
 

 

ISSN 1346-5597

 

NII Technical Report 

 

GMRES Methods for Least Squares Problems  
       
               
               
               
 
Ken HAYAMI, Jun-Feng YIN, and Tokushi ITO   
  
               
               
               

 
NII-2007-009E  
July 2007  
 



GMRES METHODS FOR LEAST SQUARES PROBLEMS

KEN HAYAMI∗, JUN-FENG YIN†, AND TOKUSHI ITO‡

Abstract.
The standard iterative method for solving large sparse least squares problems min

�∈Rn
‖�− A�‖2,

A ∈ Rm×n is the CGLS method, or its stabilized version LSQR, which applies the (preconditioned)
conjugate gradient method to the normal equation ATA� = AT

�.
In this paper, we will consider alternative methods using a matrix B ∈ Rn×m and applying the

Generalized Minimal Residual (GMRES) method to min
�∈Rm

‖�− AB�‖2 or min
�∈Rn

‖B�− BA�‖2.

Next, we give a sufficient condition concerning B for the GMRES methods to give a least squares
solution without breakdown for arbitrary �, for over-determined, under-determined and possibly
rank-deficient problems. We then give a convergence analysis of the GMRES methods as well as the
CGLS method.

Then, we propose using the robust incomplete factorization (RIF) for B.
Finally, we show by numerical experiments on over-determined and under-determined problems

that, for ill-conditioned problems, the GMRES methods with RIF give least squares solutions faster
than the CGLS and LSQR methods with RIF.

Key words. least squares problems, iterative method, Krylov subspace method, GMRES,
CGLS, LSQR, robust incomplete factorization.
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1. Introduction. Consider the least squares problem

min
x∈Rn

‖b − Ax‖2(1.1)

where A ∈ Rm×n, and m ≥ n or m < n. We also allow the rank-deficient case when
the equality in rank A ≤ min(m,n) does not hold.

The least squares problem (1.1) is equivalent to the normal equation

ATAx = ATb.(1.2)

For m < n,

AATy = b, x = ATy(1.3)

gives the minimum norm solution of (1.1).
The standard direct method for solving the least squares problem (1.1) (where

m ≥ n and A is full rank) is to use the QR decomposition: A = QR where Q ∈ Rm×n

is an orthogonal matrix and R ∈ Rn×n is an upper triangular matrix, which can
be obtained using the Householder or Givens transformations, or by the modified
Gram-Schmidt method. Then, equation (1.2) is transformed as RTRx = RTQTb. If
rank A = n, R is nonsingular, so that Rx = QTb, and back substitution gives the
least squares solution x of (1.1). When A is large and sparse, techniques are used to
save memory and computation time[4].
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However, for very large and sparse problems, iterative methods become neces-
sary, among which the (preconditioned) Conjugate Gradient Least Squares (CGLS)
method[4] or its stabilized version LSQR[14] are most commonly used. This is based
on the observation that, in the normal equation (1.2), the coefficient matrix ATA
is symmetric, and also positive definite if rank A = n, so that it is natural to ap-
ply the conjugate gradient method to (1.2). The preferred implementation is the
following[10, 4].

Method 1.1. The CGLS(CGNR) method

Choose x0.
r0 = b − Ax0, p0 = s0 = ATr0, γ0 = ‖s0‖2

2

for i = 0, 1, 2, . . . until γi < ε

qi = Api

αi = γi/‖qi‖2
2

xi+1 = xi + αipi

ri+1 = ri − αiqi

si+1 = ATri+1

γi+1 = ‖si+1‖2
2

βi = γi+1/γi

pi+1 = si+1 + βipi

endfor

In [5], different versions of the CGLS and the LSQR method are compared.
Here, let A† be the generalized inverse of A ∈ Rm×n, rank A = r, and let σ1 and

σr be the largest and smallest (nonzero) singular value of A, respectively. Then, the
condition number of A is

κ(A) := ‖A‖2 ‖A†‖2 =
σ1

σr
,

and that of ATA is

κ(ATA) =
(

σ1

σr

)2

= κ(A)2.

The convergence speed of the CGLS method is known to depend on κ(ATA) =
κ(A)2, including the case when A is rank deficient[4]. Hence, the convergence of
the CGLS method may be slow for ill-conditioned problems, so that preconditioning
becomes necessary.

A simple preconditioning is diagonal scaling using the diagonal elements of ATA.
More sophisticated preconditionings are, for example, the incomplete Cholesky de-
composition [13], incomplete QR decompositions using incomplete modified Gram-
Schmidt methods e.g. [12, 17, 22] or incomplete Givens orthogonalizations[1, 15], and
the robust incomplete factorization (RIF)[3].

For instance, the incomplete QR decomposition A ∼ QR can be used to precon-
dition the normal equation (1.2) as

Ãx̃ = b̃,(1.4)

where Ã = R−TATAR−1, x̃ = Rx, b̃ = R−TATb, after which the CGLS method is
applied to equation (1.4).
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Even with preconditioning, the convergence behaviour may deteriorate for highly
ill-conditioned problems due to rounding errors, as will be observed in our numerical
experiments.

On the other hand, Zhang and Oyanagi[23] proposed applying the Orthomin(k)
method directly to the least squares problem (1.1), instead of treating the normal
equation (1.2). This was done by introducing a mapping matrix B ∈ Rn×m to
transform the problem to a system with a square coefficient matrix AB ∈ Rm×m,
and then applying the Krylov subspace method Orthomin(k) to this nonsymmetric
system.

In [11, 8, 9], we further extended their method by applying the GMRES method
instead of the Orthomin(k) method, and also introduced an alternative method of
treating the system with a coefficient matrix BA ∈ Rn×n, and gave a sufficient
condition concerning B for the methods to give the least squares solution without
breakdown for over-determined full rank systems.

Similar methods were also proposed by Vuik et al. in [21]. A related idea can
also be found in Tanabe[20] for linear stationary iterations.

In this paper, we will further extend the analysis to rank-deficient as well as
under-determined systems, and derive a sufficient condition concerning B for the gen-
eral case. We will also give some convergence analysis for the GMRES methods as
well as the CGLS method. Then, we propose using the robust incomplete factor-
ization of Benzi and Tuma[3] for B. Finally, we give numerical experiment results
for over-determined and under-determined systems, showing that the GMRES based
methods using RIF for B are faster than the CGLS or LSQR methods with RIF for
ill-conditioned problems.

The rest of the paper is organized as follows. In section 2, we briefly review the
GMRES method. In section 3, we present the AB- and BA-GMRES methods for
over- and under-determined least squares problems, and give a sufficient condition
for B. In section 4, we discuss the properties of the eigenvalues of AB and BA, and
give some convergence analysis of the GMRES methods as well as the preconditioned
CGLS method. In section 5, we propose using RIF for B. In section 6, numerical
experiment results are presented. Section 7 concludes the paper.

2. The GMRES method. The Generalized Minimal Residual (GMRES)
method[19] is an efficient and robust Krylov subspace iterative method for solving
systems of linear equations Ax = b, where A ∈ Rn×n is nonsingular and nonsymmet-
ric. Usually, the method is implemented with restarts in order to reduce storage and
computation time, as in the GMRES(k) method below. (k = ∞ corresponds to the
original full GMRES method.)

