gate delays (6 gates) in comparison to the 4-phase con-
troller (35).

Forward Latencies of the three controllers can be com-
pared using equations (25), (29) and (34). Evidently, the
MOUSETRAP controller exhibits the lowest forward la-
tency where as the 4-phase also controller shows slightly
lower latency compared to our controller given the gate de-
lays are equal. The forward latencies when there is no logic
processing is given by equations (27), (31) and (36). Again
we can observe that the MOUSETRAP controller has the
lowest latency and our controller has the highest.

It should be noted that our controller and the MOUSE-
TRAP controller are not Speed Independent(SI) circuits
while the 4-phase controller is. The performance advantage
of both controllers over 4-phase controller is partly depend
on this as well.

4. Conditional Branch Controller

We have used the Conditional Branch(CB) non-linear
pipeline operation to demonstrate the simplicity of the Early
Acknowledgement protocol (which is essentially 4-phase
protocol) in composing complex pipeline constructs. First,
the abstract operation of the Conditional Branch without
any particular reference to a signalling protocol is given fol-
lowed by the implementation of CB controller for each sig-
nalling protocol.

In contrast to Fork operation, Conditional Branch oper-
ation diverts the data to only one branch depending on select
signal to the controller. The interface of a two way Condi-
tional Branch controller is shown in Fig. 12.

CB

Rin

Ain Rout2

Rout1

Aout1

Aout2

clk

select

Fig. 12 Conditional Branch Controller.

Conditional Branch controller communicates with the

D Q

En

Rin

Ain

select

clk

Rout1

Rout2

Aout1

Aout2

reqlinear

ctrl.

DEMUX

0

1

select l
gen

data

ack

SD

req d

Fig. 13 Early Acknowledgement CB pipeline controller.

input stage with Rin and Ain signals where as the two out-
put stage control signals are Rout1, Aout1 and Rout2, Aout2
respectively. When a request Rin is made from the previous
stage of pipeline, data is latched by clk signal. Acknowl-
edgement Ain is sent to the input stage when the data is
latched. Depending on select signal, request is routed on
either the first branch Rout1 or the second branch Rout2. It
is assumed that select signal is generated from several data-
path signals.

4.1 Early Acknowledgement CB Controller

The Conditional Branch controller for Early Acknowledge-
ment protocol is a simple extension of its linear controller.
The controller can be composed of a linear controller (for
Early Acknowledgement protocol), demultiplexer, transpar-
ent latch, delay element (tSD) and an OR gate shown in Fig.
13. Rin and Ain of the controller are handled by the linear
controller used within the Conditional Branch controller. se-
lect signal is latched by a transparent latch using the Ain as
latch enable. This ensures the select is being sampled in the
positive edge of Ain and held stable in select l when the re-
quest is made on negative edge of Rin and the latch is made
opaque by Ain low. A function generator gen which pro-
duces select from data is explicitly considered for analyzing
constraints imposed from such an application. The asym-
metric delay element tSD, which is the same type as MD
shown in Fig. 3, is used to compensate for the delay of gen.
An additional constraint on tSD for this correct sampling of
select signal is presented in constraint analysis of this con-
troller. The select l diverts the delayed request req d from
linear controller to either Rout1 or Rout2 conditional paths
through the demultiplexer. Since only one request is ac-
knowledged from either Aout1 or Aout2, the acknowledge-
ments from the conditional branches can be simply ORed to
produce ack to the linear controller.

4.1.1 Timing Constraints

Timing constraints for Conditional Branch controller are an-
alyzed as an extension of linear controller constraints pre-
sented in Section 2.3. Again, we obtain timing constraints

9

to satisfy the desired operation as described in Section 4
assuming the Conditional Branch controller is in a middle
stage of a pipeline with environment operating at a speed
equal to or slower than our linear controller. First, Con-
straint 1 and 2 presented in Section 2.3 are reevaluated to en-
sure the proper operation of the linear controller used within
the Conditional Branch controller. Then an additional con-
straint on tSD for proper operation of demultiplexer is pre-
sented.

Constraint 1 and 2. The Conditional Branch con-
troller is viewed as a linear controller (or linear pipeline)
from the input side, since it employs a linear Early Ac-
knowledgement controller to communicate with Rin and
Ain. Difference can only be perceived when viewed from
the branches of the controller. Thus, the constraints involv-
ing tRout↓→Aout↓ should be reconsidered. This corresponds
to Case 2 of each constraint where Aout ↓ causes Rout ↑.
The two constraints (C12) and (C17) are restated with an
increased delay t′Rout↓→Aout↓ in output side as follows.

tMD↑ ≥ t′Rout↓→Aout↓
− (tC↓ + tAND↑ + 2 · tAND↓) (C37)

and, tRD↓ ≥ t′Rout↓→Aout↓ + tC↑
− (tAND↑ + tC↓ + 3 · tAND↓) . (C38)

From Fig. 13, we have

t′Rout↓→Aout↓ = 2 · tAND↓ + tRout↓→Aout↓ + tOR↓ .

(C39)

tMD↑ and tRD↓ should be selected to satisfy these new con-
straints.

