

ISSN 1346-5597

NII Technical Report

Contradiction Finding and Minimal Recovery for UML
Class Diagrams using Logic Programming

Ken Satoh, Ken Kaneiwa, Takeaki Uno

NII-2006-009E
June 2006

Contradiction Finding and Minimal Recovery for UML Class Diagrams
using Logic Programming

Ken Satoh1 Ken Kaneiwa2 Takeaki Uno1
1National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
2National Institute of Information and Communications Technology

4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
ksatoh@nii.ac.jp, kaneiwa@nict.go.jp, uno@nii.ac.jp

Abstract

UML (Unified Modeling Language) is the de facto stan-
dard model representation language in software engineer-
ing. We believe that automated contradiction detection and
repair of UML become very important as UML has been
widely used. In this paper, we propose a debugging sys-
tem using logic programming paradigm for UML class dia-
gram with class attributes, multiplicity, generalization rela-
tion and disjoint relation.

We propose a translation method of a UML class dia-
gram into a logic program, and using a meta-interpreter we
can find (set-inclusion-based) minimal sets of rules which
leads to contradiction. Then, we use a minimal hitting set
algorithm developed by one of the authors to show minimal
sets of deletion of rules in order to avoid contradiction.

1 Introduction

UML [12, 6] is a model representation language used in a
design of software system and has been widely used in soft-
ware industry and now considered as the de facto standard
language for software modeling. To make software devel-
oped by UML more reliable, we believe that a formal ap-
proach for verification of the consistency of UML diagrams
and repair of inconsistent UML diagrams become of much
importance as UML is applied to more complex systems.

This paper is toward this direction of research. We con-
sider automated contradiction detection and minimal recov-
ery of UML class diagrams which consist of class attributes,
multiplicity, generalization relation and disjoint relation. In
order to reason about contradiction, we firstly need a rig-
orous semantics of UML class diagrams. We follow the
works of Berardi et al. by [2, 3, 4] where they define a
semantics of UML class diagrams in terms of description

logic and first-order logic with counting quantifier. In this
paper, we use a semantics of first-order logic formulation
since it is easier for us to consider the translation from this
semantics to a logic program. Berardi et al. showed that
inconsistency in a UML class diagram corresponds to in-
consistency in a description logic formula translated from
the diagram, and used an existing description logic theorem
prover to check consistency. However, in their framework,
they can only detect inconsistency in a UML class diagram,
and cannot explain which part is the cause of inconsistency
whereas this paper considers not only contradiction detec-
tion but also minimal recovery of UML class diagrams.

In this paper, we translate a UML class diagram into a
logic program in order to check inconsistency directly. It
turns out by our previous results [9] that, for the restricted
class of UML class diagram with class attributes, multiplic-
ity, generalization relation and disjoint relation, only multi-
plicity mismatch and violation of disjointness lead to con-
tradiction. Therefore, all we have to do is to check whether
these cases happen and this gives an efficient checking of
contradiction detection.

We believe that well-developed compilation techniques
of logic programming help to get an efficient implementa-
tion. Moreover, by attaching an annotation (rule number) to
rules in logic programming, we can use a meta-interpreter to
detect which rules are blamed for inconsistency. Our trans-
lation actually has one-to-one correspondence between each
rule and a part of the diagram, so we can directly point out
the blamed part in the UML diagram itself.

Then, using inconsistent rule sets, we can show a pos-
sible candidate of deletion of rules to avoid contradiction.
We have already proposed various methods of formalizing
minimal update for software requirements represented as a
logic program [13, 14, 15, 16]. This minimal update corre-
sponds to computing maximal consistent set of rules from
augmented requirements with a new requirement.

The above methods mainly concern computing maximal
consistent set of a logic program directly without computing
a cause of contradiction. In this paper, however, we have in-
formation about contradiction set of rules by contradiction
detection and we use this information to get a set-inclusion-
based minimal deletion of rules in the current logic program
as follows. In order to avoid contradiction, it is sufficient to
delete one rule from each inconsistent set of rules. However,
this deletion might not be minimal since we could delete the
same rule from multiple inconsistent sets. To avoid this re-
dundant deletion, we compute a minimal hitting set for each
inconsistent sets (a minimal set which has a common ele-
ment with each inconsistent set). We use a new algorithm
of minimal hitting set computation proposed by one of the
authors [17] which is very simple and efficient in an average
case.

Then, thanks to one-to-one correspondence between a
rule and a part of a UML class diagram, we can point out
which part of a UML class diagram should be deleted on
the diagram directly.

