

NII Technical Report

Uniqueness of D-normal Proofs

Makoto Tatsuta

NII-2006-011E Sept. 2006

Uniqueness of D-normal Proofs

Makoto Tatsuta

National Institute of Informatics 2-1-2 Hitotsubashi, Tokyo 101-8430, JAPAN e-mail: tatsuta@nii.ac.jp

Abstract

This paper presents the notion of D-normal proofs, which is defined syntactically and gives one of the weakest condition for uniqueness of normal proofs. This paper proves the following results: (1) $\beta\eta D$ -normal proofs of a formula are unique. (2) A β -normal proof of a PNN-formula is D-normal. (3) A β -normal proof of a minimal formula in BCK logic is D-normal. These results give other proofs of uniqueness of $\beta\eta$ -normal proofs of a minimal formula, and uniqueness of $\beta\eta$ -normal proofs of a minimal formula in BCK logic.

1 Introduction

Number of normal proofs has been studied widely [2]. In this paper we will present the notion of D-normal proofs and discuss uniqueness of normal proofs using this notion.

We will present the notion of D-normal proofs, which is defined syntactically and gives sufficient condition for uniqueness of normal proofs. Several sufficient conditions for uniqueness of normal proofs such as the one-two property [2], balanced formulas [5], minimal formulas in BCK logic [3], provability with non-prime contraction [1] and the PNN condition [2] have been proposed. D-normality is one of the weakest condition in those conditions.

We will prove that D-normality condition is properly weaker than the PNN condition. The PNN condition was proposed recently and one of the weakest condition at that time. This gives another proof of uniqueness $\beta\eta$ -normal proofs of a PNN-formula.

The uniqueness of $\beta\eta$ -normal proofs of a minimal formula in BCK logic was a problem proposed by [4] and solved independently at almost the same time by Hirokawa [3] and the author [6]. The author used the notion of D-normal proofs for that purpose and proved that β -normal proofs of a minimal formula in BCK logic is D-normal.

Section 2 presents the notion of D-normal proofs and proves uniqueness of $\beta\eta D$ -normal proofs. Section 3 proves that a β -normal proof of a PNN-formula is D-normal and gives another proof of uniqueness of $\beta\eta$ -normal proofs of a PNN-formula. Section 4 states that a β -normal proof of a minimal formula in BCK logic is D-normal and proves uniqueness of $\beta\eta$ -normal proofs of a minimal formula in BCK logic.

2 D-normal proofs

We study constructive propositional logic with only implicational formulas in natural deduction style. Formulas are constructed by \rightarrow from propositional variables. The inference rules are as follows.

$$\frac{\stackrel{l}{A}}{\stackrel{\vdots}{\vdots}} \frac{B}{A \to B} (\to I)l \qquad \frac{A \to B \quad A}{B} (\to E)$$

For $(\rightarrow E)$, A is called a minor premise.

Definition 2.1. (Proof)

(1) A formula A itself is a proof.

¹This paper was written in 1999 in order to prepare the conference talk, whose proceedings are [8], and provides detailed descriptions of proofs given in the talk.

(2) If π is a proof, then l

$$\frac{\stackrel{A}{\vdots}}{\stackrel{B}{\underline{B}}} (\rightarrow I) \ l$$

is a proof, where B is the lowermost formula of π , l is a label which is not used in π , and

$$\stackrel{A}{\vdots}{\pi}$$

 $\stackrel{B}{B}$

is a proof obtained from π by replacing some uppermost occurrences of the formula A with A. (3) If π_1 and π_2 are proofs,

$$\frac{\begin{array}{ccc} \vdots \ \pi_1 & \vdots \ \pi_2 \\ A \xrightarrow{} B & A \\ \hline B & \end{array} (\rightarrow E)$$

is a proof, where $A \to B$ is the lowermost formula of π_1 and A is the lowermost formula of π_2 .

We often write a proof without the inference rule names $(\rightarrow I)$ and $(\rightarrow E)$.

The lowermost formula of a proof π is the conclusion of π and denoted by $\operatorname{Concl}(\pi)$. Uppermost formulas without labels of a proof π are assumptions of π and the set of assumptions of π is denoted by $\operatorname{Ass}(\pi)$. Uppermost formulas with labels of a proof π are discharged assumptions of π . A proof π is called closed if π has no assumptions. A proof π is called a proof of a formula A if $\operatorname{Concl}(\pi) = A$ and π is closed.

A proof π is a β -normal proof, if π does not include the following part for any A and B.

$$\frac{\stackrel{\vdots}{B}}{\stackrel{A \to B}{\xrightarrow{}}} \stackrel{(\to I)}{\stackrel{\vdots}{A}} \stackrel{\vdots}{\stackrel{(\to E)}{\xrightarrow{}}} (\to E)$$

A proof π is a η -normal proof, if π does not include the following part for any A and B.

$$\begin{array}{c} \stackrel{\vdots}{\underline{A \to B}} & l \\ \stackrel{A}{\underline{\to B}} & (\to E) \\ \hline \stackrel{B}{\underline{A \to B}} & (\to I) l \\ \vdots \end{array}$$

A proof π is a $\beta\eta$ -normal proof if π is a β -normal proof and an η -normal proof. For a formula A, core(A) is a variable having the rightmost variable occurrence in A.