Constraint 3. An additional constraint on Conditional
Controller requires select l signal to be valid before req d
goes high. This ensures the proper operation of demulti-
plexer which switches the request req to either branch de-
pending on select signal. Early Acknowledgement proto-
col stipulates that data becomes valid before Rin ↓ arrives.
Thus, the worst case for this constraint is when data be-
comes valid simultaneously with Rin ↓. In that case, the
constraint translates to:

tRin↓→req d↑ ≥ tRin↓→select l . (C40)

In order that Rin ↑ causes req d ↑, at least tAND↑ of A2,
tC↑ of C-element and tSD↑ of SD should occur. Hence the
lower bound for the left-hand-side of the above constraint
can be expressed as follows.

tRin↓→req d↑ ≥ tAND↑ + tC↑ + tSD↑ . (C41)

The latch is transparent due to Ain high when Rin ↓ occurs.
Thus, The time for select l to become valid is determined by
the delays of gen and the latch. That is:

tRin↓→select l = tgen + tlatch . (P42)

Hence the constraint on the asymmetric delay can be derived

as:

tAND↑ + tC↑ + tSD↑ ≥ tgen + tlatch

tSD↑ ≥ tgen + tlatch − (tAND↑ + tC↑) .
(C43)

This constraint defines the selection of tSD↑ based on the
select generator function.

Note that tSD can be “borrowed” from the matched de-
lay to be inserted in Rout1 and Rout2 paths. Suppose that
the matched delays on the two branches of controller are
tMD1↑ and tMD2↑, and M = min(tMD1↑, tMD2↑). Then,
tSD↑ can be set upto M replacing tMD1↑ and tMD2↑ by
tMD1↑ − M and tMD2↑ − M , respectively. If such tSD↑
satisfies all of the above constraints, this Constraint 3 can be
satisfied without causing any performance penalty.

4.1.2 Performance

In the this section the cycle time and forward latency of the
controller are derived analytically as it was done for the lin-
ear controller. Minimum time for processing logic, tlogic

that ensures the advantage of the new controller by hiding its
overhead, is also derived in the form of an inequality similar
to that of (22).

Fig. 14 shows the STG for the Conditional Branch con-
troller. The arrows with associated delays in square brackets
indicate the delays incurred by the extra components (de-
multiplexer, delay element and OR gate) of the controller.
We try to differentiate between linear operation overhead
and additional overhead incurred due to the Conditional
Branch operation, and then reflect them upon equations that
we derive as well. The diagram shows STG for only one
branch of the controller (Rout1/Aout1) without loosing any
functional information necessary to perform the analysis.

The notable point of deviation from the STG of linear
controller is in matched delays tMD1 and tMD2 for the out-
put branches of the controller. As shown in Fig. 13 and
detailed in constraint analysis a part of output side matched
delays may be used for tSD inside our controller to compen-
sate for the select generator function. The matched delays
external to the controller t′MD1 and t′MD2 are selected such
that the original matched delay remains the same. i.e.

tMD1↑ = t′MD1↑ + tSD↑
and tMD2↑ = t′MD2↑ + tSD↑ .

Analogously to the reasoning that we followed for the
linear controller, we can measure the delays on control cycle
and data cycle to derive the cycle-time in tlogic and inequal-
ity for optimal operation of the controller. The cycle-time in
terms of gate delays as shown in the STG, can be expressed
as follows.

T = tAND↑ + tC↑ + [tSD↑] + [tAND↑]
+ t′MD1↑ + tAND↑ + [tOR↑] + tC↓
+ tAND↑ + tC↓ + tMD0↓ . (44)

The delays enclosed within square braces indicates the

10

Ain(-)

Rin(+)

Ain(+)

Rin(-)

Rout1(-)

Aout1(-)

Rout1(+)

Aout1(+)

clkN (+) clkN+1(+)
tflop + tlogic

tNOT↑

tC↑ + tMD0↑

tAND↑
tAND↑

tC↓ + tMD0↓

t′
MD1↓ + tAND↓

[tOR↓] + tC↑

t′
MD1↑ + tAND↑

tAND↑ + tC↑

tAND↓
req(−)

req d(+)

[tAND↑]

[tAND↓]

+ tAND↑

t′
MD1↓ + tAND↓

+ tNOT↑

+ tC↓

[tOR↑]

+[tSD↑]

Fig. 14 STG for Conditional Branch Controller for Early Acknowledgement pro-
tocol.

extra delays of the path due to Conditional Branch opera-
tion. In order to express the above cycle-time in terms of
tlogic, the delays in the control and data paths can be mea-
sured.

• Path on control cycle: Rin− → req d+ →
Rout1+ → Aout1+ → req− → Rout1− →
clkN+1+

TCB1 = tAND↑ + tC↑ + [tSD↑] + [tAND↑]
+ t′MD1↑ + tAND↑ + [tOR↑] + tC↓
+ [tAND↓] + t′MD1↓ + tAND↓ + tNOT↑ .

(45)

• Path on data cycle: Rin− → Ain− → clkN+ →
clkN+1+

TCB2 = tAND↓ + tNOT↑ + tflop + tlogic . (46)

Again, for proper operation of the pipeline TCB1 ≥ TCB2

must hold, which translates to:

t′MD1↑ ≥ (tflop + tlogic)

− (2 · tAND↑ + tC↑ + tC↓ + t′MD1↓)

− [tSD↑ + tAND↑ + tAND↓ + tOR↑] . (47)

Thus, if

tlogic ≥ (2 · tAND↑ + tC↑ + tC↓ + t′MD1↓
+ [tSD↑ + tAND↑ + tAND↓ + tOR↑]) − tflop

(48)

holds, the cycle time for Conditional Branch controller T cb
EA

can be expressed in terms of tlogic by substituting the mini-
mum of (47) in equation (44) which is:

T cb
EA = tflop + tlogic + tAND↑ + tC↓ − [tAND↓] . (49)

We use the fact that t′MD1↓ = tMD0↓ = tAND↓ in accor-
dance with our implementation to simplify the above ex-
pression.