The structure of the paper is as follows. We firstly give
a semantics of UML class diagram in terms of first-order
logic with counting quantifier according to [9, 3]. Using
this semantics, we provide a sound and complete transla-
tion method from a UML class diagram to a logic program
in order to check consistency. Then, we provide a method
to compute minimally updated UML class diagram using
minimal hitting set computation. We also show an example
how such contradiction finding and minimal recovery are
represented in our implemented system.

2 Semantics of UML Class Diagrams by
First-Order Logic with Counting Quanti-
fiers

We give a semantics of UML class diagrams in terms of
first-order logic with counting quantifiers according to [9,
3].

• Let c andt be a class,a an attribute and[i..j] a mul-
tiplicity. Classc with an attributea[i..j]: t has the fol-
lowing semantics:

∀x∀y(c(x) → (a(x, y) → t(y)))
∀x(c(x) → ∃≥iz(a(x, z)))
∀x(c(x) → ∃≤jz(a(x, z)))

where∃≥iz and∃≤jz are counting quantified variables
and ∃≥iz(∃≤jz respectively) means that there exists
some elementsz whose cardinality is more than or
equal toi (less than or equal toj respectively).

• A classc generalizingc1, ..., cn is captured by the fol-
lowing formula.

∀x(c1(x) → c(x)), . . . ,∀x(cn(x) → c(x))

• Meaning of disjointness between classesc1, . . . , cn is
shown by the following formula.

∀x(ci(x) → ¬ci+1(x) ∧ · · · ∧ ¬cn(x))
for i ∈ {1, . . . , n− 1}

The inconsistency of a UML class diagram is defined as
inconsistency of the above translated formulas plus an exis-
tential formula∃x(c(x)) for every classc.

3 Translating Counting Quantified Formula
into Logic Program

We translate a classc with an attributea[i..j]: t into the
following rules in logic programming.

t(f a(X)) :- c(X).
at least(f a(X), i) :- c(X).

(wherei > 0)
contradiction :-

c(X), at least(f a(X),I), j<I.
(wherej 6= ∗)

where f a is a Skolem function for an attributea which
expresses a function which maps an elementX of classc
to an element of the attributea and a predicateat least
expresses the minimum number of elements ofa with re-
spect toX andcontradiction expresses contradiction.
Intuitive meaning of the above rules are as follows:

• The first rule means that ifX is an instance of classc,
then the attributea of X is in the classt.

• The second rule means that ifX is an instance of class
c, then the minimum number of instances of attribute
a of X is at leasti.

• The third rule means that ifX is an instance of classc
and the minimum number of instances of attributea of
X derived from some rules must be less than or equal
to j. (Otherwise contradiction occurs).

If c is a generalization of classesc1, ..., cn, we give the
following translation.

c(X) :- c 1(X).
...

c(X) :- c n(X).
The disjointness between classesc1, . . . , cn are trans-

lated as follows.
For everyi = 1, . . . , n− 1,
contradiction :- c i(X),c i+1(X).

...
contradiction :- c i(X),c n(X).

2

We add the following fact for every classc.
c(e c).

whereec is a new symbol expressing for an element of each
class.

We check contradiction of a UML class diagram by
checking whethercontradiction is derived or not in
the translated program.

Theorem 1 A set of first-order formula with counting
quantifier which gives a semantics of a UML class diagram
is inconsistent if and only ifcontradiction is derived
in the above translated logic program.

Proof: See the Appendix.
This result is very important since this guarantees not

only correctness of our method (ifcontradiction is de-
rived from a logic program then the UML class diagram has
inconsistency), but also completeness of our method (if the
diagram has inconsistency, we can always detect it). This
shows the power of our method.

4 Consistency Check in Logic Programming

This section provides a method of computing a incon-
sistent set of rules using meta-interpreter. For the pur-
pose, we attach a rule numberN for each fact or rule
such asN@G(in the case of a fact) andN@(G:-B) (in
the case of a rule). Then, by using the following meta-
interpreter, we can calculate all the inconsistent sets by call-
ing solve(contradiction,U,[]) .

solve(G,Used,NewUsed):-
\+G=(_,_),
!,
solve1(G,Used,NewUsed).

solve((G1,G2),Used,NewUsed):-
!,
solve1(G1,Used,Used1),
solve(G2,Used1,NewUsed).

solve1(G,[N@G|Used],Used):-
N@G.

solve1(G,[N@(G:-B)|Used],NewUsed):-
N@(G:-B),
solve(B,Used,NewUsed).

