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Abstract

This paper presents a generic model for clustering that requires no direct knowledge of the nature
or representation of the data. In lieu of such knowledge, therelevant-set clustering(RSC) model
relies solely on the existence of an oracle that accepts a query in the form of a data item, and returns
a ranked set of items relevant to the query. In principle, the role of the oracle could be played
by any similarity search structure, or even a commercial search engine whose ranking function and
relevancy scores are kept secret. The quality of cluster candidates, the degree of association between
pairs of cluster candidates, and the degree of association between clusters and data items are all
assessed according to the statistical significance of a form of correlation among pairs of relevant
sets and/or candidate cluster sets. A scalable clustering heuristic based on the RSC model is also
presented, and demonstrated for very large, high-dimensional datasets using a fast approximate
similarity search structure as the oracle.

1 Introduction

The performance and applicability of virtually all of the well-known, traditional data clustering solu-
tions depend heavily on specific properties or representations of the dataset. Some, such ask-means and
its variants [14, 16], require the use of specific measures of data similarity; others, such as the agglom-
erative method DBSCAN [5] and many hierarchical hybrid methods such as STING [17], BIRCH [18]
and CURE [8] pay a prohibitive computational cost when the representational dimension is high, due to
a reliance on data representations and search structures that do not scale well to higher dimensions. Still
others place assumptions on the distribution of the data that may or may not hold in practice.

Only relatively recently have methods been proposed that do not make heavy assumptions on the
nature of the data. The generic Patch Model (PM) and associated PatClust clustering heuristic assumes
only the existence of a pairwise similarity measure in order to produce data clusterings [11]. The key to
the genericity and performance of PatClust is the SASH approximate search structure [12], which uses
sampling techniques together with precomputed links to near neighbors to efficiently produce approx-
imate neighborhoods for query items even when the underlying representational dimension of the data
is very high. The SASH index relies on a pairwise distance measure, but otherwise makes no assump-
tions regarding the representation of the data. As PatClust relies only on the ranked neighbor lists for
generating and evaluating cluster candidates, and avoids direct reliance on the data representation, the
PatClust-SASH combination can scale to handle datasets of very large size and dimensionality.

This paper extends the generic model of [11] for clustering in the absence of explicit knowledge
of the nature or representation of the data. In lieu of such knowledge, the model relies solely on the
existence of an oracle that accepts a query in the form of a data item, and returns a ranked set of items
relevant to the query. In principle, the role of the oracle could be played by any similarity search



structure capable of generating neighborhood sets with respect to some similarity measure, or even a
commercial search engine whose ranking function and relevancy scores are kept entirely secret. Under
this relevant-set clustering(RSC) model, the quality of cluster candidates, the degree of association
between pairs of cluster candidates, and the degree of association between clusters and data items are
all assessed according to the statistical significance of a form of correlation among pairs of relevant sets
and/or candidate cluster sets.

In the next section, the RSC model itself is presented and contrasted with PM, and a heuristic
clustering method based on the model is presented in Section 3. In Section 4, the heuristic is tested on
a large protein sequence data set with large (but hidden) representational dimension, using the SASH
search structure as the oracle. The paper concludes with a discussion of the potential applications of
RSC to such problems as classification, integration of heterogeneous clustering results, cluster-based
querying, and navigation of large datasets.

2 The Relevant-Set Correlation Clustering Model

2.1 Assumptions and notation

Let S be a dataset drawn from some domainD. For every itemq ∈ S, we further assume the existence
of a unique ordering(q1, q2, . . . , q|S|) of the items ofS, wherei < j implies thatqi is deemed more
relevant or similar toq thanqj . In practical settings, the item most relevant toq is generallyq itself.
Nevertheless, unless otherwise stated, we will not require thatq1 = q.

The relevancy ranking forq induces a collection of setsQ(q, k) = {q1, . . . , qk} for each choice of
set size1 ≤ k ≤ |S|. With respect to the ranking, if a dataset query-by-example operation were to be
based at itemq, Q(q, k) would represent the top-k relevant set.Q(q, k) can also represent the result of
a k-nearest neighbor (k-NN) query forq with respect to some distance measuredist : D ×D → R≥0.
However, the RSC model makes no explicit use of the actual values of any distance function or other
scoring function used to determine relevancy rankings. The generic applicability of RSC follows from
its use of ranking information, andonlyranking information, to decide questions of the following nature:

• Given two subsetsA andB of S, how strong is the relationship betweenA andB?

• How strong is the mutual association among the items ofA?

• Which ofA andB constitutes the more significant aggregation of items?

• How strongly is itemv related to the aggregation of itemsA?

Although most of the concepts for the RSC model are original to this paper, some have been bor-
rowed from other models. To simplify the exposition of RSC, an accounting of the similarities and
differences between RSC and other models will be deferred to Section 2.8.

2.2 Measuring inter-set association

For many if not most application areas, individual items can often be naturally assigned to more than
one cluster. For example, a newspaper article concerning the ongoing stem cell research controversy
in the United States could meaningfully contribute to clusters formed around the larger concepts of
medical research, White House policy, the right-to-life movement, as well as the more narrow concept
of stem cells per se. Rather than simply regarding such items as an impediment to clustering, they serve
as the means by which the relationships between concepts (as represented by clusters of items) can be
identified and assessed.
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2.2.1 Confidence

Consider now two item setsA andB drawn fromS, each associated with some underlying concept
relevant to the domain. Even if no additional information is available regarding the nature ofA andB,
much in the same way as in association rule discovery [1], aconfidencerelationship fromA to B can
still be assessed according to the relative degree of overlap between the two sets:

C(A,B)
4
=
|A ∩B|
|A| .