According to inequalities of (22) and (48), minimum
of tlogic required in order to hide the additional overhead
incurred by the Conditional Branch Controller is higher than
that of linear controller.

In the case where the logic processing time is smaller
such that inequality (48) does not hold, we have the mini-
mum cycle time directly from equation (44) with t′MD1↑ =
tMD0↓ = 0 which is:

T cb
EA|min

= 3 · tAND↑ + tC↑ + 2 · tC↓
+ [tSD↑ + tAND↑ + tOR↑] . (50)

Forward latency is also measured similar to the linear
controller and marked in dashed lines on the STG diagram.
For sufficiently large tlogic, forward latency has the same
terms (despite the minimum tlogic is larger) as in linear con-
troller. i.e.

Lcb
EA = tAND↓ + tNOT↑ + tflop + tlogic . (51)

When tlogic is small and the inequality (48) does not hold,

11

D Q

CLK

Rin

D Q

CLK

select

Rout1

Aout1

Rout2

Aout2

clk

D Q

CLK

Ain

complete

s1

s2

gen
data

Fig. 15 2-phase Conditional Branch Controller.

the critical path lies on the path: Rin− → req d+ →
Rout1+ → Aout1+ → req− → Rout1− → clkN+1+.

L = tAND↑ + tC↑ + [tSD↑] + [tAND↑] + t′MD1↑
+ tAND↑ + [tOR↑] + tC↓ + [tAND↓]
+ t′MD1↓ + +tAND↓ + tNOT↑ . (52)

Similar to the minimum cycle time, the minimum for-
ward latency can be derived for this case when t′MD1↑ =
t′MD1↓ = 0 as follows.

Lcb
EA|min

= 2 · tAND↑ + tAND↓ + tC↑ + tC↓ + tNOT↑
+ [tSD↑ + tAND↑ + tAND↓ + tOR↑] . (53)

4.2 2-phase CB Controller

Conditional Branch controller for transition signalling pro-
tocol, is not straightforward as in Early Acknowledgement
protocol or 4-phase protocol. Since there is no resetting of
the request or acknowledgement signal, we cannot make use
of a demultiplexer to route the request on the sampled select
signal. Fig. 15 shows Conditional Branch controller for 2-
phase protocol based on [18]. Note that the D-flops are used
in contrast to the transparent latches used in the MOUSE-
TRAP controller for linear pipeline. The D-flipflop based
controller is more robust than the transparent latch based
controller in this case, hence we use the former.

Initially, all control signals are at the same state and
complete signal is high which indicates the operations of
the output side of the controller is complete. select signal
can either be at high or low depending on the data or other
control information which handles the branching operation.
When a request is made with a transition on Rin, difference
in states of Rin and Ain generates clk signal which is gated
by complete. Since complete is high initially, the clk signal
is raised latching the control and data signals. Once Rin is

latched, the same transition occurs in Ain which acknowl-
edges the request to the input side. s1 and s2 flipflops work
as a “transition demultiplexor” which generates the requests
on Rout1 either Rout2 depending on select signal. Transition
on Rout1 or Rout2 is made using the previous level of it from
Aout1 or Aout2 respectively and inverting it through the two
XOR gates. The first XOR gate generates “Rout1 = Aout1
when select = 0” where as the second XOR gate gener-
ates “Rout2 = ¯Aout2 when select = 1”. For example, if
select signal is low, s1 latches Aout1 generating transitions
on Rout1 i.e. requests on first branch.

Either of the request event causes complete signal to go
low indicating the latched data is being passed to the output
stage, which will effectively blocks new requests from the
input side. At the acknowledgement of the corresponding
branch, each pair of request and acknowledgement signals
return to the same state, raising the complete signal high
and re-enabling the requests from the input side. In compar-
ison to the minimal overhead of linear controller (MOUSE-
TRAP), s1 and s2 toggle flops to generate requests and com-
pletion detection mechanism of the controller incur consid-
erable overhead in the operation, adversely affecting its per-
formance.

4.2.1 Performance

A formal analysis to obtain the cycle time of this controller
is presented in Appendix C. It could be observed that,

if, tlogic ≥ tlatch + tXNOR↓ (54)

holds, the cycle time and forward latency for this controller
can be obtained as:

T cb
2P = tflop + tlogic + 2 · tAND↑

+ (tXNOR↑ − tXNOR↓) . (55)

Lcb
2P = tflop + tlogic + tXOR↑ + tAND↑ . (56)

When the above condition does not hold the minimum of
these two parameters are obtained as follows.

T cb
2P |min

= tflop + tlatch + tXNOR↑ + 2 · tAND↑ . (57)

Lcb
2P |min = tXOR↑ + tAND↑ + tflop + tlatch + tXNOR↓ .

(58)

4.3 4-phase CB Controller

The Conditional Branch for the 4-phase protocol is similar
in construction to that of Early Acknowledgement protocol.
The construction of the controller is same as in Fig. 13,
except for using a 4-phase linear controller in place of the
Early Acknowledgement linear controller. The operation as
described in previous Section 4.1 is valid for the 4-phase
Conditional Branch controller as well.