Definition 2.2. (D-normal proof)

A proof π is a *D*-normal proof if the following condition holds.

• If there exists a form

$$\frac{\stackrel{k}{A}}{\stackrel{\vdots}{\underset{i}{\overset{c}{B} \to C}}} (\to I)l$$

in π and core(A) = core(B), then k = l holds.

A proof π is a $\beta\eta D$ -normal proof if π is a $\beta\eta$ -normal proof and a D-normal proof.

Theorem 2.3.

If a formula has $\beta \eta D$ -normal proofs π_1 and π_2 , then $\pi_1 = \pi_2$.

A formula is a *D*-normal formula, if every $\beta\eta$ -normal proof of *A* is a *D*-normal proof. Remark that $\beta\eta$ -normal proofs of a *D*-normal formula are the same. The rest of this section proves Theorem 2.3.

Definition 2.4.

The length $|\pi|$ of a proof π is defined as follows.

- 1. If π is a formula, then $|\pi| = 0$.
- 2. If π is

$$\frac{\stackrel{.}{\vdots} \pi_1}{\stackrel{.}{\underline{B}} A \to B} (\to I)$$

then $|\pi| = |\pi_1| + 1$.

3. If π is

$$\frac{\stackrel{\vdots}{\vdots} \pi_1 \quad \vdots \quad \pi_2}{B \quad A} \xrightarrow{A \to B \quad A} (\to E)$$

then $|\pi| = |\pi_1| + |\pi_2| + 1$.

Note that $|\pi|$ represents the number of inference rules used in π . For a part Σ of a proof π , $|\Sigma|$ is defined as the number of interence rules in Σ .

 $\operatorname{dis}(\pi)$ denotes the set of discharged assumptions of the proof π . $\operatorname{leaf}(\pi)$ denotes $\operatorname{Ass}(\pi) + \operatorname{dis}(\pi)$.

For an occurrence of a formula A in a proof π , we use the notation A^1 to denote that we think about the specific occurrence of A in π .

For a proof π and formula occurrences A^1 , B^1 in π , a thread from A^1 to B^1 is a sequence of formula occurrences in π satisfying the followings.

- The sequence begins with A^1 and ends with B^1 .
- Every formula occurrence in the sequence except the last is an upper formula occurrence of an inference, and is immediately followed by the lower formula occurrence of this inference.

For a formula A in a β -normal proof such that the inference rule for A is not $(\rightarrow I)$, the main formula of A (denoted by MainFormula(A)) is defined in the following way.

- 1. If A is an assumption or a discharged assumption, MainFormula(A) is A itself.
- 2. If A is inferred by $(\rightarrow E)$ and the part above A of π is

$$\frac{\begin{array}{ccc} \vdots \ \pi_1 & \vdots \\ \underline{B \to A} & \underline{B} \\ \hline A \end{array}$$

then MainFormula(A) = MainFormula($B \rightarrow A$). Note that the last inference of π_1 is not ($\rightarrow I$) since π is a β -normal proof.

The main thread of a proof π is the thread from MainFormula(Concl(π)) to Concl(π). We denote the set of formula occurrences in the main thread of π by thread(π).

A thread is a path in a proof tree.

Definition 2.5. (Initial Subproof)

A subproof Π of a proof π is an *initial subproof* of π if the followings hold:

- Their conclusions are the same.
- If A^1 is in π and Π does not include A^1 , Π does not include A^1 .

We write $\Pi \subset \pi$ to denote that Π is an initial subproof of π .

For a part Σ of a proof π , $\Sigma \in \pi - \Pi$ iff Σ is the part above A^1 of π for some A^1 in assumptions of Π .

Definition 2.6. (L-unique Proof)

A β -normal proof π is an L-unique proof if the following condition holds.

• If there exists a form

$$\begin{array}{c} \stackrel{i}{\underset{i}{B}} \pi_1 \\ \stackrel{i}{\underset{i}{C}} \\ \overline{B \xrightarrow{}} C \\ \stackrel{i}{\underset{i}{B}} \end{array} (\rightarrow I)l$$

in π and $B = D_1 \to \cdots \to D_n \to A$ $(n \ge 0)$ then the last inference of π_1 is not $(\to I)$ and MainFormula $(A) = \frac{l}{B}$.

Definition 2.7. (Strongly η -normal Proof)

A proof π is a strongly η -normal proof if π does not include the following form.

$$\frac{\stackrel{\vdots}{A \to B} \stackrel{\vdots}{A}}{\stackrel{B}{A \to B} (\to E)}_{\stackrel{\bullet}{A \to B} (\to I)}$$

Lemma 2.8.