If this confidence value is small, then there is little evidence of impact of the concept underlyingB upon
that underlyingA. On the other hand, if the confidence is large,B can be considered to be strongly
related toA.

The confidence measure can be interpreted in terms of the general notions of “precision” and “recall”
from information retrieval. LetA be the target item set of a query that returns item setB as a result.
Then the recall rate of the query isC(A,B), and the precision of the query isC(B,A).

Taken together, the two directed confidence values can be used to judge the qualitative relationship
between two cluster candidates: ifC(A,B) andC(B,A) are both high, then the concepts underlyingA
andB can be regarded as being similar. If only one of the two directed confidences is very high, one of
the concepts can be considered to be a sub-concept of the other. However, under the RSC model it will
often be more convenient to express the similarity between sets in terms of a single symmetric measure.

2.2.2 The cosine measure

A natural way of combining the two directed confidences between setsA andB into a single sym-
metric measure is by ‘averaging’ their orders of magnitudes. This yields the popularcosinesimilarity
measure [10]:

CM(A,B)
4
=

√
C(A,B) · C(B,A)

= |A∩B|√
|A| |B| .

Mut Note that whenA andB are equal in size,CM(A,B) = C(A,B) = C(B,A). If A andB are
identical, all three confidence values equal 1.

The cosine measure has a useful interpretation in terms of characteristic vectors of sets. Every item
of S can be associated with a coordinate of a vector space whose dimension is equal to the size ofS. A
subsetA of S can be represented by a zero-one characteristic vector in this space, where a coordinate
value of 1 indicates that the corresponding item is a member ofA, and a value of 0 indicates that the
item does not belong toA. If ~A and ~B are the respective characteristic vectors ofA andB, then

CM(A,B) = ~A· ~B
‖ ~A‖ ‖ ~B‖

= cos θ ~A, ~B,

whereθ ~A, ~B is the angle formed by the two vectors. The angle sizecos−1 CM(A,B) is known to satisfy
all the properties of a distance metric, including the triangle inequality.

2.2.3 Set membership correlation

The cosine measure can also be expressed in terms of the Pearson correlation between corresponding
entries of set characteristic vectors. For sequences of variables(x1, x2, . . . , xn) and (y1, y2, . . . , yn)
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with means̄x andȳ, respectively, the Pearson correlation is given by the following formula:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

=
∑n

i=1 xiyi − nx̄ȳ√
(
∑n

i=1 x
2
i − nx̄2)(

∑n
i=1 y

2
i − nȳ2)

.

Applying the formula to the characteristic vectors of setsA andB, and noting that
∑n

i=1 x
2
i =∑n

i=1 xi = nx̄ wheneverxi ∈ {0, 1}, we obtain the followingset correlationformula:

R(A,B) =
|A ∩B| − |A| |B|

|S|√
|A| |B|(1− |A|

|S| )(1−
|B|
|S| )

=
|S|√

(|S| − |A|)(|S| − |B|)

(
CM(A,B)−

√
|A| |B|
|S|

)
. (1)

In situations where the set sizes ofA andB are both small compared to the size of the domain (as
is often the case in clustering applications), their cosine measure and set correlation values are nearly
equal. The cosine measure can thus be legitimately viewed as a close variant of the Pearson correlation
for set membership.

2.3 Measuring intra-set association

When only relevancy ranking information is available for the items of a dataset, we can no longer make
use of existing measures of intra-cluster association based on density or other distance-based estimates
of the data distribution. Instead, RSC assesses the internal association of setA in terms of correlations
involving relevant sets based at the members ofA.

Intuitively speaking, if an itemv ∈ A is strongly associated with the remaining items ofA, it is
likely that the items ofS that are highly relevant tov also belong to setA. Alternatively, ifA as a whole
were to have a high degree of internal cohesion, one would expect many if not most of its items to have
relevant sets that overlap significantly with one another. These intuitions form the motivation for two
intra-set association measures under the RSC model.

2.3.1 First-order self-confidence

The first-order self-confidencemeasure assesses intra-set association as the expectation of the cosine
measure value between|A| and the relevant set of sizeA based at a randomly-selected item ofA:

SC1(A)
4
=

1
|A|

∑

v∈A

CM(A, Q(v, |A|)) (2)

=
1
|A|2

∑

v∈A

|A ∩ Q(v, |A|)|.

A self-confidence value of 1 indicates perfect association among the members ofA, whereas a value
approaching 0 indicates little or no internal association withinA. Using Equation (1), the self-confidence
can be expressed in terms of the Pearson correlation as:

SC1(A) =
|S| − |A|
|S| SR1(A) +

|A|
|S| , (3)
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where

SR1(A)
4
=

1
|A|

∑

v∈A

R(A, Q(v, |A|)),

the first-order self-correlation, is the expected correlation betweenA and the relevant set of size|A|
based at a randomly-selected item ofA.