4.3.1 Performance

The cycle time and forward latency of this controller are ob-
tained in a way similar to the Conditional Branch controller

12

of Early Acknowledgement protocol. The details are given
in Appendix D. The obtained expressions can be summa-
rized as follows.

if, tlogic ≥ (tG1↑ + tG2↑ + [tSD↑ + tAND↑])
− tflop (59)

Then,

T cb
4P = tflop + tlogic + tG1↑ + tG2↑ + tG1↓

+ tG2↓ + tAND↓ + [tAND↓ + tOR↑ + tOR↓] . (60)

Lcb
4P = tflop + tlogic + tG1↑ . (61)

Otherwise, the minimum of cycle time and forward latency
are,

T cb
4P |min

= 2 · (tG1↑ + tG2↑) + tG1↓ + tG2↓
+ [tSD↑ + tAND↑ + tAND↓ + tOR↑
+ tOR↓] . (62)

Lcb
4P |min = 2 · tG1↑ + tG2↑ + [tSD↑ + tAND↑] . (63)

4.4 Comparison of Performance

Again, an accurate comparison of cycle times requires spe-
cific delay values from technology libraries. However we
can employ the same mechanism to compare the overhead
of the controllers that we employed in the linear controller
comparison. In comparison of cycle times, from equations
(49), (55) and (60) it can be observed that 4-phase cycle
time has high overhead compared to the 2-phase and our
controller. Hence, we put more emphasis on comparing
the first two controllers as it shows the advantage of our
controller over 2-phase protocol. For Early Acknowledge-
ment controller (49) and 2-phase controller (55), an approx-
imate comparison can be done assuming tAND↑ ≈ tAND↓
and tXNOR↑ ≈ tXNOR↓ which further simplifies the cycle
times to as follows.

T cb
EA = tflop + tlogic + tC↓ . (64)

T cb
2P = tflop + tlogic + 2 · tAND↑ . (65)

Comparison of the simplified cycle times of controllers (65)
and (64) shows that the latter is slightly better provided that,

tC↓ < 2 · tAND↑ . (66)

This can hold in many technologies mainly owing to the
fact that the right-hand-side has the coefficient of 2, giving
a slight performance advantage to Early Acknowledgement
protocol based controller. In a process technology where
gate delays can be chosen to such that tAND↑ < tAND↓
and tXNOR↑ < tXNOR↓ (for example using transistor siz-
ing in ASIC technologies) cycle times in both cases can be
reduced according to the expressions that we obtained ((49)
and (55)). Again this give rise to above condition which
determines the higher performance of the two controllers.

As shown in Section 5.2 in the case of our experiments
on FPGA where gate delays are identical, it is observed
the Early Acknowledgement protocol cycle time performs
slightly better.

When there is no logic processing the cycle times can
be compared using equations (50), (57) and (62). With the
minimum cycle time, 2-phase controller exhibits the highest
performance where as 4-phase controller shows the slowest
performance. As in the case of linear controller, this re-
sult endorses the 2-phase controller as the best candidate for
pipelines with very small or no logic processing in between
stages.

The forward latencies of the three Conditional Branch
controllers were derived in equations (51), (56) and (61).
Given that the gate delays are equal we have roughly the
same latencies for our controller and 2-phase controller
where as the 4-phase controller has slightly lower latency.
The minimum latencies obtained for each type of controller
(equations (53), (58) and (63)) when there are no logic pro-
cessing units inbetween stages also confirms to the same or-
der of latencies with 4-phase being the lowest and our con-
troller being the heighest.

5. Implementation and Results

In this section we describe in detail the testcases that we
made to evaluate the performance of each controller and the
preliminary simulation results.

5.1 Implementation

As the proof of concept, we have evaluated the performance
of each of the controllers on Xilinx Vertex-4 FPGA. We
made maximum efforts to minimize the uncertain path de-
lays in FPGA routing. All control and data path circuits of
the designs are placed identically in each case using rloc
placement constraints of the Xilinx ISE tool. Synthesis op-
tions, both general and Xilinx specific ones are tuned to suit
asynchronous design synthesis. For example, use of global
and regional clock buffers is disabled. Thus, we believe that
the results we obtained are comparable with each other with
minimum of uncertainty in measurements.

For linear controllers we have created simple 8-bit 4-
stage FIFOs, operated by each type of controller. For the
Conditional Branch controllers we have built a 8-bit Y-
shaped pipelines with 4-stages where 2-stages are in the
stem of the pipeline and 2-stages are branched out. The
Conditional Branch controller is placed in the second stage
of the pipeline. All pipelines were constructed to be 8-bit.

Environment for the pipelines comprised of input gen-
erating shift registers and output capturing registers (two
registers in the case of Conditional Branch) were operating
with minimum overhead which maximizes the performance
of the controller under test.

Performance of controllers were evaluated in two
cases,

1. pipelines operating without any processing

13

2. pipelines operating with processing between stages

In the first case, there is minimum delay between stages
without any logic processing in-between which evaluates
the maximum performance of the controllers for high-speed
pipelines. Since there is no logic processing (tlogic = 0),
no matched delays were inserted between stages as well
(tMD = 0).