Method 2.1. The GMRES(k) method

Choose x0.
∗ r0 = b − Ax0

v1 = r0/‖r0‖2

for i = 1, 2, . . . , k
wi = Avi

for j = 1, 2, . . . , i
hj,i = (wi, vj)
wi = wi − hj,ivj

end for
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hi+1,i = ‖wi‖2

vi+1 = wi/hi+1,i

Find yi ∈ Ri which minimizes ‖ri‖2 =
∥∥ ‖r0‖2 ei − H̄i y

∥∥
2
.

if ‖ri‖2 < ε then
xi = x0 + [v1, . . . , vi]yi

stop
endif

endfor
x0 = xk

Go to ∗.
Here, H̄i = (hpq) ∈ R(i+1)×i and ei = (1, 0, . . . , 0)T ∈ Ri+1. The method is

designed to minimizes the L2 norm of the residual ‖rk‖2 for all xk = x0 +〈v1, · · · , vk〉
where 〈v1, · · · , vk〉 = 〈r0, Ar0, · · · , Ak−1r0〉, and (vi, vj) = δij . Here, 〈v1, · · · , vk〉
denotes the vector space spanned by the vectors v1, · · · , vk. The method is said to
break down when hi+1,i = 0.

In the following, we assume exact arithmetic.
When A is nonsingular, the GMRES method gives the exact solution for all

b ∈ Rn and x0 ∈ Rn within n steps[19].
When A is singular, the following holds[6], where R(A) denotes the range space

of A.
Theorem 2.1. Let A ∈ Rn×n. The GMRES method gives a solution to

min
x∈Rn

‖b − Ax‖2 without breakdown for arbitrary b ∈ Rn and x0 ∈ Rn if and only if

R(A) = R(AT).

3. Solution of least squares problems using the GMRES method. Con-
sider applying the GMRES method directly to the least squares problem (1.1). This
would require multiplying A ∈ Rm×n and the residual vector r0 ∈ Rm, which is not
feasible. In the following, we give two methods for overcoming this difficulty using a
matrix B ∈ Rn×m.

3.1. The AB-GMRES method. The first method is to use the Krylov sub-
space Ki(AB, r0) = 〈 r0, ABr0, . . . , (AB)i−1r0 〉 in Rm generated by AB ∈ Rm×m,
as in [23], and to solve the least squares problem min

z∈Rm
‖b − ABz‖2 using the GMRES

method.
First, we will give a theoretical justification for doing so. In the following, let

N (A) denote the null space of A, and V ⊥ the orthogonal complement of subspace V ,
respectively.

Theorem 3.1. min
x∈Rn

‖b − Ax‖2 = min
z∈Rm

‖b − ABz‖2 holds for all b ∈ Rm if

and only if R(A) = R(AB).
Proof. The sufficiency is obvious. The necessity is shown as follows.

R(A) �= R(AB) =⇒ R(A) ⊃ R(AB) =⇒ ∃b̃ ∈ R(A)\R(AB)
⇐⇒ ∃x̃ ∈ Rn; b̃ = Ax̃, b̃ �= ABz ∀z ∈ Rm

⇐⇒ 0 = min
x∈Rn

‖b̃ − Ax‖2 < min
z∈Rm

‖b̃ − ABz‖2.

Lemma 3.2. R(AAT) = R(A).
Proof. R(AAT) = {Ax |x ∈ R(AT)} =

{
Ax |x ∈ N (A)⊥

}
=

{
Ax |x ∈ N (A)⊥ ∪ N (A)

}
= R(A).

This gives the following.
Lemma 3.3. R(AT) = R(B) =⇒ R(A) = R(AB).
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For instance, if rankA = rank B = n, then, R(AT) = R(B) = Rn holds, and
hence R(A) = R(AB) holds.

Thus, assume R(A) = R(AB) holds. Then, for arbitrary x0 ∈ Rn, there exists a
z0 ∈ Rm such that Ax0 = ABz0, and r0 = b − Ax0 = r0 − ABz0. Hence, consider
solving the least squares problem

min
z∈Rm

‖b − ABz‖2 = min
x∈Rn

‖b − Ax‖2

using the GMRES(k) method, letting the initial approximate solution z = z0 such
that ABz0 = Ax0. Then, we have the following algorithm.

Method 3.1. The AB-GMRES(k) method

Choose x0 (Ax0 = ABz0).
∗ r0 = b − Ax0 (= b − ABz0 )

v1 = r0/‖r0‖2

for i = 1, 2, . . . , k
wi = ABvi

for j = 1, 2, . . . , i
hj,i = (wi, vj)
wi = wi − hj,ivj

end for
hi+1,i = ‖wi‖2

vi+1 = wi/hi+1,i

Find yi ∈ Ri which minimizes ‖ri‖2 =
∥∥ ‖r0‖2 ei − H̄i y

∥∥
2

xi = x0 + B[v1, . . . , vi]yi (⇐⇒ zi = z0 + [v1, . . . , vi]yi )
ri = b − Axi

if ‖ATri‖2 < ε stop
endfor
x0 = xk (⇐⇒ z0 = zk )
Go to ∗.
Note here that the convergence is assessed by explicitly computing ‖ATri‖2 since

‖ri‖2 does not necessary converge to 0 for the general inconsistent case (b /∈ R(A)).
The following hold.
Theorem 3.4. If R(AT) = R(B), then

R(AB) = R(BTAT) ⇐⇒ R(A) = R(BT) holds.
Proof. If R(AT) = R(B), Lemma 3.2 gives R(AB) = R(AAT) = R(A) and

R(BTAT) = R(BTB) = R(BT).
Let AB-GMRES method be the AB-GMRES(k) method with k = ∞ (no restarts).

Then, Theorems 2.1 and 3.4 give the following.
Theorem 3.5. If R(AT) = R(B) holds, then the AB-GMRES method determines

a least squares solution of min
x∈Rn

‖b − Ax‖2 for all b ∈ Rm and for all x0 ∈ Rn without

breakdown if and only if R(A) = R(BT).
As a corollary, we have the following sufficient condition.
Corollary 3.6. If R(AT) = R(B) and R(A) = R(BT), the AB-GMRES method

determines a least squares solution of min
x∈Rn

‖b − Ax‖2 for all b ∈ Rm and for all

x0 ∈ Rn without breakdown.
Note that the condition R(A) = R(BT) is satisfied if B can be expressed as

B = CAT(3.1)
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where C is a nonsingular matrix.
We note here that Calvetti, Lewis and Reichel[7] proposed a related method for

solving over-determined (m ≥ n) least squares problems using the GMRES method.
Their method is to append (m−n) zero column vectors to the right side of the matrix
A, to obtain a square singular matrix Ã = [A, 0] ∈ Rm×m, and applying the GMRES
method to

min
z∈Rm

‖b − Ãz‖2

(
= min

x∈Rn
‖b − Ax‖2

)
.

This corresponds to a special case of our AB-GMRES method with B = [ In, 0 ] ∈
Rn×m where In ∈ Rn×n is an identity matrix, i.e. Ã = AB.

In this case, if rank A = n, then R(AT) = R(B) = Rn holds, but R(A) = R(BT)
does not necessarily hold. Hence, from Theorem 3.5, their method may break down
before giving a least squares solution. In fact, in [16], Reichel and Ye propose a
breakdown-free GMRES method to circumvent this difficulty.

3.2. The BA-GMRES method. The other alternative is to use the same
matrix B ∈ Rn×m to map the initial residual vector r0 ∈ Rm to r̃0 = Br0 ∈ Rn,
and then to construct the Krylov subspace Ki(BA, r̃0) = 〈r̃0, BAr̃0, . . . , (BA)i−1r̃0〉
in Rn and to solve the least squares problem min

x∈Rn
‖Bb − BAx‖2 using the GMRES

method.
First, we will give a theoretical justification for doing so.
Theorem 3.7.