2.3.2 Second-order self-confidence

Thesecond-order self-confidencemeasure assesses intra-set association as the expectation of the cosine
measure value between the relevant sets of two items randomly selected fromA, with replacement,
where the relevant sets are of the same size asA. Although a formulation involving only unordered
pairs of distinct items is possible, the following definition will be seen to have useful properties in the
context of ranking of cluster items:

SC2(A)
4
=

1
|A|2

∑

v∈A

∑

w∈A

CM(Q(v, |A|), Q(w, |A|)) (4)

=
1
|A|3

∑

v∈A

∑

w∈A

|Q(v, |A|) ∩ Q(w, |A|)|.

Again, a value of 1 indicates perfect association among the members ofA, whereas a value approaching
0 indicates little or no internal association withinA. The second-order self-confidence can be expressed
in terms of the Pearson correlation as:

SC2(A) =
|S| − |A|
|S| SR2(A) +

|A|
|S| , (5)

where

SR2(A)
4
=

1
|A|2

∑

v∈A

∑

w∈A

R(Q(v, |A|), Q(w, |A|)),

the second-order self-correlation, is the expected correlation between the relevant sets of two items
randomly selected fromA, with replacement, where the relevant sets are of the same size asA.

2.4 Significance testing

In general, when making inferences involving Pearson correlation, a high correlation value alone is
not considered sufficient to judge the significance of the relationship between two variables. When the
number of variable pairs is small, it is much easier to achieve a high value by chance than when the
number of pairs is large. For this reason, to help interpret correlation scores, statisticians resort to tests
of significance such as thet-test that account for variation in the number of pairs. The correlation score
is considered significant if it deviates sufficiently from zero (randomness), as measured by thet statistic.

As can be seen from their formulations in terms of correlations, a significance test would also be
useful for both forms of self-confidence. The need for a significance test is illustrated by the two-
dimensional example in Figure 1, where the relevancy ranking is induced by the Euclidean distance
measure. SetA consists of 20 points with first-order self-confidence and self-correlation scores of
0.8525 and 0.815625, respectively, whereas setB consists of only 5 points but has higher self-confidence
and self-correlation scores, both equal to 1. SetC consists of 10 points with self-confidence 0.45 and
self-correlation7

18 ≈ 0.3889. Of the three sets,A appears to constitute the most significant aggregation
of points, whileC appears to be the least significant aggregation.
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C

B

A

Figure 1: SetA has smaller first-order self-confidence and self-correlation thanB, but is a more signif-
icant aggregation.

2.4.1 The randomness hypothesis

One might hope to make use of existing tests for the significance of Pearson correlation for judging
the significance of self-confidence values. However, in the correlation formulations of (3) and (5), the
number of variable pairs corresponds to the size of the domain,|S|, and is usually fixed. For self-
confidence values, any significance test must take into account differences in the size of the candidate
item sets themselves.

During the clustering process, instead of verifying whether or not the self-confidence of a candidate
set meets a minimum significance threshold, we will more often need to test whether one candidate has a
more significant self-confidence value than another. To do this, we test against the assumption that each
relevant set contributing to the self-confidence score is independently generated by means of uniform
random selection from among the available items. In practice, of course, the relevant sets are far from
being random. However, this admittedly unlikely situation serves as a convenient reference point from
which the significance of actual self-confidence values can be assessed.

Under the randomness hypothesis, the mean and standard deviation of the self-confidence score
can be calculated (as will be shown below). Standard scores (also known asZ-scores) of the two actual
candidates can then be generated and compared. The more significate candidate would be the one whose
standard score is highest — that is, the one whose self-confidence score exceeds the expected value by
the greatest number of standard deviations.

2.4.2 First-order significance of sets

Assume that we are given a fixed setU ⊆ S and a second setV chosen uniformly at random (without
replacement) from the items ofS. ThenX = |U ∩ V | is a hypergeometrically-distributed random
variable with expectation

E[X] =
|U | |V |
|S|

and variance

Var [X] =
|U | |V | (|S| − |U |)(|S| − |V |)

|S|2(|S| − 1)
.

Consider now the first-order self-confidence valueSC1(A) of some non-empty subsetA ⊆ S, as
expressed by the formula (2). LetSC1(A) denote the first-order self-confidence value forA under the
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assumption that each relevant setQ(v, |A|) is independently replaced by a setQ(v, |A|) consisting of
|A| items selected uniformly at random fromS. ThenSC1(A) is a random variable with expectation

E[SC1(A)] =
1
|A|2

∑

v∈A

E[|A ∩ Q(v, |A|)|]

=
1
|A|2

∑

v∈A

|A|2
|S| =

|A|
|S|

and variance

Var [SC1(A)] =
1
|A|4

∑

v∈A

Var [|A ∩ Q(v, |A|)|]

=
1
|A|4

∑

v∈A

|A|2(|S| − |A|)2
|S|2(|S| − 1)

=
(|S| − |A|)2

|A| |S|2(|S| − 1)
.

With respect to the randomness hypothesis, the significance value forSC1(A) is thus the standard
score

Z1(A)
4
=

SC1(A)− E[SC1(A)]√
Var [SC1(A)]

=
|S|

|S| − |A|
√
|A| (|S| − 1)

(
SC1(A)− |A|

|S|
)
.