If a closed βD -normal proof π includes

 $\begin{array}{c} \stackrel{\stackrel{.}{\scriptstyle i}}{A} \\ \stackrel{.}{\scriptstyle i} \\ \stackrel{.}{\scriptstyle C} \\ B \xrightarrow{} C \end{array} l$

and

 $B = D_1 \to \dots \to D_n \to A \qquad (n \ge 0)$

and π_1 is a strongly η -normal proof, then the last inference of π_1 is not $(\rightarrow I)$ and MainFormula $(A) = \frac{l}{B}$.

Proof 2.9.

Suppose that the assumptions of this lemma hold. Since π is a β -normal proof, there exist formulas $E, X_1, \ldots, X_p \quad (p \ge 0), Y_1, \ldots, Y_q \quad (q \ge 0)$ such that $A = X_1 \rightarrow \cdots \rightarrow X_p \rightarrow E$

and π_1 is

$$\frac{Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow E \quad \stackrel{\vdots}{Y_1} \quad \stackrel{\vdots}{\vdots} \\
\frac{Y_2 \rightarrow \cdots \rightarrow Y_q \rightarrow E \quad \stackrel{Y_2}{Y_2} \\
\vdots \\
\frac{\vdots}{Y_q \rightarrow E \quad \stackrel{Y_q}{Y_q} \\
\frac{E}{\frac{X_p \rightarrow E}{\vdots}} \\
\frac{X_2 \rightarrow \cdots \rightarrow X_p \rightarrow E}{X_1 \rightarrow \cdots \rightarrow X_p \rightarrow E}$$

Since π is a D-normal proof and $\operatorname{core}(Y_1 \to \cdots \to Y_q \to E) = \operatorname{core}(E) = \operatorname{core}(A) = \operatorname{core}(B)$, we have

 $B = Y_1 \to \dots \to Y_q \to E, \ k = l.$ From $Y_1 \to \dots \to Y_q \to E = B = D_1 \to \dots D_n \to A = D_1 \to \dots \to D_n \to X_1 \to \dots \to X_p \to E$, we have $X_i = Y_{q-p+i}$ $(1 \le i \le p), \ A = Y_{q-p+1} \to \dots \to Y_q \to E$ and π_1 is

$$\frac{Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow E \quad \stackrel{:}{Y_1} \quad \stackrel{:}{\underset{Y_2 \rightarrow \cdots \rightarrow Y_q \rightarrow E}{\overset{:}{\underbrace{Y_2}}}}{\underbrace{\frac{\vdots}{Y_q \rightarrow E} \quad \stackrel{:}{Y_q}}_{\underbrace{\frac{Y_q \rightarrow E}{\overset{:}{\underbrace{Y_q \rightarrow E}}}}{\underbrace{\frac{Y_{q-p+2} \rightarrow \cdots \rightarrow Y_q \rightarrow E}{\overset{:}{\underbrace{Y_{q-p+2} \rightarrow \cdots \rightarrow Y_q \rightarrow E}}}}$$

Since π_1 is a strongly η -normal proof, we have $p = 0, A = E, B = Y_1 \to \cdots \to Y_q \to A$ and π_1 is

$$\begin{array}{cccc} \underbrace{Y_1 \to \cdots \to Y_q \to A & \stackrel{\vdots}{Y_1} & \vdots \\ \hline \underbrace{Y_2 \to \cdots \to Y_q \to A & \stackrel{\cdot}{Y_2} \\ \vdots & & \\ \hline \vdots & & \\ \hline \hline \underbrace{Y_q \to A & \stackrel{\cdot}{Y_q} \\ \hline A & \end{array}$$

Therefore the last inference of π_1 is not $(\rightarrow I)$ and

MainFormula $(A) = \frac{l}{B}$

Lemma 2.10.

A closed $\beta\eta D$ -normal proof is a strongly η -normal proof.

Proof 2.11.

Suppose that a proof π is a $\beta \eta D$ -normal proof and is not a strongly η -normal proof. In π , there is the following form such that π_1 is a strongly η -normal proof.

$$\frac{A \to B \quad A}{\frac{B}{A^1 \to B^1}} l$$

From Lemma 2.8, π_1 is

$$\stackrel{l}{A}$$

and $|\pi_1| = 0$. This contradicts the fact that π is an η -normal proof. \Box

Proposition 2.12.

A closed $\beta\eta D$ -normal proof is an L-unique proof.

Proof 2.13.

It is proved immediately from Lemma 2.8 and Lemma 2.10. \Box

Lemma 2.14.

If a formula A has closed L-unique proofs π_1 and π_2 , and for some initial subproof Π of π_1 , $\Pi \subset \pi_1$ and $\Pi \subset \pi_2$ hold, then $\pi_1 = \pi_2$.

Proof 2.15.

We may suppose that $|\pi_1| - |\Pi| \ge |\pi_2| - |\Pi|$. This lemma is proved by induction on $|\pi_1| - |\Pi|$.