‖b − Ax∗‖2 = min
x∈Rn

‖b − Ax‖2

and

‖Bb − BAx∗‖2 = min
x∈Rn

‖Bb − BAx‖2

are equivalent for all b ∈ Rm, if and only if R(A) = R(BTBA).
Proof. Note the following.

‖b − Ax∗‖2 = min
x∈Rn

‖b − Ax‖2 ⇐⇒ AT(b − Ax∗) = 0.

‖Bb − BAx∗‖2 = min
x∈Rn

‖Bb − BAx‖2 ⇐⇒ (BA)TB(b − Ax∗) = 0

⇐⇒ ATBTB(b − Ax∗) = 0 .

Then, note that AT(b−Ax∗) = 0 is equivalent to ATBTB(b−Ax∗) = 0 for all b ∈ Rm,
if and only if N (AT) = N (ATBTB), which is equivalent to R(A) = R(BTBA).

Lemma 3.8. R(A) = R(BT) =⇒ R(BA) = R(B).
Proof. R(A) = R(BT) =⇒ R(BA) = R(BBT) = R(B) from Lemma 3.2.
Lemma 3.9. R(BA) = R(B) =⇒ R(BTBA) = R(BT).
Proof. R(BTB) = R(BT).
Lemma 3.10. R(A) = R(BT) =⇒ R(A) = R(BTBA).
Proof. From Lemmas 3.8 and 3.9, R(A) = R(BT) =⇒ R(BA) = R(B)

=⇒ R(BTBA) = R(BT) = R(A).
The following theorem also holds1[9].

1This theorem is due to Professor Masaaki Sugihara.
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Theorem 3.11. For all b ∈ Rm, the equation BAx = Bb has a solution, and
the solution attains min

x∈Rn
‖b − Ax‖2, if and only if R(A) = R(BT).

Proof. (=⇒) First, for all b ∈ Rm, BAx = Bb has a solution if and only if

R(BA) = R(B).(3.2)

Next, let the equation BAx = Bb have a solution, and the solution attain
min

x∈Rn
‖b − Ax‖2. That is, for all b ∈ Rm, if B(b−Ax) = 0, then AT(b−Ax) = 0, if

and only if

N (B) ⊆ N (AT).

This is equivalent to

R(A) ⊆ R(BT).(3.3)

Noting that

rank BA ≤ min{rankA, rank B},

that is

dimR(BA) ≤ min{dimR(B),dimR(A)},

(3.2) gives dimR(B) ≤ dimR(A). This is equivalent to dimR(BT) ≤ dimR(A), and
together with (3.3) gives R(A) = R(BT).

(⇐=)

R(A) = R(BT) =⇒ R(BA) = R(BBT) = R(B),

and

R(A) = R(BT) =⇒ R(A) ⊆ R(BT).

For instance, if rank A = rank B = m, then R(A) = R(BT) = Rm holds, and
hence R(A) = R(BTBA) holds.

Thus, assume R(A) = R(BTBA) holds, and apply the GMRES(k) method to the
least squares problem min

x∈Rn
‖Bb − BAx‖2, which gives the following algorithm.

Method 3.2. The BA-GMRES(k) method

Choose x0.
∗ r̃0 = B(b − Ax0)

v1 = r̃0/‖r̃0‖2

for i = 1, 2, . . . , k
wi = BAvi

for j = 1, 2, . . . , i
hj,i = (wi, vj)
wi = wi − hj,ivj

end for
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hi+1,i = ‖wi‖2

vi+1 = wi/hi+1,i

Find yi ∈ Ri which minimizes ‖r̃i‖2 =
∥∥ ‖r̃0‖2 ei − H̄i y

∥∥
2

xi = x0 + [v1, . . . , vi]yi

ri = b − Axi

if ‖ATri‖2 < ε stop
endfor
x0 = xk

Go to ∗.
Here, r̃i = Bri.
Similarly to Theorem 3.4, the following holds.
Theorem 3.12. If R(A) = R(BT), then

R(BA) = R(ATBT) ⇐⇒ R(AT) = R(B) holds.
Proof. If R(A) = R(BT) holds, Lemma 3.2 gives

R(BA) = R(BBT) = R(B) and R(ATBT) = R(ATA) = R(AT).
Let BA-GMRES method be the BA-GMRES(k) method with k = ∞ (no restarts).

Then, Theorems 2.1 and 3.12 give the following.
Theorem 3.13. If R(A) = R(BT) holds, then the BA-GMRES method deter-

mines a least squares solution of min
x∈Rn

‖b − Ax‖2 for all b ∈ Rm and for all x0 ∈ Rn

without breakdown if and only if R(AT) = R(B).
As a corollary, we have the following sufficient condition.
Corollary 3.14. If R(A) = R(BT) and R(AT) = R(B), the BA-GMRES

method determines a least squares solution of min
x∈Rn

‖b − Ax‖2 for all b ∈ Rm and for

all x0 ∈ Rn without breakdown.
We note here that Reichel and Ye[16] proposed a related method for solving

under-determined (m ≤ n) least squares problems using the GMRES method. Their
method is to append (n − m) zero row vectors to the bottom of the matrix A, to
obtain a square singular matrix

Ã =
[

A
0

]
∈ Rn×n

and let

b̃ =
[

b
0

]
∈ Rn

and apply the GMRES method to min
x∈Rn

‖b̃ − Ãx‖2.

This corresponds to a special case of our BA-GMRES method with

B =
[

Im
0

]
∈ Rn×m

where Im ∈ Rm×m is an identity matrix, i.e. Ã = BA and b̃ = Bb.
Thus, in this case, if rank A = m, then R(A) = R(BT) = Rm holds, but R(AT) =

R(B) does not necessarily hold. Hence, from Theorem 3.13, their method may break
down before giving a least squares solution. In fact, in [16], Reichel and Ye propose
a breakdown-free GMRES to circumvent this difficulty.
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3.3. Summary on condition for B. Summing up the above, for the general
case rank A ≤ min(m,n), including the rank deficient case, the following holds. If the
condition:

R(A) = R(BT), R(AT) = R(B)(3.4)

is satisfied, then from Corollaries 3.6 and 3.14, the AB-GMRES method and the BA-
GMRES method determine a least squares solution of min

x∈Rn
‖b − Ax‖2 for all b ∈ Rm

and for all x0 ∈ Rn without breakdown.
The condition (3.4) is satisfied if B = αAT, where 0 �= α ∈ R.

Next, consider the full rank case: rank A = min(m,n).
First, consider the over-determined case: m ≥ n = rank A. Let

B = CAT,(3.5)

where C ∈ Rn×n is an arbitrary nonsingular matrix. Then, the following holds.
B = CAT, C ∈ Rn×n : nonsingular

�
BT = ACT, CT : nonsingular

⇓
R(A) = R(BT).

Hence,

n = rank AT = rank A = rank BT = rank B

gives

R(AT) = R(B) = Rn.

Since AB ∈ Rm×m, BA ∈ Rn×n, with m ≥ n, the amount of computation per
iteration is less for the BA-GMRES method compared to the AB-GMRES method
This is because the BA-GMRES works in a space with smaller dimension, so that
the amount of computation for the modified Gram-Schmidt procedure is less. If
rank A = n, ATA and diag(ATA) are nonsingular. Hence, a simple example for C is

C := {diag(ATA)}−1,(3.6)

i.e. B = {diag(ATA)}−1AT, as in [23].

Next, for the full rank under-determined case; rankA = m ≤ n, let

B = ATC,(3.7)

where C ∈ Rm×m is an arbitrary nonsingular matrix. Then, the following holds for
B, AT ∈ Rn×m.