Expressed in terms of the Pearson correlation using (3), the significance value simplifies to

Z1(A) =
√
|A| (|S| − 1) SR1(A).

Under the same assumptions, it is not difficult to show that the standard score forSR1(A) also equals
Z1(A), and thus there is no difference between the confidence formulation and the correlation formula-
tion when it comes to testing the significance of an aggregation of items. Accordingly, we shall simply
refer to the valueZ1(A) as thefirst-order significanceof A.

Returning to the example in Figure 1, the first-order significances of the three sets areZ1(A) =
783
160

√
55 ≈ 36.29, Z1(B) = 3

√
55 ≈ 22.25, andZ1(C) = 7

6

√
110 ≈ 12.24. These values conform

with our earlier intuition regarding the relative significance ofA,B andC.
The randomness hypothesis, as stated above, does not take into account the possibility that the

relevant setQ(v, |A|) may be guaranteed to containv. If such a guarantee were provided, the randomness
hypothesis could be varied so thatQ(v, |A|) comprisedv together with|A|− 1 items selected uniformly
at random from among the items ofS \ {v}. Moreover, if the setA were itself known to be a relevant
set of some itema ∈ S, then one may opt to select random relevant sets only for the|A| − 1 summation
terms wherev 6= a. These choices lead to slightly different (and less elegant) formulations of the
significance measure, the details of which are omitted here.

2.4.3 Second-order significance of sets

Consider next the second-order self-confidence valueSC2(A) of some non-empty subsetA ⊆ S, as
expressed by the formula (4). LetSC2(A) denote the second-order self-confidence value forA under

7



the randomness hypothesis. ThenSC2(A) is a random variable with expectation

E[SC2(A)] =
1
|A|3

∑

v∈A

∑

w∈A

E[|Q(v, |A|) ∩ Q(w, |A|)|]

=
1
|A|3

∑

v∈A

∑

w∈A

|A|2
|S| =

|A|
|S|

and variance

Var [SC2(A)] =
1
|A|6

∑

v∈A

∑

w∈A

Var [|Q(v, |A|) ∩ Q(w, |A|)|]

=
1
|A|6

∑

v∈A

∑

w∈A

|A|2(|S| − |A|)2
|S|2(|S| − 1)

=
(|S| − |A|)2

|A|2|S|2(|S| − 1)
.

The significance value forSC2(A) is the standard score

Z2(A)
4
=

SC2(A)− E[SC2(A)]√
Var [SC2(A)]

=
|S|

|S| − |A| |A|
√
|S| − 1

(
SC2(A)− |A|

|S|
)
.

Expressed in terms of the Pearson correlation using (5), the significance value simplifies to

Z2(A) = |A|
√
|S| − 1 SR2(A).

The standard score forSR2(A) also equalsZ2(A), and thus we can refer to the valueZ2(A) as the
second-order significanceof setA.

As was the case with first-order significance, the randomness hypothesis does not take into account
the possibility that the relevant setQ(v, |A|) may be guaranteed to containv, or thatR(Q(v, |A|), Q(w, |A|))
always equals 1 wheneverv = w. If such a guarantee were provided, the randomness hypothesis could
be varied so that the contributions are dropped for the casev = w, and so thatQ(v, |A|) comprisedv
together with|A| − 1 items selected uniformly at random from among the items ofS \ {v}. This choice
leads to a slightly different formulation of second-order significance, the details of which are omitted.

2.5 Inter-set significance

The significance of the inter-set measuresCM(A,B) and R(A,B) can also be analyzed with respect
to an assumption of randomness. LetCM(A,B) denote the cosine value betweenA andB under the
assumption that|B| is independently replaced by a set consisting of|B| items selected uniformly at
random fromS. ThenCM(A,B) is a random variable with expectation

E[CM(A,B)] =

√
|A| |B|
|S|

and variance

Var [CM(A,B)] =
(|S| − |A|)(|S| − |B|)

|S|2(|S| − 1)
.
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The expectation and variance do not change if|A| is selected at random instead ofB, or even if both
sets are selected at random.

The significance value forCM(A,B) is the standard score

Z(A,B)
4
=

CM(A,B)− E[CM(A,B)]√
Var [CM(A,B)]

= |S|
√

|S| − 1
(|S| − |A|)(|S| − |B|)

(
CM(A,B)−

√
|A| |B|
|S|

)

=
√
|S| − 1 R(A,B).

Under the same assumptions, it is not difficult to show that the standard score forR(A,B) also equals
Z(A,B), and thus there is no difference between the confidence formulation and the correlation formu-
lation when it comes to testing the significance of the association between two sets. Interestingly, since
the coefficient

√
|S| − 1 does not depend onA orB, the analysis shows that the set correlation measure

R(A,B) fully captures the significance of the relationship between two subsets of|S|.

2.6 Partial significance

Within any highly-significant setA, the contributions of some relevant sets to the self-confidence (or
self-correlation) scores may be substantially greater than others. Those items whose relevant sets con-
tribute highly can be viewed as better associated with the concept underlying aggregationA than those
whose contributions are small. However, to compare the contributions of a single item with respect
to several different sets, or the contributions of several different item-set pairs, a test of significance is
needed.

2.6.1 First-order partial significance

The contribution toSC1(A) attributable to itemv ∈ A is given by

t1(A, v)
4
=

1
|A|CM(A, Q(v, |A|)).