Intuitive meaning of the above interpreter is as follows:

• The first rule means that to solve a singleton goalG,
we callsolve1 .

• The second rule means that to solve a compound goal
(G1,G2) , we callsolve1 for G1 and we solve rest
(G2) by callingsolve recursively.

• The third rule means that to solve a singleton goalG,
we match an annotated fact of the formN@Gand the
fact is recorded in the list of the second argument of
solve1 .

• The forth rule means that to solve a singleton goalG,
we match an annotated rule of the formN@(G:-B)
and solveB and the rule is recorded.

Then, we can calculate minimal inconsistent sets of rules by
checking minimality of these inconsistent sets.

5 Minimal Contradiction Recovery

After detecting inconsistency, we would like to derive a
maximal consistent set which keeps the previous UML class
diagram as much as possible. Note that there might be mul-
tiple sources of contradiction. Therefore, we need to delete
one rule from these sources. But there might be the same
rules in multiple contradiction sources so we should pick
up such a rule in order to avoid contradiction and simulta-
neously keep the previous diagram as much as possible1.

In order to pick such overlapped rules, we use aminimal
hitting set2 computation defined as follows:

Definition 1 LetΠ be a finite set andH be a subset family
of Π. A hitting set HS ofH is a set s.t. for everyS ∈ H,
S ∩HS 6= ∅. A minimal hitting set HS ofH is a hitting
set s.t. there exists no other hitting setHS′ ofH s.t.HS′ ⊂
HS (HS′ is a proper subset ofHS).

We use an algorithm to compute minimal hitting sets shown
in Fig. 1. This algorithm was proposed by [17]. LetH be
{S0, ..., Sn} wherei of Si means the order of the input set.
The algorithm in 1 incrementally computes minimal hitting
sets of each{S0, ...Si}(1 ≤ i ≤ n) without redundant enu-
meration. The behavior of the algorithm is as follows:

1. We start from choosing one element fromS0.

2. If we get a minimal hitting setmhs up toS0, ..., Si−1

then, we consider a new minimal hitting set up to
S0, ..., Si−1, Si as follows:

• If mhs andSi have any common element,mhs
itself is a hitting set (and also minimal) for
S0, ..., Si−1, Si as well. Therefore, we continue
this process for further sets.

• Otherwise, we have to add one elemente from
Si to mhs. We, however, must check whether
the addition still preserves minimality. We con-
tinue this process for further sets only if the re-
sulting setmhs∪ {e} is a minimal hitting set for

1Note that minimal recovery is based on the set-inclusion of contradic-
tion sources.

2Note that the minimality is based on the subset ordering.

3

S0, ..., Si−1, Si. Then, we continue this process
for further sets.

This algorithm requires exponential time with respect to
the number of sets (n in the algorithm) in the worst case,
but it is empirically shown to be efficient (See [17] for the
detail).

6 Execution Example

We show an inconsistent UML class diagram in Fig. 2.
This actually has two sources of contradiction.

• The classc4 has the superclassesc5 andc6 which are
disjoint. Sincec4 has an instance, it leads to contradic-
tion.

• The classc1 has an attributea1 whose class isc2 which
has an attributea2 whose instances’ maximum number
is 5. On the other hand, the classc1 has a superclassc3
which also has the same name attributea1 asc1 whose
class isc4 which has a superclassc5 which has the
same name attributea2 asc2 whose instances’ mini-
mum number is7. Therefore,c1.a1.a2 has contradic-
tory multiplicity information; the number of instances
are at most5 and at least7. This causes contradiction.

We translate this diagram into the following logic pro-
gram to detect such contradiction3:

c4(a1(X)):-c3(X). (1)
at_least(a1(X),1):-c3(X). (2)
c2(a1(X)):-c1(X). (3)
at_least(a1(X),1):-c1(X). (4)
d(a2(X)):-c2(X). (5)
at_least(a2(X),1):-c2(X). (6)
contradiction:-

c2(X), at_least(a2(X),I), 5<I. (7)
e(a2(X)):-c5(X). (8)
at_least(a2(X),7):-c5(X). (9)
contradiction:-

c2(X), at_least(a2(X),I), 10<I. (10)
c3(X):-c1(X). (11)
c3(X):-c2(X). (12)
c5(X):-c4(X). (13)
c7(X):-c5(X). (14)
c7(X):-c6(X). (15)
c6(X):-c4(X). (16)
contradiction:-c5(X), c6(X). (17)
c1(ec1). (18)
c2(ec2). (19)
c3(ec3). (20)

3Note that in an actual setting, we attach a unique rule number for each
rule for the input to the meta-interpreter, but we omit the notation for sim-
plicity.

c4(ec4). (21)
c5(ec5). (22)
c6(ec6). (23)
c7(ec7). (24)
d(ed). (25)
e(ee). (26)

We obtain the following two minimal inconsistent sets by
running the meta-interpreter. Note that contradiction arises
when we add the facts that each class has an element (such
asc1(ec1)) into the translated program.