Case 1. $|\pi_1| - |\Pi| = 0$. $|\pi_1| - |\Pi| = |\pi_2| - |\Pi| = 0$ holds. Then $\pi_1 = \Pi = \pi_2$.

Case 2. $|\pi_1| - |\Pi| > 0.$

There exists a part $\Sigma_1 \in \pi_1 - \Pi$ such that $|\Sigma_1| > 0$. Then there exists a part $\Sigma_2 \in \pi_2 - \Pi$ such that $\operatorname{Concl}(\Sigma_1) = \operatorname{Concl}(\Sigma_2)$ in Π .

Case 2.1. The last inference of Σ_1 is $(\rightarrow I)$. Σ_1 is

$$\frac{\frac{B}{B}}{A \to B} k$$

Case 2.1.1. $|\Sigma_2| = 0.$

We show this case is impossible. Σ_2 is $A \xrightarrow{l} B$. Therefore in π_2 , $A \xrightarrow{l} B$ is discharged by the inference $(\rightarrow I)l$ in the thread from $A \xrightarrow{l} B$ to $\text{Concl}(\pi_2)$. Then in π_1 , $A \xrightarrow{l} B$ is discharged by the inference $(\rightarrow I)l$ in the thread from $A \xrightarrow{l} B$ to $\text{Concl}(\pi_1)$. Since π_1 is L-unique, the inference rule for $A \xrightarrow{l} B$ is not $(\rightarrow I)$ and we get contradiction.

Case 2.1.2. The last inference of Σ_2 is $(\rightarrow I)$.

By renaming discharging labels in π_2 , Σ_2 is

$$\frac{\stackrel{.}{B}}{A \to B} k$$

Let Π' be the following initial subproof of π_1 :

$$\frac{B}{A \to B} \begin{array}{c} k \\ \vdots \\ \Pi \end{array}$$

Then $\Pi' \subset \pi_1$, $\Pi' \subset \pi_2$ and $|\pi_1| - |\Pi| > |\pi_1| - |\Pi'| \ge |\pi_2| - |\Pi'|$ hold. By induction hypothesis, we have $\pi_1 = \pi_2$.

Case 2.1.3. The last inference of Σ_2 is $(\rightarrow E)$.

We show this case is impossible. Let

$$\label{eq:mainFormula} \begin{split} \text{MainFormula}(A \to B) &= X_1 \to \dots \to X_p \to A \to B. \qquad (p \geq 0)\\ \Sigma_2 \text{ is} \end{split}$$

$$\frac{X_1 \to \dots \to \stackrel{l}{X_p} \to A \to B \quad \stackrel{\vdots}{X_1} \quad \vdots}{\underbrace{X_2 \to \dots \to X_p \to A \to B} \quad \stackrel{i}{X_2}}{\vdots} \\ \frac{\vdots}{\underbrace{X_p \to A \to B} \quad \stackrel{i}{X_p}}{A \to B}$$

In π_2 , $X_1 \to \cdots \to X_p \to A \to B$ is discharged in the thread from $A \to B$ to $\operatorname{Concl}(\pi_2)$ by the inference $(\to I)l$. Therefore in $\pi_1, X_1 \to \cdots \to X_p \to A \to B$ is discharged in the thread from $A \to B$ to $\operatorname{Concl}(\pi_1)$ by the inference $(\to I)l$.

Since π_1 is L-unique, the last inference of Σ_1 is not $(\rightarrow I)$ and we get contradiction.

Case 2.2. The last inference of Σ_1 is $(\rightarrow E)$. Σ_1 is

where $p \ge 0$.

Case 2.2.1. $|\Sigma_2| = 0.$

Since π_2 is closed, Σ_2 is $\overset{\iota}{B}$.

In π_2 , *B* is discharged in the thread from *B* to $\text{Concl}(\pi_2)$ by the inference $(\rightarrow I)l$. Therefore in π_1 , *B* is discharged in the thread from *B* to $\text{Concl}(\pi_1)$ by the inference $(\rightarrow I)l$.

Since π_1 is L-unique, Σ_1 is $\overset{\iota}{B}$ and $|\Sigma_1| = 0$. This contradicts $|\Sigma_1| > 0$.

Case 2.2.2. The last inference of Σ_2 is $(\rightarrow I)$.

It is not the case by the same reason as Case 2.1.3.

Case 2.2.3. The last inference of Σ_2 is $(\rightarrow E)$. Σ_2 is

$$\frac{Y_1 \to \dots \to \stackrel{l}{Y_q} \to C \to B \quad \stackrel{\vdots}{Y_1} \quad \vdots}{\underbrace{Y_2 \to \dots \to Y_q \to C \to B \quad \stackrel{i}{Y_2}}{\vdots} \quad \vdots} \\ \frac{\frac{Y_q \to C \to B \quad \stackrel{i}{Y_q} \quad \vdots}{\underbrace{\frac{Y_q \to C \to B \quad \stackrel{i}{Y_q} \quad \vdots}{C \to B}} \\ \underline{C \to B \quad \stackrel{i}{C}} \\ R \\ \end{array}}$$

where $q \ge 0$.