The first-order significanceof the relationship betweenv andA is defined as the standard score for
t1(A, v) under the randomness hypothesis:

Z1(A, v) =
√
|S| − 1 R(A, Q(v, |A|)).

The details of the derivation are omitted, as the analysis is essentially the same as that ofCM(A,B), with
B = Q(v, |A|). Note that the same standard score would be obtained when considering the contributions
of v to SR1(A) instead ofSC1(A).

The first-order significance ofA can be concisely expressed in terms of the sum of its partial signif-
icances:

Z1(A) =
1√
|A|

∑

v∈A

Z1(A, v). (6)
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2.6.2 Second-order partial significance

The contribution toSC2(A) made by itemv ∈ A is given by

t2(A, v)
4
=

1
|A|2

∑

w∈A

CM(Q(v, |A|), Q(w, |A|))

=
1
|A|3

∑

w∈A

|Q(v, |A|) ∩ Q(w, |A|)|.

Let t2(A, v) denote the associated random variable under the randomness hypothesis. Its expectation is

E[t2(A, v)] =
1
|A|3

∑

w∈A

E[|Q(v, |A|) ∩ Q(w, |A|)|]

=
1
|A|3

∑

w∈A

|A|2
|S| =

1
|S|

and its variance is

Var [t2(A, v)] =
1
|A|6

∑

w∈A

Var [|Q(v, |A|) ∩ Q(w, |A|)|]

=
1
|A|6

∑

w∈A

|A|2(|S| − |A|)2
|S|2(|S| − 1)

=
(|S| − |A|)2

|A|3|S|2(|S| − 1)
.

Thesecond-order significanceof the relationship betweenv andA is the standard score fort2(A, v),

Z2(A, v)
4
=

t2(A, v)− E[t2(A, v)]√
Var [t2(A, v)]

=
|S|

|S| − |A|
√
|A| (|S| − 1)

(
CM2(A, v)− |A|

|S|
)

=
√
|A| (|S| − 1) R2(A, v),

where

CM2(A, v)
4
=

1
|A|

∑

w∈A

CM(Q(v, |A|), Q(w, |A|))

is the average of the cosine measure values between the relevant setQ(v, |A|) and all other relevant sets
of the same size based at items ofA, and

R2(A, v)
4
=

1
|A|

∑

w∈A

R(Q(v, |A|), Q(w, |A|))

is the average of the correlation between these same pairs of relevant sets. Once again, the same standard
scoreZ2(A, v) would be obtained when considering the contributions ofv to SR2(A) instead ofSC2(A).

In terms of its partial significances, the second-order significance ofA reduces to

Z2(A) =
1√
|A|

∑

v∈A

Z2(A, v). (7)
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Figure 2: Rankings of points according to first-order partial significance with respect toA. The value
ranges shown are of|A ∩ Q(v, |A|)|, which determines the same ranking asZ1(A, v).

2.7 Cluster queries and cluster reshaping

Partial significances, whether first-order or second-order, can be directly used to rank the items ofA
according to their level of association withA, much like the items of a relevant set are ranked with
respect to an individual query item. Moreover, the ranking can be extended to all items ofS, as the
definitions of partial significance are meaningful regardless of whetherv is actually a member ofA. In
this case,A can be regarded as a form ofcluster querythat returns a set of items ranked according to
Z1(A, v) or Z2(A, v). Although in principleA could be any set of items, equation (6) indicates that
the relevancy scores are high only whenA is itself a significant aggregation of items — that is, when
A is itself a ‘reasonably good’ cluster candidate. From the definition of first-order partial significance,
ranking according toZ1(A, v) is easily seen to be equivalent to ranking according toCM(A, Q(v, |A|))
or R(A, Q(v, |A|)).

Figure 2 illustrates the first-order cluster query ranking for the point setA from Figure 1. In this
example, the partial significance ranking manages a rough approximation of the original Euclidean
distance ranking as measured from a central location within the cluster, despite the lack of knowledge
of the individual Euclidean distance values themselves.

It is worth noting that two items lying outsideA (y andz) have higher partial significances than
one item contained inA (item x). This suggests that partial significances may be used to ‘reshape’
a candidate cluster set, by replacing poorly-associated members with other, more strongly-associated
items, thereby improving the overall cluster quality. Let us consider the situation whereA has been
reshaped to yield a new candidate setA′. To assess the quality ofA′, the average association can be
computed between setA and relevant sets based at items ofA′, instead of at items ofA as in the original
first-order definitions of self-confidence and self-correlation, as follows:

SC1(A,A′)
4
=

1
|A′|

∑

v∈A′
CM(A, Q(v, |A|));

SR1(A,A′)
4
=

1
|A′|

∑

v∈A′
R(A, Q(v, |A|)).
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Starting from either of these two association measures, based on the random relevant set hypothesis,
one can derive the following significance score for the reshaped setA′. The details of the derivation are
omitted, as they are very similar to those of equation (6).

Z1(A,A′) =
1√
|A′|

∑

v∈A′
Z1(A, v). (8)

An important implication of equation (8) is that for any fixed candidate size|A′| = k, the highest
possible significance is attained by lettingA′ consist of thosek items ofS having the highest first-order
partial significance values with respect toA.