B = ATC, C ∈ Rm×m : nonsingular
⇓

R(AT) = R(B).
Hence, from

m = rank A = rankAT = rank B = rank BT,
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R(A) = R(BT) = Rm

also holds.
Note here that, since AB ∈ Rm×m, BA ∈ Rn×n, m ≤ n, the amount of compu-

tation per iteration is less for the AB-GMRES method compared to the BA-GMRES
method. If rank A = m, AAT and diag(AAT) are nonsingular. Hence, a simple
example for C is

C := {diag(AAT)}−1,(3.8)

i.e. B = AT{diag(AAT)}−1.
Note also that when rank A = m,R(A) = Rm � b, so that

min
x∈Rn

‖b − Ax‖2 = min
z∈Rm

‖b − ABz‖2 = min
z∈Rm

‖b − AATCz‖2 = 0.

Hence, the AB-GMRES method with B = ATC gives the minimum norm least squares
solution x∗ = Bz∗ = AT(Cz∗) of (1.1), since AAT(Cz∗) = b.

4. Convergence analysis. Next, we will analyze the convergence of the AB-
GMRES method and the BA-GMRES method2.

4.1. Over-determined case. First, we will consider the over-determined case
m ≥ n with B := CAT as in (3.5), where C ∈ Rn×n is restricted to be symmetric
and positive-definite.

Theorem 4.1. Let A ∈ Rm×n, m ≥ n and B := CAT where C ∈ Rn×n is
symmetric and positive-definite. Let the singular values of Ã := AC

1
2 be σi(1 ≤ i ≤ n).

Then, σi
2 (1 ≤ i ≤ n) are eigenvalues of AB and BA. If m > n, all the other

eigenvalues of AB are 0.
Proof. Let Ã := AC

1
2 = UΣV T be the singular decomposition of Ã. Here,

U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices, and

Σ =

⎡⎢⎢⎢⎢⎢⎣
σ1 0...

σn

0

⎤⎥⎥⎥⎥⎥⎦ ∈ Rm×n,

where σ1 ≥ . . . ≥ σn ≥ 0 are the singular values of Ã. Then,

AB = ACAT = Ã ÃT = UΣΣTUT,(4.1)

BA = CATA = C
1
2 ÃTÃC− 1

2 = C
1
2 V ΣTΣ(C

1
2 V )−1.(4.2)

Note that AB is symmetric. It is also positive definite if rank A = n.
If rank A = n, then C := {diag(ATA)}−1 in the example in (3.6) is symmetric

positive-definite. Also the C := (LDLT)−1 for the RIF preconditioner introduced in
Section 5 is also symmetric positive-definite.

2We would like to thank Professor Michael Eiermann for discussions which lead to the following
analysis.
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Now note the following theorem. (See, for instance, [18].)
Theorem 4.2. Assume A′ ∈ Rn×n is diagonalizable and let A′ = XΛX−1 where

Λ = diag{λ1, λ2, . . . , λn} and λ1 ≥ λ2 ≥ · · · ≥ λn > 0.
Then, the residual norm achieved by the k-th step of the GMRES applied to A′x′ =

b′ satisfies

‖r′
m‖2 ≤ κ2(X)ε(k)‖r′

0‖2

where κ2(X) = ‖X‖2‖X−1‖2 and

ε(k) = min
pk∈Qk

max
i=1,...,n

|pk(λi)| ≤ 2

[√
κ(A′) − 1√
κ(A′) + 1

]k

where Qk := {pk | pk(x) : polynomial of x with degree ≤ k, pk(0) = 1} and

κ(A′) =
λ1

λn
.

First, consider the AB-GMRES method. Let U = [u1, . . . , um]. Note that
ABui = σi

2ui (i = 1, . . . , n), ABui = 0 (i = n + 1, . . . , m), so that R(AB) =
R(A) = span{u1, . . . , un} and N (AB) = R(AB)⊥ = R(A)⊥ = span{un+1, . . . , um}.
Let

r0 = b − Ax0 =
m∑

i=1

ρiui .(4.3)

The k-th residual vector rk = b − Axk satisfies

‖rk‖2 = min
ζ∈Kk(AB,r0)

‖b − AB(z0 + ζ)‖2 = min
pk∈Qk

‖pk(AB)r0‖2 .

Note from (4.1) that

pk(AB) = Upk(ΣΣT)UT =
n∑

i=1

pk(σi
2)uiui

T + pk(0)
m∑

i=n+1

uiui
T.

Hence, (4.3) gives

pk(AB)r0 =
n∑

i=1

ρi pk(σi
2)ui + pk(0)

m∑
i=n+1

ρiui.

Hence, the norm of the R(A)-component of the residual is given by

‖rk|R(A)‖2
2 = min

pk∈Qk

n∑
i=1

ρi
2{pk(σi

2)}2

where

‖r0|R(A)‖2
2 =

n∑
i=1

ρi
2 .
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Thus,

‖rk|R(A)‖2

‖r0|R(A)‖2
≤ min

pk∈Qk

max
1≤i≤n

|pk(σi
2)|

≤ 2
[√

κ − 1√
κ + 1

]k

= 2
(

σ1 − σn

σ1 + σn

)k

where κ =
(

σ1

σn

)2

. Here we have assumed σn > 0, i.e. rank A = n.

Thus, we have the following under the same assumptions and notations as in
Theorem 4.1.

Theorem 4.3. The residual r = b−Ax achieved by the k-th step of AB-GMRES
satisfies

‖rk|R(A)‖2 ≤ 2
(

σ1 − σn

σ1 + σn

)k

‖r0|R(A)‖2.

Next, consider the BA-GMRES method. In Theorem 4.2, let A′ = BA, b′ = Bb,
and x′ = x. Then, we have r′ = Br = CATr, λi = σi

2 (i = 1, . . . , n), X =

C
1
2 V, κ2(X) =

√
κ(C) where κ(C) =

λmax(C)
λmin(C)

, κ(A′) = κ(BA) =
(

σ1

σn

)2

,√
κ(A′) − 1√
κ(A′) + 1

=
σ1 − σn

σ1 + σn
.

Thus, we have the following under the same assumptions and notations as in
Theorem 4.1.

Theorem 4.4. The residual r = b − Ax achieved by the k-th step of the BA-
GMRES method satisfies

‖Brk‖2 = ‖CATrk‖ ≤ 2
√

κ(C)
(

σ1 − σn

σ1 + σn

)k

‖Br0‖2.

Next, we turn to the CGLS method. Consider a symmetric positive-definite
preconditioner matrix C = (L̃L̃T)−1 ∈ Rn×n. Here, C may be based on an incomplete
factorization LDLT ∼ ATA, L̃ = LD

1
2 as in the robust incomplete factorization

(RIF). For the diagonal scaling, we have diag(ATA) ∼ ATA, L̃ = (diag(ATA))
1
2 .

Then, the natural way to precondition the CGLS(CGNR) method of (1.1) or the
mathematically equivalent LSQR method, is to apply the CG method to

A′x′ = b′(4.4)

where A′ = L̃−1ATAL̃−T is symmetric positive definite, x′ = L̃Tx and b = L̃−1ATb.
Note the following theorem. (See e.g. [18].)
Theorem 4.5. Let xk be the k-th iterate of the CG method applied to A′x′ = b′.

Then,

‖e′
k‖A′ ≤ 2

{√
κ(A′) − 1√
κ(A′) + 1

}k

‖e′
0‖A′
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where e′
k = x′

∗ − x′
k, x′

∗ = A′−1
b′ and κ(A′) =

λmax(A′)
λmin(A′)

.