In π_2 , $Y_1 \to \cdots \to Y_q \to C \to B$ is discharged in the thread from B to $\operatorname{Concl}(\pi_2)$ by the inference $(\to I)l$. Therefore in $\pi_1, Y_1 \to \cdots \to Y_q \to C \to B$ is discharged in the thread from B to $\operatorname{Concl}(\pi_1)$ by the inference $(\to I)l$. Since π_1 is L-unique, π_1 is

$$\frac{Y_1 \to \dots \to \stackrel{l}{Y_q} \to C \to B \quad \stackrel{\vdots}{Y_1} \quad \vdots}{\underbrace{Y_2 \to \dots \to Y_q \to C \to B \quad \stackrel{Y_2}{Y_2}} \\ \vdots \qquad \vdots \qquad \vdots \\ \underbrace{\frac{\overline{Y_q \to C \to B} \quad \stackrel{Y_q}{Y_q} \quad \vdots}{\underline{C \to B} \quad \stackrel{C}{Q}}$$

Therefore A = C. Let an initial subproof Π' of π_1 be given as follows:

$$\frac{A \to B \quad A}{B} \\ \vdots \ \Pi$$

Then $\Pi' \subset \pi_1$, $\Pi' \subset \pi_2$ and $|\Pi| - |\pi_1| > |\Pi'| - |\pi_1| \ge |\Pi'| - |\pi_2|$ hold. By induction hypothesis, we have $\pi_1 = \pi_2$. \Box

Proof 2.16. (of Theorem 2.3)

Suppose that a formula A has closed $\beta\eta D$ -normal proofs π_1 and π_2 . From Proposition 2.12, π_1 and π_2 are L-unique proofs. Let an initial subproof Π of π_1 be A.

From Lemma 2.14, since $\Pi \subset \pi_1$ and $\Pi \subset \pi_2$, we have $\pi_1 = \pi_2$. \Box

3 PNN condition

A formula A has PNN-occurrences of a variable B, if B has a positive occurrence and at least two negative occurrences in A. A formula A satisfies PNN-condition, if no variable has PNN-occurrences in A. A PNN-formula is a formula satisfying PNN-condition.

Theorem 3.1.

(1) A β -normal proof of a PNN-formula is a D-normal proof.

(2) A PNN-formula is a D-normal formula.

Remark that the converse of this theorem (1) does not hold. For example, the formula $C \to (D \to B) \to (C \to B) \to (B \to A) \to A$

for distinct propositional variables A, B, C and D is a D-normal formula and has PNN-occurrences of B.

The following theorem is known [2]. By Theorem 2.3 and Theorem 3.1 immediately give another proof of this theorem.

Theorem 3.2.

 $\beta\eta$ -normal proofs of a formula satisfying the PNN-condition are unique.

The rest of this section proves these theorems.

Definition 3.3.

For a formula A, Pos(A) is the set of positive subformulas of A and Neg(A) is the set of negative subformulas of A. For a set S of formulas, $Pos(S) = \bigcup_{A \in S} Pos(A)$ and $Neg(S) = \bigcup_{A \in S} Neg(A)$.

A formula in a proof π is a minor premise in π if it is a minor premise of some inference rule $(\rightarrow E)$.

Proposition 3.4. (Signed Subformula Property for NJ)

- (1) If a β -normal proof π has a discharged assumption A, the followings hold. (a) $A \in \text{Neg}(\text{Concl}(\pi)) \cup \text{Pos}(Ass(\pi)).$
 - (b) If the last rule of π is not $(\rightarrow I)$, $A \in Pos(Ass(\pi))$.
- (2) If a closed β -normal proof has a minor premise $A, A \in Pos(Concl(\pi))$ holds.

Proof 3.5.

(1) We prove this by induction on the proof π .

Case 1. π is a formula *B*. There is no *A*.

Case 2. π is

$$\begin{array}{cccc}
\vdots & \pi_1 & \vdots & \pi_2 \\
\underline{B \to C} & B \\
\underline{I} & C
\end{array}$$

If \mathring{A} is in π_1 , by induction hypothesis (b) for π_1 , $A \in \text{Pos}(\text{Ass}(\pi_1))$. If \mathring{A} is in π_2 , by induction hypothesis (a) for π_2 , $A \in \text{Neg}(B) \cup \text{Pos}(\text{Ass}(\pi_2))$. Since we have $\text{Neg}(B) \subset \text{Pos}(B \to C) \subset \text{Pos}(\text{MainFormula}(B \to C)) \subset \text{Pos}(\text{Ass}(\pi_1))$, $A \in \text{Pos}(\text{Ass}(\pi))$ holds.