Returning to the example of Figure 2, the reshaped candidate setA′ = (A ∪ {y, z}) \ {x} has sig-
nificance valueZ1(A,A′) = 137

56

√
33 ≈ 37.18, which is an improvement over the original significance

scoreZ1(A,A) = Z1(A) ≈ 36.29. It can be verified thatA′ attains the maximum significance score
over all possible reshapings ofA.

It should be noted that there seems to be no simple, meaningful way of modifying the definitions of
second-order self-confidence and self-correlation to accommodate cluster reshaping — the individual
confidences and correlations computed do not explicitly rely on the membership of setA, making it
difficult to establish a relationship betweenA′ andA.

2.8 Relationship to previous models

The directed confidence and first-order self-confidence measures of the RSC model are derived from
the confidence and self-confidence measures introduced under the Patch Model (PM) of [11]. PM
self-confidence is defined in terms of what appears as directed confidence under RSC, with all cluster
candidates and relevant sets restricted to being neighborhoods defined according to a pairwise distance
metric over the item set. PM also employs directed confidence as an item-to-cluster relevancy measure,
a choice justified by the analysis of RSC first-order cluster query ranking. The main improvements of
RSC over PM consist of the statistical framework presented in this section, including the concepts of
set correlation, self-correlation, and significance testing, as well as the notions of second-order self-
confidence, and cluster reshaping based on partial significance.

The origins of the directed confidence measure itself can be traced to the shared-neighbor merge
criterion of Jarvis and Patrick [13] used in agglomerative clustering. The criterion states that two clusters
can be merged if they contain equal-sized subclustersA andB such thatC(A,B) ≥ mk, wherek is
the size ofA andB, and0 < m ≤ 1

k is a fixed merge threshold parameter. As is often the case
with agglomerative clustering methods, this merge criterion can result in clusters composed of chains of
subclusters having little or no association with one another. Other shared-neighbor merge criteria have
been proposed in an attempt to compensate for this chaining effect [4, 9]. Although the RSC model
ultimately depends on shared neighbor information for its cluster quality assessment, the clustering
heuristics presented in the next section are not agglomerative, and do not suffer from chaining.

3 Clustering Under the RSC Model

Traditionally, a clustering is considered to be of high quality when pairs of items belonging to a com-
mon cluster are mutually well-associated, while pairs of items belonging to different clusters are well-
differentiated. In the previous section, we saw how the RSC model can be used to assess the similarity
and relative degree of internal association of any two cluster candidate item sets in isolation. We now
turn our attention to the problem of generating a full data clustering based on this model.
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3.1 Scalability issues

As does the PM-based PatClust heuristic method of [11], the RSCbased clustering method presented in
this section seeks to generate as many clusters as possible, subject to the following restrictions:

• All cluster candidate item sets should meet minimum threshold values of cluster quality.

• All pairs of cluster candidates should meet maximum threshold values on cluster similarity.

Under RSC, cluster quality can be measured as a function of significance, self-correlation, and/or self-
confidence (first- or second-order), whereas only the first-order self-confidence measure is available
under PM. Cluster similarity can be measured in terms of significance, correlation and or confidence
under RSC, but only confidence under PM. Nevertheless, regardless of the measures used, under both
models each cluster can be thought to compete for ‘territory’ within the space covered by the dataset. If
a region of the data is sufficiently well-associated for a subset to meet or exceed the minimum threshold
on cluster quality, then a cluster should be chosen to represent the region. However, if two or more
highly-similar cluster candidates arise from within the region, then only one of the candidates should be
retained.

The selection of cluster candidates can be viewed within the framework of the well-studied family
of independent vertex set problems for graphs. Those cluster candidate item sets whose quality scores
meet the minimum threshold are mapped onto vertices of a graph, with assigned weights equal to the
quality scores. A vertex pair is joined by an edge wherever the inter-cluster similarity scores of the cor-
responding cluster candidates exceeds the maximum threshold. Clustering thus reduces to the problem
of selecting a subset of graph vertices that maximizes some objective function involving such variables
as subset size and vertex weights, subject to the restriction that no graph edge may have both of its end-
points selected. Even for the simple case where only the size of the subset is to be maximized (ignoring
the vertex weights), we are left with the classical maximum independent vertex set problem, which is is
known to be NP-hard [6].

The inherent hardness of the cluster candidate selection problem is not the only impediment to
the scalability of RSC-based (and PM-based) clustering. In practice, it is not possible to consider all
possible data subsets as cluster candidates; some form of restriction on the eligibility of cluster candidate
item sets is needed. Also, calculating the significance of large candidate cluster sets is too expensive
when the number of such sets is high, since the number of relevant sets involved is linear in the size
of the candidate set, and the total size of the relevant sets is quadratic. For these reasons, practical
applications of the RSC model thus unavoidably require the development of heuristics (as opposed to
‘exact’ techniques) whose design choices are driven by the needs of efficiency and scalability.

3.2 Scaling via sampling

The heuristic described in the remainder of this section,Greedy Relevant Set Correlation(GreedyRSC),
serves as but one example of a practical application of the RSC clustering model. As GreedyRSC will
turn out to rely heavily on cluster reshaping for computing final cluster memberships, henceforth only
first-order formulations will be considered when discussing RSC significances, self-confidences and
self-correlations.