Minimal Inconsistent Set 1:

c5(X):-c4(X). (13)
c6(X):-c4(X). (16)
contradiction:-c5(X), c6(X). (17)

Minimal Inconsistent Set 2:

c4(a1(X)):-c3(X). (1)
c2(a1(X)):-c1(X). (3)
contradiction:-

c2(X), at_least(a2(X),I), 5<I.(7)
at_least(a2(X),7):-c5(X). (9)
c3(X):-c1(X). (11)
c5(X):-c4(X). (13)

Then, we calculate minimal hitting sets for the above min-
imal inconsistent sets and obtain the following candidate
sets of deletion of rules:{(13)}, {(16), (1)}, {(16), (3)},
{(16), (7)}, {(16), (9)}, {(16), (11)}, {(17), (1)},
{(17), (3)}, {(17), (7)}, {(17), (9)}, and{(17), (11)}.

7 UML Debugging System

We made a prototype system which directly reflects the
results from consistency check and minimal update of UML
class diagrams. We make a UML class diagram using UML
class editor and the system translates a UML class diagram
into a logic program to check consistency. If there is in-
consistency, the system shows a minimal source of contra-
diction one by one. The system also shows a set of mini-
mally deleted rules to avoid contradiction one by one. For
the check of the example in the last section, there are two
sources of inconsistency and the system displays them one
by one (Fig. 3 and 4) where the parts corresponding to each
inconsistency source are shown by changing its color or un-
derlining the corresponding part (a1). In Fig. 5, we show
one example of a set of deleted rules (in this example, only
the line from classc4 to c5) changes its color. One to one
correspondence between a part of a UML class diagram and
a rule of a translated logic program enables us to perform
such display.

4

global S0, ..., Sn−1;
compute mhs(i,mhs) /* mhs ∈ MHS({S0, ..., Si−1}) */
begin

if i == n then outputmhs andreturn ;
elseifSi ∩mhs 6= ∅ then compute mhs(i + 1,mhs);
else foreverye ∈ Si s.t.mhs ∪ {e} is a minimal hitting set ofS0, ..., Si do

compute mhs(i + 1,mhs ∪ {e});
return ;

end

Figure 1. Algorithm to Compute Minimal Hitting Sets

8 Related Work

In software engineering, there are several proposals of
logical treatment of “inconsistency” of software specifica-
tion such as [5, 19]. A survey of inconsistency handling
is found in [7]. Finkelstein et al.[5] use non-collapsible
“quasi-classical logic” even in the existence of inconsis-
tency and formalizes consistency management between
multiple specifications defined by several users. Zowghi et
al. [19] propose an application of default reasoning, belief
revision and epistemic entrenchment to model requirements
evolution. However, these works more focus on logical as-
pects of inconsistency handling rather than computation.

More computation-approaches for consistency manage-
ment are found in [8, 18]. Nuseibeh and Russo [8] use ab-
ductive logic programming to implement “quasi-classical
logic”. In their work, they detect rules which should be
deleted to restore consistency using abduction. Zisman and
Kozlenkov [18] represent the UML specifications in terms
of knowledge base and then compile this knowledge base
into a logic program which can be used for verification.

The technique of finding a minimal deletion of rules us-
ing minimal hitting set computation was already proposed
in [11] in consistency-based diagnosis and in [10, 1] in logic
programming. So, this paper can be seen as an application
of their techniques as well.

9 Conclusion

In this paper, we propose a translation method of a UML
class diagram with attributes, multiplicity, generalization
and disjoint relation into a logic program in order to check
consistency and propose a minimal deletion of a part of the
diagram. As for the future work, we should extend our work
not only on contradiction detection and minimal recovery
for a wider class of UML class diagrams but also on con-
tradiction detection between UML class diagrams and other
UML diagrams.