In the second case, performance of pipeline controllers
for a general scenario of pipelines operating with process-
ing in-between stages is tested. In order to emulate the pro-
cessing elements we have used simple buffers to delay the
data-path. The introduced logic delay was between 6.9ns
to 7.2ns (varied depending on the exact routing of the data-
path) for each stage of the pipeline. This delay chosen such
that it satisfies condition (48) (which in turn satisfies condi-
tion (22)) that we derived for Conditional Branch controller
for Early Acknowledgement protocol. Thus we could ob-
tain performance of Early Acknowledgement protocol (and
other protocol) in the case of a general pipeline with logic
processing where these two conditions can be easily satis-
fied. The matched delays for controllers were tuned starting
from a higher delay to the lowest possible where the proper
operation of the pipeline is guaranteed.

5.2 Results

Post-layout simulation results for Vertex-4 obtained using
ModelSim are shown in Table 1.

From the first column of results, it can be observed
that the 2-phase controllers outperform the 4-phase and
Early Acknowledgement controllers in linear and Condi-
tional Branch operations when there are no processing in-
between pipeline stages (tlogic = 0). Its performance ad-
vantage is evident in these cases where a minimum overhead
in the controller is desirable. Since tlogic = 0, the condition
(22) for Early Acknowledgement controller does not hold,
the overhead of the controller is exposed on the critical cy-
cle time which explains its larger cycle time.

According to the second column of the results table, in
the cases where logic processing is present between pipeline
stages we observe that the Early Acknowledgement con-
trollers perform better as its overhead got hidden in the re-
quired delay between stages. For the Early Acknowledge-
ment controller, the condition (22) holds in this case, the
performance is comparable to 2-phase controller in linear

Table 1 Cycle-times comparison.

Cycle Time without with

(ns) processing processing

Linear

2-phase (MOUSETRAP) 2.6 9.9

4-phase 3.6 12.4

Early Acknowledgement 4.0 10.0

Conditional Branch

2-phase 4.0 11.2

4-phase 7.1 15.1

Early Acknowledgement 5.6 10.6

operation confirming to the analytical cycle times that we
obtained in (23) and (28).

From the last 3 rows of the second column, it can be
observed that the Conditional Branch controller for Early
Acknowledgement controller outperforms the 4-phase con-
troller and performs slightly better than the 2-phase con-
troller. As we demonstrated in our analysis, the ability of the
Early Acknowledgement protocol to hide the control over-
head results in the performance gain. In our FPGA imple-
mentation, all gates (including the C-elements) are imple-
mented using LUTs which have identical delays simplify-
ing the comparison of cycle times for controllers. Given the
equal delays in gates, the difference of cycle times of Con-
ditional Branch controllers derived in (49) and (55) amounts
to a one gate delay which is roughly 700ps in the Vertex-4
architecture. Hence, the results are confirming to our for-
mal analysis, subjected to routing delay variations. Even
though the gain is relatively low, the simplicity of the Early
Acknowledgement protocol as a 4-phase protocol makes
it more appealing in this case of non-linear asynchronous
pipeline application. As described earlier, when using 2-
phase protocol, usually translations from 2-phase to 4-phase
is required at some points where level sensitive control is
necessary. In such cases, our controller has the added ad-
vantage employing a variation of 4-phase protocol and hav-
ing a performance gain over 2-phase protocol by hiding the
additional controller overhead incurred by non-linear oper-
ations.

As a measure of area consumption our controller we
have measured the resource utilization of FPGA for the our
designs. Table 2 shows the resource utilization control path
including the matched delays in terms of flipflop and/or
latch (denoted as FF/LT) and LUTs separately.

Table 2 Resource Utilization comparison.

Resource without with

Utilization processing processing

FF/LT LUT FF/LT LUT

Linear

2-phase 4 4 4 47

4-phase 0 8 0 54

Early Ack. 0 24 0 51

CB

2-phase 8 11 8 86

4-phase 2 15 2 81

Early Ack. 2 39 2 84

First two columns shows the resource utilization of
pipelines without processing for linear and Conditional
Branch controllers of all 3 protocols. Here, 2-phase con-
trollers (both linear and Conditional Branch) exhibit the
lowest resource utilization as the linear controller consists of
just one latch and XNOR gate even though the Conditional
Branch controller is rather complex. Early Acknowledge-
ment controller uses 6 LUTs per linear controller including
the logic for self resetting delay, which used most resources.

14

In last two columns the resource utilization for pipeline
with processing for linear and Conditional Branch con-
trollers are shown. For the linear controller we could ob-
serve that the resource usage is comparable to that of 2-
phase controller and better than 4-phase controller. The rea-
son for this is that Early Acknowledgement controller re-
quires a smaller matched delay tMD↑ for a given logic pro-
cessing stage with same tlogic compared to other two proto-
cols. Same reasoning goes in the case of Conditional Branch
controller, where we could even obtain lower resource uti-
lization compared to both 4-phase and 2-phase protocol.
Hence we could obtain the performance gains described in
earlier with even lower resource utilization for the control
path which highlights the advantages of employing Early
Acknowledgement protocol.

6. Conclusions and Future Work

We have proposed a new pipeline controller for Early Ac-
knowledgement protocol. Its timing constraints were an-
alyzed and performance metrics were derived. When the
pipeline has logic processing, the controller can operate with
minimal overhead by hiding its overhead in the required
matched delay. In such a case, we could obtain cycle-time of
controller comparable to 2-phase controller -the MOUSE-
TRAP, both analytically and experimentally.