Since (L̃T)−1A′(L̃T) = CATA = BA, λi(A′) = λi(BA) = σi
2 (i = 1, . . . , n).

Hence, κ(A′) =
(

σ1

σn

)2

, and

√
κ(A′) − 1√
κ(A′) + 1

=
σ1 − σn

σ1 + σn
.

Note also that

‖e′
k‖A′ = ‖ek‖ATA = ‖ATrk‖(ATA)−1 ,

where ek = L̃−Te′
k, ek = (ATA)−1ATrk, rk = b − Axk.

Hence, we have the following under the same assumptions and notations as in
Theorem 4.1.

Theorem 4.6. The residual r = b − Ax of the k-th step of the preconditioned
CGLS (CG applied to (4.4) ) satisfies

‖ATrk‖(ATA)−1 = ‖ek‖ATA ≤ 2
(

σ1 − σn

σ1 + σn

)k

‖ATr0‖(ATA)−1 .

From the above analysis, we may expect that the AB-GMRES, BA-GMRES and
the preconditioned CGLS methods exhibit similar convergence behaviours for the
over-determined case.

4.2. Under-determined case. Similarly, consider the under-determined case
rank A = m ≤ n with B = ATC as in (3.7), where C ∈ Rm×m is restricted to be
symmetric and positive-definite. The following holds.

Theorem 4.7.

Let A ∈ Rm×n, m ≤ n, where B := ATC and C ∈ Rm×m is symmetric and positive-
definite. Let the singular values of Ã := C

1
2 A be σi(1 ≤ i ≤ m). Then, σi

2(1 ≤ i ≤ m)
are the eigenvalues of AB and BA. If m < n, all the other eigenvalues of BA are 0.

Proof. Let Ã := C
1
2 A = UΣV T be the singular value decomposition of Ã. Here,

U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices, and

Σ =

⎡⎢⎣ σ1 0...
σm

⎤⎥⎦ ∈ Rm×n,

where σ1 ≥ . . . ≥ σm ≥ 0 are the singular values of Ã.
Then,

AB = AATC = C− 1
2 Ã ÃTC

1
2 = C− 1

2 UΣΣT(C− 1
2 U)−1,

BA = ATCA = ÃTÃ = V ΣTΣV T.

First, consider the AB-GMRES method. In Theorem 4.2, let A′ = AB, b′ =
b, x′ = z. Then we have r′ = b′−A′x′ = b−ABz = r, λi = σi

2 (i = 1, . . . , m), X =

C− 1
2 U, κ2(X) =

√
κ(C) where κ(C) =

λmax(C)
λmin(C)

, κ(A′) = κ(AB) =
(

σ1

σm

)2

.

Thus, we have the following theorem under the same assumptions and notations
as in Theorem 4.7.
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Theorem 4.8. The residual r = b − Ax achieved by the k-th step of the AB-
GMRES method satisfies

‖rk‖2 ≤ 2
√

κ(C)
(

σ1 − σm

σ1 + σm

)k

‖r0‖2.

Next, consider the BA-GMRES method. Note that BA = ATCA is symmetric.
Note BAvi = σi

2vi (i = 1, . . . , m) and BAvi = 0 (i = m + 1, . . . , n), so that
R(BA) = R(B) = R(AT) = span{v1, . . . , vm} and N (BA) = R(BA)⊥ = R(B)⊥ =
span{vm+1, . . . , vn}.

Let Br0 =
n∑

i=1

ρivi ∈ Rm. Then,

pk(BA)Br0 =
m∑

i=1

ρipk(σi
2)vi + pk(0)

n∑
i=m+1

ρivi.

The k-th iterate of the BA-GMRES method satisfies

‖Brk‖2 = min
ξ∈Kk(BA,Br0)

‖Bv − BA(x0 + ξ)‖2 = min
pk∈Qk

‖pk(BA)Br0‖2.

Hence,

‖Brk|R(B)‖2
2 = min

pk∈Qk

m∑
i=1

ρi
2pk(σi

2)2,

‖Br0|R(B)‖2
2 =

n∑
i=1

ρi
2,

so that

‖Brk|R(B)‖2

‖Br0|R(B)‖2
≤ min

pk∈Qk

max
1≤i≤m

|pk(σi
2)|

≤ 2
[√

κ − 1√
κ + 1

]k

= 2
(

σ1 − σm

σ1 + σm

)k

(4.5)

where κ =
(

σ1

σm

)2

, where we assume σm > 0 (rankA = m).

Thus, we have the following theorem under the same assumptions and notations
as in Theorem 4.7.

Theorem 4.9. The residual r = b−Ax achieved by the k-th step of BA-GMRES
satisfies

‖Brk|R(B)‖2 ≤ 2
(

σ1 − σm

σ1 + σm

)k

‖Br0|R(B)‖2.
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Next, we turn to the CGLS(CGNE) method.
Consider a symmetric positive definite preconditioning matrix C = (L̃L̃T)−1 ∈

Rm×m, where L̃ = LD
1
2 , L̃L̃T = LDLT ∼ AAT as in the RIF method, or L̃ =

(diag(AAT))
1
2 in the diagonal scaling.

Then, one can precondition AATy = b as

A′y′ = b′(4.6)

where A′ = L̃−1AATL̃−T, y′ = L̃Ty, b′ = L̃−1b, r′ = L̃−1r.
Since L̃A′L̃−1 = AATC = AB, λi(A′) = λi(AB) = σi

2 (i = 1, . . . , m).
From Theorem 4.5, we have the following theorem under the same assumptions

and notations as in Theorem 4.7.
Theorem 4.10. The residual r = b−AATy of the k-th step of the preconditioned

CGLS(CGNE) method (CG applied to (4.6) ) satisfies

‖rk‖(AAT)−1 = ‖ek‖AAT ≤ 2
(

σ1 − σm

σ1 + σm

)k

‖r0‖(AAT)−1 .

From the above analyses, we may expect that the AB-GMRES, BA-GMRES and
the preconditioned CGLS(CGNE) methods exhibit similar convergence behaviours for
the under-determined case also.

5. The choice of B. Besides satisfying the conditions R(A) = R(BT) and
R(AT) = R(B), it is desirable that B satisfies AB ≈ Im or BA ≈ In, in order to
speed up the convergence.

Simple candidates, as mentioned before, are to take C := {diag(ATA)}−1 and
B = CAT when m ≥ n = rankA, and to take C := {diag(AAT)}−1 and B = ATC
when rank A = m ≤ n.

More sophisticated preconditioners based on the incomplete QR decompositions
of A may be considered. That is, A = QR+E, where Q ∈ Rm×n is an (approximately)
orthogonal matrix, R ∈ Rn×n is an upper triangular matrix, and E is the error matrix.

Usually, the matrix R is used as a preconditioner for the CGLS method, as men-
tioned in (1.4). Similarly, we may let B = R−1QT for the AB-GMRES(k) and BA-
GMRES(k) methods, for instance when m ≥ n, and in the case of the BA-GMRES(k)
method, we may apply the GMRES(k) method to R−1QTAx = R−1QTb.

There are many approaches to construct the incomplete QR decomposition of
the matrix A, e.g., the incomplete modified Gram-Schmidt method [12, 17, 22], the
incomplete Householder reflection, and the incomplete Givens rotation [1, 15]. In
[11, 8, 9], the IMGS(l) method, an approximation of the modified Gram-Schmidt
method, was applied to the CGLS, AB-GMRES(k) and BA-GMRES(k) methods.