Case 3. π is

$$\frac{\stackrel{\kappa}{\stackrel{B}{\stackrel{\vdots}{\stackrel{}}}}{\stackrel{\Gamma}{\stackrel{}}}\pi_1}{\stackrel{R}{\stackrel{}{\rightarrow}}C} k$$

If A is not B, by induction hypothesis (a) for π_1 , $A \in Neg(C) \cup Pos(Ass(\pi_1))$ holds and it is included in $Neg(B \to C) \cup Pos(Ass(\pi))$.

If A is B, $A \in Neg(B \to C)$. Therefore $A \in Neg(B \to C) \cup Pos(Ass(\pi))$.

(2) Suppose that the following part is in π :

$$\frac{A \to B \quad \dot{A}}{B}$$

We have $A \in Neg(A \to B) \subset Neg(MainFormula(A \to B))$. From (1), it is included in Pos(Concl(π)). \Box

 $X \parallel$

 \ddot{Y} denotes a proof whose conclusion is Y and whose assumptions include X and X and Y are in the same thread.

 $X \supset_i Y$ denotes that $X = Z_1 \rightarrow \ldots Z_n \rightarrow Y$ for some $n \ge 0, Z_1, \ldots, Z_n$.

Lemma 3.6.

(1) If a β -normal proof of a PNN-formula has the following part, Z_3 is a minor premise, and $Z_3 \supset_i Y_3 \rightarrow Z_2$, we have $Y_3 \supset_i X_3 \rightarrow Y_2$. $X_3 \rightarrow Y_2$ X_3

$$\frac{\begin{array}{c}
\frac{X_3 \to Y_2}{Y_2} \\
 \parallel \\
\frac{Y_3 \to Z_2 \qquad Y_3}{Z_2} \\
 \parallel \\
Z_2
\end{array}}$$

(2) If a β -normal proof of a PNN-formula has the following part, Y_3 is a minor premise, and $Y_1 = Y_3$, then we have $X_1 = X_3$.

(3) If a β -normal proof π of a PNN-formula has the following part, X_3 is a minor premise, and $X_3 \to Y \in Pos(Concl(\pi))$ for some Y, then we have $X_1 = X_3$.

Proof 3.7.

(1) Let $Y = \operatorname{core}(Y_3)$ and A be the conclusion of the proof. From Proposition 3.4 (2) for Z_3 , we have $Z_3 \in \operatorname{Pos}(A)$. Therefore $Y_3 \to Z_2 \in \operatorname{Pos}(A)$. Let $Y_1 = \operatorname{MainFormula}(Y_2)$. Let the part be

From Proposition 3.4 (2) for the inference rule $(\rightarrow I)$ discharging the label $l, Y_1 \rightarrow B \in \text{Pos}(A)$ for some B. From Proposition 3.4 (2) for $Y_3, Y_3 \in \text{Pos}(A)$. By the PNN-condition for $Y, Y_1 = Y_3$. Since $Y_1 \supset_i X_3 \rightarrow Y_2$, we have $Y_3 \supset_i X_3 \rightarrow Y_2$. \Box

(2) Let $X = \operatorname{core}(X_3)$ and A be the conclusion of the proof. From Proposition 3.4 (2) for $Y_3, Y_3 \in Pos(A)$. Since $Y_3 = Y_1 \supset_i X_3 \to Y_2, X_3 \to Y_2 \in Pos(A)$ holds. From Proposition 3.4 (2) for the inference rule $(\to I)$ discharging the label $l_2, X_1 \to B \in Pos(A)$ holds for some B. From Proposition 3.4 (2) for $X_3, X_3 \in Pos(A)$ holds. By the PNN-condition for X, we have $X_1 = X_3$. \Box

(3) Let A be the conclusion of the proof. From Proposition 3.4 (2) for the inference rule $(\rightarrow I)$ discharging the label $l, X_1 \rightarrow Z \in \text{Pos}(A)$ holds for some Z. From Proposition 3.4 (2) for $X_3, X_3 \in \text{Pos}(A)$ holds. By the PNN-condition for X, we have $X_1 = X_3$. \Box

Definition 3.8. (level)

For a proof π and an occurrence A of a formula in π , the level of A in π (denoted by $\text{level}_{\pi}(A)$) is defined as follows:

If π is A, level_{π}(A) = 0.

If
$$\pi$$
 is
 A
 $\vdots \pi_1$
 $\frac{B}{A \to B} l$
then $\operatorname{level}_{\pi}(A \to B) = 0$ and $\operatorname{level}_{\pi}(X) = \operatorname{level}_{\pi_1}(X)$ for $X \in \pi_1$.
If π is
 $\vdots \pi_1 \quad \vdots \pi_2$
 $\underline{A \to B \quad A}$
 B

then $\operatorname{level}_{\pi}(B) = 0$, $\operatorname{level}_{\pi}(X) = \operatorname{level}_{\pi_1}(X)$ for $X \in \pi_1$, and $\operatorname{level}_{\pi}(X) = \operatorname{level}_{\pi_2}(X) + 1$ for $X \in \pi_2$.

Proposition 3.9.