The overall strategy and design choices of GreedyRSC resemble those of the PM-based PatClust
heuristic method of [11]: both heuristics employ a greedy strategy for cluster selection whereby can-
didates with the highest quality are selected first, and any candidates found to be overly-similar to a
previously-selected candidate are declared to be redundant, and then eliminated.

For the sake of efficiency and scalability, both PM and GreedyRSC incorporate the following addi-
tional heuristic design choices:
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• Both methods avoid the quadratic cost of cluster quality evaluation by strictly limiting the size of
all relevant sets considered to be at most some constantb > 0.

• Both allow the discovery of clusters of arbitrarily-large size by first computing small tentative
clusters with respect to a range of data samples of varying sizes. PatClust uses these tentative
clusters (calledpatches) as estimates of full-sized clusters, but does not provide the full contents
of these clusters. GreedyRSC, on the other hand, treats the tentative clusters aspatternsfor the
explicit generation of full-sized clusters, by reshaping the tentative clusters with respect to the full
dataset using the techniques of Section 2.7.

• Both methods limit the number of candidate clusters considered by using only relevant sets of
sample items as the eligible candidate patches or patterns.

The GreedyRSC method also seeks to reduce the total size and number of candidate cluster sets gen-
erated, by eliminating redundant patterns and cluster candidates at intermediate stages of the clustering
process.

The use of sampling for RSC-based clustering can be intuitively justified as follows. LetC be a
true (unknown) cluster of high quality, as evidenced by its meeting a high minimum first-order self-
confidence threshold. A high quality score implies that the relevant sets of many cluster members are
in mutual agreement to a high degree, so much so that if the setC were replaced by one of these
relevant sets (call itC ′ = Q(q, |C|)), that the remaining elements would likely still be in agreement with
it. Restricting the relevant set items (includingC ′) to a sample of the dataset still has the potential for
discovering these agreements if the intersections between the relevant sets and the sample are sufficiently
large. More precisely, we consider relevant sets of fixed sizet = m|C|

n with respect to a sample of sizem
taken from the full dataset (of sizen), and focus our attention onC ′′ = Q′′(q, t), whereQ′′(q, t) denotes
thet items most relevant toq within the sample. The self-confidence value ofC ′′, using relevant sets of
sizet drawn from the sample, serves as an estimate of the self-confidence value ofC, using relevant sets
of size|C| drawn from the full dataset. In this fashion,C ′′ serves as a pattern from which the members
of C can be estimated, by reshapingC ′′ with respect to the full set as described in Section 2.7.

If we are to obey the restriction that all relevant sets be limited in size to at most some constant,
then in order to discoverC, the sample sizes should be chosen so that for at least one sample, the value
t falls into a constant-sized range. One way of covering all possible values oft (and thereby allowing
the discovery of clusters of arbitrary size) is to create a hierarchy of subsetsH = {S0, S1, . . . , Sh−1}
by means of uniform random sampling, such that:

• S0 is identical toS, andSi ⊂ Si−1 for all 0 < i ≤ h− 1;

• the number of samplesh is chosen to be the largest integer such that|Sh−1| > c, for some constant
c > 0;

• the size ofSi is equal tob |S|
2i c for all 0 ≤ i ≤ h− 1;

• the pattern sizest covered by samplei fall in the range0 < a < t < b, wherea andb are chosen
such thatb > 2a.

This last condition ensures that all cluster sizes betweena andb2h−1 are covered by some pattern size
with respect to at least one of the samples.

To support the sampling heuristic, for each sampleSi, we assume the existence of an oracleOi that
accepts any query itemq ∈ S, and returns a ranked relevant set consisting ofb items ofSi. The samples
sets can optionally be selected and maintained by the oracles themselves.
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As a final observation regarding the benefits of sampling, we note that a reasonable restriction on
inter-cluster similarity implies that only one pattern need be retained for any given item-sample com-
bination. For any itemq, we haveCM(Q(q, a), Q(q, b)) =

√
a
b , even when the relevant sets are drawn

from a sample of the dataset. If a maximum threshold valueχ is placed the on the allowable cosine
value between any two clusters (including patterns), ifa ≥ bχ2, then at most one choice of pattern
size can be made for anyq with respect to any given sample. For example, the condition holds for the
convenient choicesb = 4a andχ ≤ 0.5. In the overview of the GreedyRSC method below, we will
assume that these parameters have been chosen so as to justify the retention of no more than one pattern
per item-sample combination.

3.3 The GreedyRSC heuristic

1. For each sample setSi, do the following:

(a) Relevant sets.
For each itemq ∈ S, use oracleOi to generate a relevant setRq,i for q with respect to the
setSi, such that|Rq,i| = b for some constant0 < b < c.

(b) Inverted relevant sets.
Produce a collection of inverted relevant setsIv,i, whereq ∈ Iv,i if and only if v ∈ Rq,i.

(c) Pattern generation.
LetRq,i,t ⊆ Rq,i denote the relevant set consisting of thet highest-ranked items ofRq,i, for
any0 < t ≤ b. Compute the value oft that maximizes the significance scoreZ1(Rq,i,t) over
all a ≤ t ≤ b. LetPq,i be the set at which the maximum is attained. Ifa < |Pq,i| < b and if
the significance score meets the minimum threshold value, then designatePq,i as the pattern
of q with respect to sampleSi (otherwise,q is not assigned a pattern with respect toSi).