The robust incomplete factorization (RIF) is an attractive method with low mem-
ory requirements[2], and was also applied to the CGLS method for large sparse least
squares problems[3]). The method gives an upper triangular matrix Z, a lower trian-
gular matrix L, and a diagonal matrix D = diag(d) such that

ATA ≈ LDLT,

and

ATA ≈ Z−TDZ−1,

where A ∈ Rm×n with m ≥ n = rank A.
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The method is based on a ATA-orthogonalization procedure, and will never break-
down. Moreover, by using a drop tolerance τ , the number of fill-ins of the matrices
Z and L can be controlled. For 1 ≤ j ≤ n, let zj , ej and dj denote the jth column
vector of the matrix Z, the jth unit basis vector and the jth entry of the vector d,
respectively. The method is as follows.

Method 5.1. The Robust Incomplete Factorization (RIF) Method
Let Z = L = [e1, e2, . . . , en]
For j = 1, . . . , n Do

Compute uj = Azj

Compute dj = (uj ,uj)
For i = j + 1, . . . , n Do:

Compute vi = Aei

Compute θij = (vi,uj)
dj

IF θij > τ
Store L(i, j) = θij

EndIF
Compute zi = zi − θijzj

Drop the elements in zi which are smaller than τ
EndDo

EndDo

If τ = 0 in the above method, the complete factorization of the matrix ATA is
obtained, so that ATA = LDLT = Z−TDZ−1 where Z−1 = LT. If we let L̃ = LD1/2,
we have ATA = L̃L̃T, which means that the RIF method is equivalent to the Cholesky
factorization for the coefficient matrix of the normal equation.

The drop tolerance parameter τ plays an important role in the RIF method, since
it determines not only how the sparse matrices L and Z approximate the correspond-
ing complete factorization matrices, but also the amount of computation and storage
required. The relative drop tolerance can also be used by replacing τ with τ‖ai‖2,
where ai is the i-th column of A [3]. In the numerical experiments in Section 6, we
will use the relative drop tolerance.

The matrix LDLT is guaranteed to be positive definite when A is full column
rank, since dj > 0 for all 1 ≤ j ≤ n, and the matrix L is a sparse lower triangular
matrix with all the diagonal elements being one.

Therefore, let C := {LDLT}−1 and B = CAT when m ≥ n = rank A. Since the
matrix C is nonsingular, B satisfies the conditions R(A) = R(BT) and R(AT) = R(B)
(cf. Section 3.3 and Theorem 3.13). The approximation BA ≈ In improves as τ
approaches 0.

Alternatively, let C := ZD−1ZT and B = CAT. Then, C and B satisfy the above
conditions, respectively.

In the following numerical experiments, we used the latter: C := ZD−1ZT.
For the under-determined case where rank A = m ≤ n, we can also construct

the matrices Ẑ, L̂ and D̂ using the RIF method, where AAT ≈ L̂D̂L̂T and AAT ≈
Ẑ−TD̂Ẑ−1. Then, let B = ATC where C := {L̂D̂L̂T}−1 or C := ẐD̂−1ẐT. B satisfies
the conditions in Theorem 3.5 and AB ≈ Im.

6. Numerical Experiments. Finally, we present numerical experiment results
to show the performance of the AB-GMRES and BA-GMRES methods. We compare
them to the preconditioned CGLS [4] (also called CGNR in [18]) and LSQR [14]
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method for over-determined problems, and also compare them to the preconditioned
CGNE [18] and LSQR method for under-determined problems.

In the experiments, we first generated the test matrices by the MATLAB rou-
tine “sprandn”, so that we could specify the density (the ratio of non-zero elements)
and the condition number of the matrices. The value of the non-zero elements are
generated by a random number generator following the normal distribution and the
pattern of the non-zero elements are also determined by a random number generator.

All the computations were run on the Dell Precision 690 where the CPU is 3.00
GHz and the memory is 16 GB, and the programming language and compiling envi-
ronment was GNU C/C++ 3.4.3.

6.1. Over-determined case. First, consider the over-determined least squares
problem

min
x∈Rn

‖b − Ax‖2, A ∈ Rm×n (m ≥ n).

We test the following matrices with m = 30, 000, n = 3, 000 and density 0.1%.
The condition number (denoted by κ(A)) of these matrices are given in Table 6.1.

Table 6.1

The condition number of the test matrices.

Name κ(A)
RANDL1 1.9 × 10
RANDL2 1.6 × 102

RANDL3 1.3 × 103

RANDL4 2.0 × 104

RANDL5 1.3 × 105

RANDL6 1.3 × 106

RANDL7 1.3 × 107

We set the initial approximate solution to x0 = 0, and the convergence crite-
rion was ‖ATr‖2/‖ATb‖2 < 10−6, where r = b − Ax is the residual. For the right
hand vector b, each of its components were generated by a random number generator
following the normal distribution, such that b ∈ Rm but b /∈ R(A).

In the experiments, we compare the CGLS (based on Method 1.1), LSQR, re-
orthogonalized CGLS, and the BA-GMRES methods with the diagonal scaling pre-
conditioner and the RIF preconditioner. The methods are denoted by CGLS-diag.,
LSQR-diag., RCGLS-diag., BA-GMRES-diag. and CGLS-RIF, LSQR-RIF, RCGLS-
RIF, BA-GMRES-RIF, respectively. We let B = CAT for the BA-GMRES methods
where C = {diag(ATA)}−1 for the diagonal scaling and C = ZD−1ZT for the RIF.
In the reorthogonalized CGLS, the (preconditioned) residual vectors were reorthogo-
nalized with respect to all the previous (preconditioned) residual vectors.

We compared with the reorthogonalized CGLS, since it was observed that the
convergence of the CGLS and LSQR methods deteriorate as the problem becomes
ill-conditioned.

For the BA-GMRES method, ‖Br‖2 = ‖CATr‖2 is readily available in the GM-
RES process, so it is practical to use it to judge convergence. However, in the ex-
periments below, we have compared all the methods by ‖ATr‖2/‖ATb‖2, and the
extra time to compute ‖ATr‖2 was neglected in the CPU times for the BA-GMRES
method.
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First, Figure 6.1 shows ‖ATr‖2/‖ATb‖2 vs. the number of iterations for the full
AB-GMRES and BA-GMRES methods with diagonal scaling and the RIF precondi-
tioning for the problem RANDL3. Here the relative drop tolerance for the RIF was
set to the optimal value τ = 0.8.
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Fig. 6.1. Comparison of AB-GMRES method and BA-GMRES method (RANDL3, τ = 0.8 for
RIF).

The full AB-GMRES and BA-GMRES methods show similar convergence be-
haviours with both the diagonal scaling and the RIF preconditioner. This is in accor-
dance with the convergence analysis in Section 4.1.

However, as mentioned in Section 3.3, the amount of computation per iteration
for the BA-GMRES is less than the AB-GMRES method when m ≥ n. Therefore,
we compare the BA-GMRES method with the preconditioned CGLS, LSQR and re-
orthogonalized CGLS methods in the following experiments.

Next, we show the effect of changing the restart period k for the BA-GMRES(k)
method with the RIF preconditioner for the problems RANDL5, RANDL6 and
RANDL7 with optimal τ for each in Table 6.2.

In Table 6.2 and the tables below, ∗ indicates the fastest for each problem. In these
examples, both the number of iterations and the computation time were minimum
for the full GMRES method without restarts, though they require more storage to
store the orthogonal vectors. Hence, in the experiments below, we adopt the full
BA-GMRES method.