If a β -normal proof of a PNN-formula has discharged assumptions A_1 and A_2 and $\operatorname{core}(A_1) = \operatorname{core}(A_2)$, then we have $A_1 = A_2$.

Proof 3.10.

Let $A = \operatorname{core}(A_1)$ and B be the conclusion of the proof. From Proposition 3.4 (2) for the inference rules $(\rightarrow I)$ discharging the labels l_1 and l_2 , $A_1 \rightarrow X_1 \in \operatorname{Pos}(B)$ and $A_2 \rightarrow X_2 \in \operatorname{Pos}(B)$ hold for some X_1 and X_2 .

Either A_1 or A_2 is of level n > 0. We may suppose that A_1 is of level n > 0. Let A_3 be the lowermost formula of the thread including A_1 . Since A_3 is a minor premise, from Proposition 3.4 (2), $A_3 \in Pos(B)$ holds.

By the PNN-condition for A, we have $A_1 = A_2$. \Box

Proposition 3.11.

A β -normal proof of a PNN-formula does not have the following part:

where $\operatorname{core}(A_0) = \operatorname{core}(A_1)$ and A_0 and A_1 are distinct.

Proof 3,12.

Put A_1 be of level maximal. Let $A = \text{core}(A_0)$ and B be the conclusion of the proof. By Proposition 3.9, we have $A_0 = A_1$. Let the part including l_1 and l_2 be as follows:

and π_1 be the part below X_2^1 of this and π_2 be the part above A_3 of this. Case 1. $A_3 \not \supseteq_i X_3^n \to A_2, X_3^p \not \supseteq_i X_3^{p-1} \to X_2^p$ for $p = n, \ldots, 2$, and $X_3^1 \not \supseteq_i A_3 \to X_2^1$. From $A_3 \not \supseteq_i X_3^n \to A_2, \pi_2$ is as follows: $l_2 \qquad k'_n$

$$\frac{\begin{array}{ccc}A_1 & X \\ \parallel & \parallel \\ X_3^n \to A_2 & X_3^n \\ \hline A_2 \\ \parallel \\ A \end{array}$$

 A_3 By Proposition 3.9, $X = X_1^n$ holds. Therefore π_2 as as follows:

$$\frac{\begin{array}{cccc}
l_2 & \kappa_n \\
A_1 & X_1^n \\
\parallel & \parallel \\
X_3^n \to A_2 & X_3^n \\
\hline
A_2 \\
\parallel \\
A_3
\end{array}$$

From $\begin{array}{ccc} X_3^n \not \supseteq_i X_3^{n-1} \to X_2^n, \text{ the thread from } X_1^n \text{ to } X_3^n \text{ is as follows:} \\ & \begin{array}{ccc} k'_n & k'_{n-1} \\ & X_1^n & X \\ & \parallel & \parallel \\ & \\ \underline{X_3^{n-1} \to X_2^n & X_2^{n-1}} \\ & & \\ & \\ & \parallel & \\ \end{array}$

 $\ddot{X_3^n}$ By Proposition 3.9, $X = X_1^{n-1}$ holds.

By repeating this discussion, we prove that π_2 has the following form:

Case 2. $A_3 \supset_i X_3^n \to A_2$.

By Proposition 3.4 (2) for A_3 , we have $X_3^n \to A_2 \in Pos(B)$. By repeating Lemma 3.6 (2) from the thread

$k_n \\ X_1^n$	$\begin{array}{c} k_1 \\ X_1^1 \end{array}$	$l_2 \\ A_1$
		<u> </u>

 $\begin{array}{c} \parallel & \qquad \parallel & \qquad \parallel & \qquad \parallel & \qquad \parallel \\ X_3^n \text{ to the thread } X_3^1 \text{ and the thread } A_3, \text{ we have } X_1^p = X_3^p \text{ for } p = n, \dots, 1 \text{ and } A_1 = A_3. \end{array}$ Therefore $X_3^p = X_1^p \supset_i X_3^{p-1} \to X_2^p \text{ holds for } p = n, \dots, 2, X_3^1 = X_1^1 \supset_i A_3 \to X_2^1 \text{ and } A_3 = A_1 \supset_i X_3^n \to A_2.$ Hence we get $X_3^n \stackrel{\supset_i}{\neq} X_3^{n-1} \stackrel{\supset_i}{\neq} \dots \stackrel{\supset_i}{\neq} X_3^p \stackrel{\supset_i}{\neq} X_3^{p-1} \to X_2^p \text{ for some } 2 \leq p \leq n.$ By repeating Lemma 3.6 (1) for $X_3^p \supset_i X_3^{p-1} \to X_2^p$, we have $X_3^q \supset_i X_3^{q-1} \to X_2^q \text{ for } q = p, \dots, 2 \text{ and } \begin{array}{c} l_2 \\ l_2 \\ A_1 \\ \parallel \end{array}$