Furthermore, we could emphasize on the advantages of
using Early Acknowledgement protocol which also inherit
the simplicity of 4-phase protocol by comparing the Con-
ditional Branch controllers for each protocol. The area us-
age of the protocol is also comparable to other protocols in
the preferred application of this protocol since the required
matched delay is smaller requiring less area in the design.

We would like to evaluate and confirm the performance
of the controllers on ASIC, like on 65nm technology. Ex-
perimental results in such a case is deemed necessary to
strengthen our claims of the advantages of using Early Ac-
knowledgement protocol.

References

[1] C. Mannakkara, T. Yoneda, Asynchronous Pipeline Controller Based
on Early Acknowledgement Protocol, Proceedings on Applications

of Concurrency to System Design, 2008, pages 118-127.

[2] C. Mannakkara, T. Yoneda, Comparison of Standard Cell based Non-
linear Asynchronous Pipelines, IEICE Technical Report, VLSI,

2007, pages 49-54.

[3] N.Sretasereekul, et. al., A Zero-Time-Overhead Asynchronous Four-
Phase Controller, Proc. of IEEE International Symposium on Cir-

cuits and Systems, 2003, pages V-205 - V-208.

[4] M. Singh, S.M. Nowick, MOUSETRAP: Ultra-High-Speed Transition-
Signaling Asynchronous Pipelines, Proceedings on Computer De-

sign, 2001, pages 9-17.

[5] I. E. Sutherland Micropipelines, Communications of the ACM,

1989, pages 720-738.

[6] S. B. Furber, P. Day, Four-phase micropipeline latch control circuits,

IEEE Transactions on VLSI Systems, 1996, pages 247-253.

[7] E. Brunvand, Using FPGAs to Implement Self-Timed Systems, Jour-

nal of VLSI Signal Processing, 1993, pages 173-190.

[8] E. Brunvand, Translating Concurrent Communicating Programs into

Asynchronous Circuits, Ph.D. Dissertation, Carnegie Mellon Uni-

versity, 1991.

[9] T. Yoneda, et. al. High Level Synthesis of Timed Asynchronous Cir-
cuits, Proceedings on Asynchronous Circuits and Systems, 2005,

pages 178-189.

[10] R.O. Ozdag, et. al. High-Speed Non-Linear Asynchronous Pipelines,

Proceedings on Design, Automation and Test in Europe, 2002, pages

1000-1007.

[11] Quoc Thai Ho, et. al. Implementing Asynchronous Circuits on LUT
Based FPGAs, Proceedings on The Reconfigurable Computing Is

Going Mainstream, 2002, pages 36-46.

[12] Y. Sato, et. al. Systematic Reducing of Metastable Operation Oc-
curred in CMOS D Flip-Flops Systems and Computers in Japan,

2000.

[13] A. Peeters, Support for Interface Design in Tangram Asynchronous

Interfaces: Tools, Techniques, and Implementations, 2000, pages 57-

64.

[14] K.V. Berkel, F. Huberts, A. Peeters, Streching Quasi Delay Insensi-
tivity by Means of Extended Isochronic Forks Proceedings on Asyn-

chronous Design Methodologies, 1995, pages 99-107.

[15] M. Singh, S.M. Nowick, High-Throughput Asynchronous Pipelines
for Fine-Grain Dynamic Datapaths, Proceedings on Advanced Re-

search in Asynchronous Circuits and Systems, 2000, pages 198-209.

[16] I. Blunno, et. al. Handshake protocols for de-synchronization, In-

ternational Symposium on Asynchronous Circuits and Systems, 2004,

pages 149-158.

[17] M. Ampalam, M. Singh Counterflow Pipelining: Architectural Sup-
port for Preemption in Asynchronous Systems using Anti-Tokens
Proceedings on International Conference on Computer-aided Design,

2006, pages 611-618.

[18] Private communication with Montek Singh

Chammika Mannakkara received BSc.

in Electrical and Electronic Engineering from

the Faculty of Engineering, University of Per-

adeniya, Sri Lanka in 2000. He joined Royal

Institute of Technology, Sweden where he com-

pleted his MSc. in System-on-Chip Design in

2006. Mr. Mannakkara is currently a PhD.

candidate at National Institute of Informatics,

Tokyo mentored by Dr. Yoneda.

Tomohiro Yoneda received B.E., M.E., and

Dr. Eng. degrees in Computer Science from the

Tokyo Institute of Technology, Tokyo, Japan in

1980, 1982, and 1985, respectively. In 1985 he

joined the staff of Tokyo Institute of Technol-

ogy, and he moved to National Institute of In-

formatics in 2002, where he is currently a Pro-

fessor. He was a visiting researcher of Carnegie

Mellon University from 1990 to 1991. His re-

search activities currently focus on formal veri-

fication of hardware. Dr. Yoneda is a member of

IEEE, Institute of Electronics, Information, and Communication Engineers

of Japan, and Information Processing Society of Japan.

15

Appendix A: Performance analysis of 2-phase linear
controller

Here we use the STG presented in [4] (with our naming con-
ventions for the control signals) to derive the performance
of the MOUSETRAP controller. Also note that the sig-
nals request/acknowledge signals confirm to 2-phase pro-
tocol hence an arrow to/from those signals imply a “transi-
tion”. The cycle time lies on the path marked in dashed line
and the forward latency can be measured on the same path
from AinN → RinN+1 → AoutN . Hence,

T = tMD + tlatch + tXNOR↑ + tlatch

= tMD + 2 · tlatch + tXNOR↑ . (A· 1)

L = tMD + tlatch . (A· 2)

To express the above equations in terms of tlogic, the time
can be measured on control path and data path as follows.