Next, we focus on the choice of the optimal relative drop tolerance parameter τ
in the RIF preconditioner. Table 6.3 and Table 6.4 give the number of iterations and
total CPU time (the sum of the preconditioning time and iteration time) for each
method with different τ , for the problems RANDL3 and RANDL6, respectively. †
indicates the fastest for each method. For RANDL3, τ = 0.8 was optimal, whereas
for RANDL6, τ = 0.07 was optimal. The optimal τ was the same for the four
methods. The optimal parameter τ for the other problems are given in Table 6.5. In
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Table 6.2

The effect of the restart period k in the BA-GMRES(k)-RIF method (over-determined problem).

RANDL5 k 100 140 180 220 260 ≥ 295
(τ = 0.8) iter 755 668 587 498 453 295

time 25.05 24.81 24.14 22.62 22.15 ∗14.27
RANDL6 k 160 200 240 280 300 ≥ 318
(τ = 0.07) iter 2,470 2,085 1,856 1,311 599 318

time 144.68 130.08 121.72 92.88 48.92 ∗26.73
RANDL7 k 200 280 320 340 360 ≥ 362
(τ = 0.02) iter 2,594 2,168 1,567 900 506 362

time 179.83 165.79 129.07 80.13 50.99 ∗37.26
k: restart period, iter: number of iterations, time: computation time (sec.).

Convergence criterion: ‖ATr‖2/‖ATb‖2 < 10−6.

the experiments below, we will use these optimal values for τ for each problem.

Table 6.3

The effect of the RIF parameter τ for problem RANDL3.

τ 0.9 0.8 0.7 0.6 0.5 0
iter 83 72 77 65 67 1CGLS-RIF
time 5.39 ∗5.38 5.42 5.43 5.59 68.00
iter 83 73 78 66 68 1LSQR-RIF
time 5.39 ∗5.38 5.42 5.43 5.60 68.00
iter 79 70 73 64 66 1RCGLS-RIF
time 5.68 †5.62 5.69 5.63 5.76 67.99
iter 70 60 73 64 66 1BA-GMRES-RIF
time 5.54 †5.47 5.64 5.59 5.63 67.99

iter: number of iterations, time: computation time (sec.).
Convergence criterion: ‖ATr‖2/‖ATb‖2 < 10−6.

Table 6.4

The effect of the RIF parameter τ for problem RANDL6.

τ 0.09 0.08 0.07 0.06 0.05 0
iter 670 674 615 706 658 1CGLS-RIF
time 34.38 35.39 †33.67 38.17 37.31 60.00
iter 680 685 645 736 701 1LSQR-RIF
time 34.87 35.50 †34.15 37.21 37.41 60.00
iter 333 324 317 313 307 1RCGLS-RIF
time 27.19 27.00 †26.93 27.26 27.59 60.01
iter 335 325 318 315 309 1BA-GMRES-RIF
time 27.03 26.77 ∗26.73 27.16 27.45 60.01

iter: number of iterations, time: computation time (sec.).
Convergence criterion: ‖ATr‖2/‖ATb‖2 < 10−6.

When τ = 0, the ATA orthogonal factorization is complete and the iterative
methods act as direct methods and converges in only one iteration. Table 6.3 and
Table 6.4 show that the preconditioned Krylov subspace iterative methods are faster
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than this “direct method”.
Figures 6.2, 6.3, 6.4 and 6.5 show ‖ATr‖2/‖ATb‖2 vs. the number of iterations for

the CGLS, LSQR, reorthogonalized CGLS and BA-GMRES methods, with diagonal
scaling and RIF preconditioners, for the problems RANDL5 and RANDL6. τ for RIF
was set to the optimal value 0.8 and 0.07, respectively.
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Fig. 6.2. ‖AT
�‖2/‖AT

�‖2 vs. number of iterations (RANDL5, diagonal scaling).

The figures show that the CGLS and LSQR methods are slow to converge com-
pared to the BA-GMRES and reorthogonalized CGLS methods for these ill-conditioned
problems. This can be explained by the fact that the CGLS and LSQR methods rely
on three-term recurrence and suffer from loss of orthogonality due to rounding errors
especially for ill-conditioned problems, whereas the BA-GMRES and reorthogonalized
CGLS methods are more robust against loss of orthogonality because they perform
explicit orthogonalization by the modified Gram-Schmidt procedure and reorthogo-
nalization, respectively.

The BA-GMRES and the reorthogonalized CGLS show similar convergence be-
haviours. This is in accordance with the convergence analysis in Section 4.1, where we
obtained similar upper bounds for the BA-GMRES and the similarly preconditioned
CGLS in the absence of rounding errors.

The RIF preconditioning significantly improves convergence over the diagonal
scaling.

The BA-GMRES converges more smoothly compared to the reorthogonalized
CGLS.

In Table 6.5, we compare the methods for the problems in Table 6.1. The first row
in each cell gives the number of iterations required for convergence, and the second
row gives the total computation time in seconds. The value of the optimal relative
drop tolerance parameter τ for the RIF preconditioning is also indicated for each
problem.
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Fig. 6.3. ‖AT�‖2/‖AT�‖2 vs. number of iterations (RANDL5, RIF, τ = 0.8).
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Fig. 6.4. ‖AT
�‖2/‖AT

�‖2 vs. number of iterations (RANDL6, diagonal scaling).

For the problems RANDL1 to RANDL4, the CGLS or LSQR method with diag-
onal scaling were the fastest.

As the condition number increases, the number of iterations for CGLS (and its
stabilized version, LSQR) increases much more rapidly than the correspondingly pre-
conditioned BA-GMRES method.
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Fig. 6.5. ‖AT�‖2/‖AT�‖2 vs. number of iterations (RANDL6, RIF, τ = 0.07).

Table 6.5

Comparison of the iterative methods.

CGLS LSQR RCGLS BA-GMRES
-diag. -RIF -diag. -RIF -diag. -RIF -diag. -RIF

RANDL1 35 14 35 14 35 14 35 14
(τ = 0.5) ∗0.10 4.98 ∗0.10 4.98 0.16 4.99 0.14 4.99
RANDL2 214 21 214 21 208 21 193 21
(τ = 0.7) ∗0.61 5.10 ∗0.61 5.10 2.77 5.13 2.28 5.11
RANDL3 742 72 740 73 697 70 622 60
(τ = 0.8) 2.08 5.38 ∗2.07 5.38 26.30 5.62 20.70 5.47
RANDL4 1,147 85 1,154 85 1,062 84 1,069 82
(τ = 0.5) ∗3.22 6.38 3.38 6.38 59.35 7.17 59.41 6.62
RANDL5 4,897 470 5,064 401 1,521 305 1,522 299
(τ = 0.9) 13.74 ∗12.78 14.03 11.79 119.70 14.42 118.87 13.91
RANDL6 10,551 615 11,088 645 1,861 317 1,862 318
(τ = 0.07) 29.65 33.67 30.21 34.15 177.94 26.93 176.93 ∗26.73
RANDL7 32,143 1,951 35,034 2,443 1,914 371 1,899 362
(τ = 0.02) 89.93 102.28 91.31 128.40 195.63 40.07 183.90 ∗37.26

First row: number of iterations, second row: computation time (seconds).
Convergence criterion: ‖AT r‖2/‖AT b‖2 < 10−6.

For RANDL5, CGLS with RIF preconditioning is the fastest.

For the strongly ill-conditioned problems RANDL6 and RANDL7, the BA-GMRES
method with RIF requires far less iterations than the CGLS with RIF, so that it is the
fastest method with respect to computation time as well as the number of iterations.
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6.2. Under-determined problems. Next, we show numerical experiment re-
sults for the under-determined least squares problem

min
x∈Rn

‖b − Ax‖2, A ∈ Rm×n (m < n).