 $\begin{array}{l} X_3^1 \supset_i A_3 \rightarrow X_2^1. \text{ From } X_3^1 \supset_i A_3 \rightarrow X_2^1, A_3 \rightarrow X_2^1 \in \operatorname{Pos}(B) \text{ holds. By Lemma 3.6 (3) for the thread } \overset{\parallel}{A_3} \text{ we have } A_1 = A_3. \text{ Hence we get } A_3 = A_1 \supset_i X_3^n \rightarrow A_2 \text{ and contradiction.} \\ \text{Case 4. } A_3 \not\supseteq_i X_3^n \rightarrow A_2, X_3^n \not\supseteq_i X_3^{p-1} \rightarrow X_2^p \text{ for } 2 \leq p \leq n, \text{ and } X_3^1 \supset_i A_3 \rightarrow X_2^1. \end{array}$

By Proposition 3.4 (2) for X_3^1 , we have $A_3 \to X_2^1 \in \text{Pos}(B)$. By Lemma 3.6 (3) for the thread $\overset{"}{A_3}$ we have $A_1 = A_3$. Hence we get $A_3 = A_1 \supset_i X_3^n \to A_2$ and contradiction. \Box

 $l_2 \\ A_1$

Proof 3.13. (of Theorem 3.1)

(1) Suppose that we have a β -normal proof π of a PNN-formula C and π is not a D-normal proof.

By the definition of D-normality, π has the following part:

$$\begin{pmatrix} k \\ A_0 \\ \vdots \\ B_1 \\ \hline A_1 \to B_1 \end{pmatrix} (l)$$

where $\operatorname{core}(A_0) = \operatorname{core}(A_1)$ and $k \neq l$.

Let $A_0 \to X$ be derived by the inference rule $(\to I)$ discharging the label k. By Proposition 3.4 (2), we have $A_0 \to X \in \text{Pos}(C)$. By Proposition 3.4 (2), we have $A_1 \to B_1 \in \text{Pos}(C)$. Let A_2 be the lowermost formula of the thread including $\overset{k}{A_0}$. Since A_2 is a minor premise, by Proposition 3.4 (2), we have $A_2 \in \text{Pos}(C)$. By the PNN-condition for $A, A_0 \to X = A_1 \to B_1$ holds. Therefore $A_0 = A_1$ and $X = B_1$. Hence $\overline{A_0 \to X}^{(k)}$ is not in the thread including $\overline{A_1 \to B_1}^{(l)}$. Let B_2 and B_3 be the main formulas of $\overline{A_1 \to B_1}^{(l)}$ and $\overline{A_0 \to X}^{(k)}$ (k) respectively. Then we have either respectively. Then we have either

$ \begin{array}{ccc} l_1 & l_2 \\ B_2 & B_3 \\ \parallel & \vdots \end{array} $	or	$egin{array}{c} l_1 \ B_3 \ \parallel \end{array}$	$\stackrel{l_2}{\underset{\vdots}{B_2}}$
B_4		E	84

and get contradiction by Proposition 3.11. \Box

(2) It is immediate from (1). \Box

Proof 3.14. (of Theorem 3.2)

Let π_1 and π_1 be $\beta\eta$ -normal proofs of a PNN-formula A. By Theorem 3.1 (1), they are $\beta\eta D$ -normal proofs. By Theorem 2.3, we have $\pi_1 = \pi_2$. \Box

4 **BCK** logic

BCK logic is the logic with only the restricted $(\rightarrow I)$ rule which can discharge at most one occurrence of an assumption. A formula is called a minimal formula if it is minimal in the variable substitution preorder of provable formulas.

Proposition 4.1.

In BCK logic, a β -normal proof of a minimal formula is a D-normal proof.

Combining Theorem 2.3 and this proposition, we have the following theorem.

Theorem 4.2.

In BCK logic, if a minimal formula A has $\beta\eta$ -normal proofs π_1 and π_2 , then $\pi_1 = \pi_2$.

References

- [1] T. Aoto, Uniqueness of normal proofs in implicational implicational intuitionistic logic, *Journal of Logic*, Language and Information, to appear.
- [2] T. Aoto, Number of Normal Proofs in Implicational Logics: Komori's Problem, Its Solution, and Beyond, Manuscript, 1999.
- [3] S. Hirokawa, Principal types of BCK-lambda-terms, Theoretical Computer Science, 107 (1993) 253–276.
- [4] Y. Komori, BCK Algebras and Lambda Calculus, In: Proceedings of the 10th Symposium on Semigroups (Josai Univ., Sakado, 1987) 5–11.
- [5] G. E. Mints, Simple proof of the coherence theorem for cartesian closed categories, Journal of Symbolic Logic.
- [6] M. Tatsuta, Uniqueness of Normal Proofs in Implicational Logic, Manuscript, 1988.
- [7] M. Tatsuta, Uniqueness of normal proofs of minimal formulas, Journal of Symbolic Logic 58 (3) (1993) 789–799.
- [8] M. Tatsuta, Uniqueness of D-normal Proofs, Proceedings of 7th Asian Logic Conference (1999) 41–42.