• Path on control cycle: AinN → RinN+1 →
AoutN → EnN+1−

T1 = tMD + tlatch + tXNOR↓ . (A· 3)

• Path on data cycle: AinN → EnN− → EnN+1−
T2 = tXNOR↓ + tlogic + tlatch . (A· 4)

To correctly latch the data at the next stage (EnN+1−) it is
required that T1 ≥ T2 which lead to below condition:

tMD + tlatch + tXNOR↓ ≥ tXNOR↓ + tlogic + tlatch

tMD ≥ tlogic . (A· 5)

In other words, the matched delay should be selected to be
equal or greater than the logic delay. The optimal matched
delay is when tMD = tlogic. The cycle time and forward
latency will be:

T = tlogic + 2 · tlatch + tXNOR↑ . (A· 6)

L = tlogic + tlatch . (A· 7)

In contrast to Early Acknowledgement controllers, the
above equations holds for any logic delay making it a very
high performance pipeline controller specially when the
logic processing is very low limited to one or two gate de-
lays. The maximum performance (minimum cycle time and
latency) for this controller is when tlogic = 0 which can be
given as:

T |
min

= 2 · tlatch + tXNOR↑ . (A· 8)

L|min = tlatch . (A· 9)

Appendix B: Performance analysis of 4-phase linear
controller

The STG for obtaining the cycle time and latency is shown

in Fig. A· 2. Quite evidently the cycle time of the 4-phase
controller has controller overhead which lies on the critical
cycle and it cannot be hidden by the matched delay, unlike
Early Acknowledgement controller. The analysis of the cy-
cle time and latency is similar to the Early Acknowledge-
ment controller presented in 2.4, hence we left out trivial
deductions that can be made directly from the STG diagram.
We used the Rin+ as the starting transition confirming to
the semantics of the 4-phase protocol. The critical path lies
on the dashed line path which constitutes a twisted loop.
Hence, the cycle time and forward latency can be obtained
as a function of gate delays (starting from Rin+) as follows.

T = tG1↑ + tG2↑ + tMD↑ + tG1↑
+ tG2↓ + tMD↓ + tG1↓ + tG2↑ . (A· 10)

L = tG1↑ + tG2↑ + tMD↑ + tG1↑ . (A· 11)

To bring in tlogic to the above equations two paths on control
and data cycles are considered.

• Path on control cycle: Rin+ → Ain+ → Rout+ →
Aout+

T1 = tG1↑ + tG2↑ + tMD↑ + tG1↑ . (A· 12)

• Path on data cycle: Rin+ → Ain+ → Aout+

T2 = tG1↑ + tflop + tlogic . (A· 13)

From the T1 ≥ T2 condition for proper operation we have:

tMD↑ ≥ tflop + tlogic − (tG1↑ + tG2↑) .

Thus, if, tlogic ≥ tG1↑ + tG2↑ − tflop (A· 14)

holds, the cycle time and forward latency of the 4-phase con-
troller can be expressed as follows.

T = tflop + tlogic + tG1↑ + tG2↑
+ tG1↓ + tG2↓ + tAND↓ . (A· 15)

L = tflop + tlogic + tG1↑ . (A· 16)

When the above condition does not hold the above param-
eters can be deduced from equations (A· 10) and (A· 11) at
tMD↑ = tMD↓ = 0.

T |
min

= tflop + tlogic + tG1↑ + tG2↑
+ tG1↓ + tG2↓ + tAND↓ . (A· 17)

L|
min

= tflop + tlogic + tG1↑ . (A· 18)

Appendix C: Performance analysis of Conditional
Branch controller for 2-phase protocol

The STG for the functional operation of the 2-phase Con-
ditional Branch Controller is given in Fig. A· 3. In this
STG also, transitions for only one branch of the controller
is given. Note that for signals Rin, Ain, Rout1 and Aout1
STG implies a “transition” without explicitly unfolding the
particular transitions (from low-to-high and high-to-low)

16

RinN

EnN−1+

AinN AoutN

EnN+

RinN+1

EnN− EnN+1−

tlatch + tMD

tlatch

tXNOR↑ tlatch

tMD

tXNOR↑

tlatch

tXNOR↓tXNOR↓

tlogic + tflop

Fig. A· 1 STG for the MOUSETRAP Controller.

Ain(+)

Rin(-)

Ain(-)

Rin(+)

Rout(-)

Aout(-)

Rout(+)

Aout(+)

tflop + tlogic

tG2↓

tG1↓

tG2↑

tG1↑ + tG2↑

tG2↓

tMD↓ + tG1↓

tG1↑ + tG2↑

tMD↑

tG2↑

tG1↑

+tMD↓

+tG1↑

+tMD↑

Fig. A· 2 STG for Four phase Controller.

which are identical in the protocol. The matched delays are
symmetrical for the transition signalling protocol. Hence
there is no distinction made between tMD↑ and tMD↓ as in
the case of other two protocols.
We can calculate the cycle time and forward latency in terms
of tlogic using the same rationale used in Conditional Branch
controller of the Early Acknowledgement protocol. The cy-
cle time and forward latency of the controller as shown in
the STG with thin dashed lines, can be expressed as follows.