Here, we compare the AB-GMRES (BA-GMRES) methods with B = ATC where
C is obtained by diagonal scaling or RIF, with the corresponding preconditioned
CGNE, LSQR and reorthogonalized CGNE (RCGNE) methods.

The coefficient matrices A were obtained by transposing the matrices RANDLn
in Table 6.1 for the over-determined problems, and are denoted by RANDLnT. The
density and condition number of RANDLnT is the same as that of the corresponding
matrix RANDLn.

Since rankA = m < n, the systems are consistent. Hence, the right-hand side
vector b was given by b = Ax∗ where x∗ = (1, . . . , 1)T, and the initial approximate
solution was set to x0 = 0. Hence, the convergence of the methods were judged by
‖r‖2/‖b‖2 where r = b − Ax.

Note that for the AB-GMRES method, ‖r‖2 is available at each iteration without
extra computational cost.

Figure 6.6 shows ‖r‖2/‖b‖2 vs. the number of iterations for the full AB-GMRES
and BA-GMRES methods with diagonal scaling and RIF preconditioning, for the
problem RANDL3T. τ for RIF was set to the optimal value 0.8. In the figure, the AB-
GMRES and BA-GMRES methods show similar convergence behaviours, as predicted
in Section 4.2.
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Fig. 6.6. Comparison of GMRES-AB method and GMRES-BA method (RANDL3T, τ = 0.8
for RIF).

In the experiments below, we compare the AB-GMRES method with the CGNE,
LSQR and reorthogonalized CGNE methods. The reason why the AB-GMRES method
is used instead of the BA-GMRES method is because the former gives the minimum
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norm solution, and requires less computation per iteration when m < n. (See section
3.3.) The full AB-GMRES method without restart was used. Similar to the over-
determined systems, we chose the optimal τ for the RIF preconditioner for all the
problems.

Note that, although the CGNE guarantees to give the minimum norm least
squares solution, the LSQR does not. However, it was observed that the approximate
solutions converge to the same solution for both methods in the following numerical
experiments.

Figures 6.7, 6.8, 6.9 and 6.10 show the relative residual ‖r‖2/‖b‖2 vs. the number
of iterations for the different methods for the problems RANDL5T and RANDL6T. τ
for RIF was set to the optimal value 0.9 and 0.01, respectively. The figures show that
the AB-GMRES method converges faster than the corresponding CGNE and LSQR
methods, for diagonal scaling and RIF.

0 1000 2000 3000 4000 5000 6000 7000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

R
el

at
iv

e 
R

es
id

ua
l

CGNE−Diag.
LSQR−Diag.
RCGNE−Diag.
AB−GMRES−Diag.

Fig. 6.7. ‖�‖2/‖�‖2 vs. number of iterations (RANDL5T, diagonal scaling).

Table 6.6 compares the methods for under-determined systems RANDLnT. The
first row in each box gives the number of iterations required for convergence, and
the second row gives the total computation time in seconds. It is observed that
the AB-GMRES-RIF method is the fastest method for the ill-conditioned problems
RANDL6T and RANDL7T.

6.3. Required memory. One drawback of the GMRES based methods is that
they require increasingly more memory with the number of iterations or the restart-
ing cycle k, whereas the CG based methods (without reorthogonalization) require
constant memory. This is because the GMRES based methods require storing the
orthonormal vectors v1, . . . , vk in the modified Gram-Schmidt process, as well as the
Hessenberg matrix.

Table 6.7 shows the memory required other than the coefficient matrix A and the
preconditioner for each method. r, p, x, u, v, w, e and y are the intermediate vectors,
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Fig. 6.8. ‖�‖2/‖�‖2 vs. number of iterations (RANDL5T, RIF, τ = 0.9).
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Fig. 6.9. ‖�‖2/‖�‖2 vs. number of iterations (RANDL6T, diagonal scaling).

and V denotes the k orthonormal vectors in the modified Gram-Schmidt process. For
the LSQR method, we used the notation of variables according to [14].

If one can keep the number of iterations k of the GMRES type methods sufficiently
small compared to m or n with the use of an efficient preconditioner like RIF, they
may be faster compared to the CG type methods, and the memory required may not
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Fig. 6.10. ‖�‖2/‖�‖2 vs. number of iterations (RANDL6T, RIF, τ = 0.01).

Table 6.6

Comparison of the iterative methods.

CGNE LSQR RCGNE AB-GMRES
-diag. -RIF -diag. -RIF -diag. -RIF -diag. -RIF

RANDL1T 37 12 37 12 37 12 37 12
(τ = 0.4) ∗0.15 5.01 ∗0.15 5.02 0.23 5.02 0.17 5.01

RANDL2T 259 25 256 25 252 25 247 25
(τ = 0.7) ∗1.06 5.16 ∗1.06 5.16 4.22 5.17 3.75 5.17

RANDL3T 838 81 823 80 783 77 754 75
(τ = 0.8) ∗3.43 5.53 ∗3.43 5.53 33.87 5.81 30.56 5.67

RANDL4T 1,464 116 1,407 114 1,223 106 1,187 106
(τ = 0.5) 5.97 6.94 ∗5.96 6.94 79.67 7.45 73.67 7.21

RANDL5T 5,548 544 5,414 539 1,535 322 1,533 322
(τ = 0.9) 22.61 13.88 22.71 ∗13.86 123.80 15.58 121.58 15.11

RANDL6T 12,837 514 12,486 502 1,873 219 1,871 218
(τ = 0.01) 52.38 39.04 50.10 38.99 182.51 27.43 179.85 ∗26.99
RANDL7T 38,397 3,078 37,792 2,979 2,240 451 2,238 450
(τ = 0.04) 156.01 94.19 152.07 91.69 366.88 44.49 353.92 ∗43.76

First row: number of iterations, second row: computation time (seconds).
Convergence criterion: ‖r‖2/‖b‖2 < 10−6.

be prohibitive.

7. Conclusions. We proposed two methods for applying the GMRES method
to linear least squares problems with m × n coefficient matrix A, using an n × m
matrix B. The first method is to apply GMRES to min

z∈Rm
‖b − ABz‖2 (AB-GMRES
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Table 6.7

Intermediate memory required for each method for k iterations.

dim(m) dim(n) dim(k) total
CGLS r, Ap x, p, ATr 2m + 3n
CGNE r, Ap x, p, ATr 2m + 3n
LSQR u v, w, x m + 3n

AB-GMRES(k) V, w x y, e (k + 1)m + n + 2k + k2/2
BA-GMRES(k) V, w, x y, e (k + 2)n + 2k + k2/2

method), and the second method is to apply GMRES to min
x∈Rn

‖Bb − BAx‖2 (BA-

GMRES method).
Then, we derived a sufficient condition for B, such that the methods give a least

squares solution for arbitrary b and x0 without breakdown.
Next, we showed that, theoretically, one may expect similar convergence be-

haviours for the AB- and BA- GMRES methods as well as the corresponding CGLS
type methods.

Further, we proposed using the robust incomplete factorization (RIF) method for
B in the GMRES methods.

Numerical experiments on over-determined problems with full column rank showed
that the BA-GMRES method with the RIF preconditioner was faster than the RIF
preconditioned CGLS, LSQR and reorthogonalized CGLS methods, for ill-conditioned
problems.

For under-determined problems with full row rank, the AB-GMRES method with
RIF preconditioning was faster than the RIF preconditioned CGNE, LSQR and re-
orthogonalized CGNE methods, for ill-conditioned problems.
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