Acknowledgements

This work was supported by the project “Research Priority
Area on Informatics Studies for the Foundation of IT Evo-
lution” by MEXT.

References

[1] Aravindan, C. and Baumgartner, P., A Rational and Ef-
ficient Algorithm for View Deletion in Databases,Proc.
of ILPS-97, pp. 165 – 179 (1997).

[2] Berardi, D., Calvanese, D., De Giacomo, G., Reason-
ing on UML class diagrams is exptime-hard,Proc. of
the 2003 International Workshop on Description Log-
ics (DL2003)(2003).

[3] Berardi, D., Cali, A., Calvanese, D., De Giacomo, G.,
Reasoning on UML class diagrams,Artificial Intelli-
gence, 168(1-2), pp. 70 – 118 (2005).

[4] Cali, A., Calvanese, D., De Giacomo, G., Lenzerini,
M., A formal framework for reasoning on UML class
diagrams,LNCS 2366, pp. 503 – 513 (2002).

[5] Finkelstein, A. C. W., Gabbay, D., Hunter, A., Kramer,
J., Nuseibeh, B., Inconsistency Handling in Multiper-
spective Specifications,IEEE Transactions on Software
Engineering, 20, pp. 569 – 578 (1994).

[6] Fowler, M., UML Distilled: A Brief Guide to the Stan-
dard Modeling Object Language, Object Technology
Series. Addison-Wesley, third edition (2003).

[7] Nuseibeh, B., To Be and Not to Be: On Managing
Inconsistency in Software Development,Proc. of 8th
IEEE International Workshop on Software Specification
and Design (IWSSD-8), pp. 164 – 169 (1996).

[8] Nuseibeh, B., Russo, A., Using Abduction to Evolve In-
consistent Requirements Specifications,Australian In-
formation Systems Journal, Special Issue on Require-

5

ments Engineering, 7(1), ISSN: 1039-7841, pp. 118 –
130 (1999).

[9] Kaneiwa, K., Satoh, K.,Consistency Checking Al-
gorithms for Restricted UML Class Diagrams, Proc.
of FoIKS2006, LNCS 3861, pp. 219 – 239 (2006).
An extended version with a proof can be found at
http://research.nii.ac.jp/˜kaneiwa/um
l-ex.pdf

[10] Pereira, L.M., Damásio, C. V., Alferes, J. J., Diagnosis
and Debugging as Contradiction Removal,LPNMR-93,
pp. 334 – 348 (1993).

[11] Reiter, R., A Theory of Diagnosis from First Princi-
ples,Artificial Intelligence32, pp. 57 – 95 (1987).

[12] Rumbaugh, J., Jacobson, I., Booch, G.,The Uni-
fied Modeling Language Reference Manual, Addison-
Wesley, Reading, Massachusetts, USA, 1 edition
(1999).

[13] Satoh, K., Minimal Revision of Logical Specification
Using Extended Logic Programming: Preliminary Re-
port,Proc. of the AAAI-99 Workshop on Intelligent Soft-
ware Engineering, pp. 61 – 65, Orlando, Florida, USA
(1999).

[14] Satoh, K., Consistency Management in Software En-
gineering by Abduction,Proc. of the ICSE-2000 Work-
shop on Intelligent Software Engineering, pp. 90 – 99,
Limerick, Ireland (2000).

[15] Satoh, K., Computing Minimal Revised Specifications
by Default Logic, Proc. of Workshop on Intelligent
Technologies in Software Engineering (WITSE2003),
pp. 7 – 12, Helsinki, Finland (2003).

[16] Satoh, K., Uno, T., Enumerating Minimal Revised
Specification using Dualization,New Frontiers in Ar-
tificial Intelligence, Joint JSAI 2005 Workshop Post-
Proceedings, LNAI 4012, pp. 182 – 189 (2006).

[17] Uno, T., A Practical Fast Algorithm for Enumerat-
ing Minimal Set Coverings,SIGAL83, Information Pro-
cessing Society of Japan, pp. 9 – 16 (in Japanese)
(2002).

[18] Zisman, A., Kozlenkov, A., A Knowledge based Ap-
proach to Consistency Management of UML Specifica-
tions,Proc. of the 16th Conference on Automated Soft-
ware Engineering, pp. 359 – 363 (2001).

[19] Zowghi, D., Ghose, A., Peppas, P., A Framework
for Reasoning about Requirements Evolution,Proc. of
PRICAI’96, pp. 157 – 168 (1996).