T = tflop + tMD + tlatch + tXNOR↑
+ 2 · tAND↑ . (A· 19)

L = tXOR↑ + tAND↑ + tflop + tMD

+ tlatch + tXNOR↓ . (A· 20)

In order to express above in terms of tlogic we measure the
delays on the control and data paths.

• Path on control cycle: clkN+ → Rout1 → Aout1 →
En−

TCB1 = tflop + tMD + tlatch + tXNOR↓ . (A· 21)

• Path on data cycle: clkN+ → En−
TCB2 = tflop + tlogic . (A· 22)

17

Rin

clkN(+)

Ain

Aout1

Rout1

EnN+1(−)
tflop + tlogic

tXOR↑ + tAND↑

tflop

tflop

tXNOR↓

tMD1 + tlatch

tXOR↑ + tLt + tMD0

complete(+)
tAND↑ tXNOR↑ + tAND↑

Fig. A· 3 STG for Conditional Branch Controller for 2-phase protocol.

Ain(+)

Rin(-)

Ain(-)

Rin(+)

Rout(-)

Aout(-)

Rout(+)

Aout(+)

tflop + tlogic

tG2↓

tG1↓

tG2↑

tG1↑ + tG2↑

[tOR↑] + tG2↓

t′
MD↓ + tG1↓

[tOR↓]+

t′
MD1↑

tG2↑ + [tOR↑

tG1↑

+tMD0↓

+tG1↑

+tMD0↑

req d(+)

[tSD↑ + tAND↑]

tG1↑ + tG2↑

+[tAND↓]

Fig. A· 4 STG for Conditional Branch Controller for Four phase protocol.

Since TCB1 ≥ TCB2 for proper operation, we can obtain
the constraint on tMD1 as:

tMD ≥ tlogic − (tlatch + tXNOR↓) . (A· 23)

Thus, if, tlogic ≥ tlatch + tXNOR↓ (A· 24)

holds, the cycle time and latency for this controller can be
obtained as:

T = tflop + tlogic + 2 · tAND↑
+ (tXNOR↑ − tXNOR↓) . (A· 25)

L = tflop + tlogic + tXOR↑ + tAND↑ . (A· 26)

When the above condition does not hold we can derive the
cycle time and latency directly from (A· 19) and (A· 20) at
tMD = 0 as follows.

T |
min

= tflop + tlatch + tXNOR↑ + 2 · tAND↑ . (A· 27)

L|min = tXOR↑ + tAND↑ + tflop + tlatch + tXNOR↓ .
(A· 28)

Appendix D: Performance analysis of Conditional
Branch controller for 4-phase protocol

Fig. A· 4 shows the STG for the Conditional Branch con-
troller for 4-phase protocol. The analysis of the cycle time
and forward latency is similar to that of Early Acknowl-
edgement protocol Conditional Branch controller presented
in section 4.1.2.
The arrows with associated delays in square brackets indi-
cate the delays incurred by the extra components (demulti-
plexer, delay element and OR gate) of the controller. With
the same reasoning that we followed for Conditional Branch
controllers for Early Acknowledgement protocol, we can
derive expressions for cycle time and forward latency in
terms of tlogic. The cycle time and forward latency as
marked in thin dashed lines in the STG, can be expressed
in terms of gate delays as follows.

18

T = tG1↑ + tG2↑ + [tSD↑ + tAND↑] + t′MD1↑
+ tG1↑ + [tOR↑] + tG2↓ + [tAND↓]
+ t′MD1↓ + tG1↓ + [tOR↓] + tG2↑ . (A· 29)

L = tG1↑ + tG2↑ + [tSD↑ + tAND↑]
+ t′MD1↑ + tG1↑ . (A· 30)

In order to express above two parameters in terms of tlogic

two paths on control and data cycles are considered.

• Path on control cycle: Rin+ → Ain+ → req d+ →
Rout+ → Aout+

T1 = tG1↑ + tG2↑ + [tSD↑ + tAND↑]
+ t′MD↑ + tG1↑ . (A· 31)

• Path on data cycle: Rin+ → Ain+ → Aout+

T2 = tG1↑ + tflop + tlogic . (A· 32)

From the T1 ≥ T2 condition for proper operation we have:

t′MD↑ ≥ tflop + tlogic − (tG1↑ + tG2↑ .

+ [tSD↑ + tAND↑])
Thus, if, tlogic ≥ (tG1↑ + tG2↑ + [tSD↑ + tAND↑])

− tflop (A· 33)

holds, the cycle time and forward latency of the 4-phase con-
troller can be expressed as follows.

T = tflop + tlogic + tG1↑ + tG2↑ + tG1↓
+ tG2↓ + tAND↓ + [tAND↓ + tOR↑ + tOR↓] . (A· 34)

L = tflop + tlogic + tG1↑ . (A· 35)

When the above condition does not hold the minimum val-
ues for above parameters can be deduced from equations
(A· 29) and (A· 30) at t′MD↑ = t′MD↓ = 0.

T |
min

= 2 · (tG1↑ + tG2↑) + tG1↓ + tG2↓
+ [tSD↑ + tAND↑ + tAND↓ + tOR↑
+ tOR↓] . (A· 36)

L|
min

= 2 · tG1↑ + tG2↑ + [tSD↑ + tAND↑] .

(A· 37)