Appendix: Proof of Theorem 1

It is straightforward on the equivalence on translation of
formulas except class attributes. We prove here the equiva-
lence on translation of formulas related with class attributes.

The following formulas with counting quantifiers:

∀x∀y(c(x) → (a(x, y) → t(y)))
∀x(c(x) → ∃≥iz(a(x, z)))
∀x(c(x) → ∃≤jz(a(x, z)))

is equivalent to the following formulas without counting
quantifiers.

∀x∀y(c(x) ∧ a(x, y) → t(y)))
∀x(c(x) →
∃z1...∃zi(a(x, z1) ∧ ... ∧ a(x, zi)∧

distinct(z1, ..., zi)))
∀x(c(x) →
¬∃z1...∃zj+1(a(x, z1) ∧ ... ∧ a(x, zj+1)∧

distinct(z1, ..., zj+1)))

wheredistinct(z1, ..., zi) is an abbreviation of:

∧i−1
k=1 ∧i

m=i+1 (zk 6= zm)

We introduce distincti Skolem functions into the second
formula to eliminate existential quantifiers:

∀x∀y(c(x) ∧ a(x, y) → t(y)))
∀x(c(x) →

(a(x, f1
a (x)) ∧ ... ∧ a(x, f i

a(x))∧
distinct(f1

a (x), ..., f i
a(x))))

∀x∀z1...∀zj+1(c(x) →
(¬a(x, z1) ∨ ... ∨ ¬a(x, zj+1)∨

¬distinct(z1, ..., zj+1)))

We divide the conclusion part in the second formula as fol-
lows:
∀x(c(x) → a(x, f1

a (x))) ∧ . . .∧
∀x(c(x) → a(x, f i

a(x)))∧
∀x(c(x) → distinct(f1

a (x), ..., f i
a(x)))

Note that each function symbolfk
a (k = 1, ..., i) is

associated only with an attributea. That means that if
a(t, fk

a (t)) is derived fork andt then, for othera(t, f l
a(t))

for any l(l = 1, ..., i) can be derived as well since we can
get a proof ofa(t, f l

a(t)) from the proof ofa(t, fk
a (t)) by

replacing of occurrences offk
a in the proof ofa(t, fk

a (t))
by f l

a.
This means that it is sufficient to consider one represen-

tative rule∀x(c(x) → a(x, (fa(x))) in stead of∀x(c(x) →
a(x, (fk

a (x)))(k = 1, ..., i). Moreover, by abbreviat-
ing distinct(f1

a (x), ..., f i
a(x))) asat least(fa(x)), i), we

can translate the second formula into the following Horn
clauses:

∀x(c(x) → a(x, (fa(x)))

6

∀x(c(x) → at least(fa(x), i))

Then, the third formula leads to contradiction if and only
if formulas of the forma(x, z) with j + 1 distinct terms
in the second argumentz are derived. This is equivalent
to the fact thatat least(fa(x), i′) s.t. j < i′ is derived.
Therefore, the third formula is equivalent to the derivation
of contradiction in the following Horn clause:

∀x∀i′(c(x)∧at least(fa(x), i′)∧(j < i′) → contradiction)

Thus, the formulas with counting quantifiers can be trans-
lated into the following logic program:

t(Y) :- c(X),a(X,Y).
a(X,f a(X)) :- c(X).
at least(f a(X), i) :- c(X).
contradiction :-

c(X), at least(f a(X),I), j<I.
By partial evaluation ofa(X,Y) in the first rule by the sec-
ond rule, we get:

t(f a(X)):-c(X),c(X)
This is equivalent tot(f a(X)):-c(X) which is the first
rule in the resulting logic program. If there is a formula like

∀x(d(x) → ∃≥iz(a(x, z))),

it becomesa(X,f a(X)) :- d(X). and we could use
this rule for partial evaluation ofa(X,Y) . However, if we
do so, we get:

t(f a(X)):-c(X),d(X)
which is subsumed byt(f a(X)):-c(X) . So, we do not
have to consider this partial evaluation.

Therefore, contradiction in formula with counting quan-
tifiers is equivalent to the derivability ofcontradiction
in the following logic program:

t(f a(X)) :- c(X).
at least(f a(X), i) :- c(X).
contradiction :-

c(X), at least(f a(X),I), j<I.

7

Figure 2. Inconsistent UML Class Diagram

Figure 3. Minimal Inconsistent Set 1

8

Figure 4. Minimal Inconsistent Set 2

Figure 5. Example of Candidate Set of Deleted Rules

9