(d) Redundant pattern elimination.
Iterate through the patterns ofSi in decreasing order of significance. For patternPv,i, use
the inverted relevant setsI∗,i to determine all other lower-ranked patterns sharing items with
Pv,i. If the inter-set significance scoreZ1(Pv,i, Pw,i) exceeds the maximum threshold value,
then deletePw,i.

(e) Pattern reshaping.
For every surviving patternPv,i, use the inverted relevant setsI∗,i to determine those items
w from the full dataset for whichRw,i,pv shares members withPv,i, wherepv denotes the
size ofPv,i. Sort these items in decreasing order of their item-to-set significance withPv,i,
namelyZ1(Pv,i, Rw,i,pv). LetCv,i,t denote the set consisting of thet highest-ranked items
in this ordering. Reshape the pattern into a cluster candidate set by computing the value oft
that maximizes the significance scoreZ1(Pv,i, Cv,i,t); letCv,i denote this cluster candidate.

(f) Redundant cluster candidate elimination.
Iterate through the cluster candidates in decreasing order of the significanceZ1(Pv,i, Cv,i).
For candidateCv,i, use inverted cluster membership lists to determine all other lower-ranked
candidates sharing items withCv,i. If the inter-set significance scoreZ1(Cv,i, Cw,i) exceeds
the maximum threshold value, then deleteCw,i.

2. Integration across samples.
Sort all surviving cluster candidates produced across all samplesSi, in decreasing order of the
significance scoresZ1(Pv,i, Cv,i). For candidateCv,i, use inverted cluster membership lists to
determine all other lower-ranked candidates sharing items withCv,i. If the inter-set significance
scoreZ1(Cv,i, Cw,i) exceeds the maximum threshold value, then deleteCw,i.
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3.4 Complexity analysis

Over all executions of step 1(a), a query to the oracle is made for each item ofS with respect to each
sample setSi. In general, ifφ(i) represents the average cost of the queries taken over setSi, the total
cost is proportional ton

∑h−1
i=0 φ(i). If the oracle is implemented as a distance-based ranking using

sequential search, the total number of distances computed would be no more thanO(n2). However, if
fast approximate search structures are used to limit the cost of an individual query, a lower complexity
can be realized. For example, limiting the average query timeφ(i) to beO(b + h − i) results in an
overall cost ofO(bn logn+ n log2 n) distances computed.

Producing the inverted relevant sets in step 1(b) requires a total ofO(bn log2 n) operations. For
each item, with respect to each sample, determining the candidate pattern size in step 1(c) requires
O(b2) operations, for a total ofO(b2n logn).

The elimination of redundant patterns in step 1(d) requires the intersection to be computed between
Pv,i and every other pattern containing at least one member ofPv,i, as determined using the inverted
lists for the members ofPvi . If ψw,i is the size of the inverted member list for itemw ∈ Si, then the
total number of contributions to intersections that can be ascribed tow is no more thanψ2

w,i. Summing
these contributions over all items ofSi, and noting that the average inverted list size is bounded byb,
we obtain

∑
w∈S ψ

2
w,i ≤ (b2 + σ2

i )n, whereσ2
i is the variance of the sizes of the inverted member lists

of members ofSi. Lettingσ2 = 1
h

∑
0≤i<h σ

2
i be the average of these variances, we can bound the total

cost of this step byO((b2 + σ2)n logn).
The cluster reshaping step 1(e) is performed by finding all patternsPw,i intersectingPv,i, comput-

ing their correlations withPv,i, and then sorting the correlations. The bound on the cost of eliminat-
ing redundant patterns in step 1(e) also applies to this step, except for the additional work of sorting
the accumulated correlations. The total number of items to be sorted for each sampleSi is at most
bn, the total size of all member lists. The total cost of sorting correlations over all samples is thus
O(bn log(bn) log n). Sincelog b is of ordero(logn), this simplifies toO(bn log2 n).

The cost of eliminating redundant cluster candidates in step 1(f) can be accounted for in a similar
manner as for patterns in step 1(d), with clustersCv,i taken in place of patternsPv,i. Here, letξv,i be
the size of the inverted cluster membership list associated withv at the time of execution of step 1(f) for
sampleSi. Letting τ2

i be the variance of the values ofξv,i over allv ∈ Si, and noting that the average
inverted list size remains bounded byb, we observe that the cost for sampleSi is of orderO((b2+τ2

i )n).
Letting τ2 = 1

h

∑
0≤i<h τ

2
i be the average of the variances over all samples, we obtain a bound for the

total cost of this step inO((b2 + τ2)n log n). The bounds for steps 1(e) and 1(f) also apply to the final
candidate pruning performed in step 2.

Overall, disregarding the preprocessing time required for computing relevant sets, the execution
time for GreedyRSC is bounded byO((b2 +σ2 +τ2)n logn+ bn log2 n). Since the standard deviations
σi andτi are typically of the order of the meanb in practice,σ andτ can also be estimated as roughly
Õ(b), for an overall cost bound of̃O(b2n logn + bn log2 n). The observed cost is dominated by the
computation of relevant sets in step 1(a), and the first phase of redundant cluster candidate elimination
in step 1(f).

4 Experimental Results

The GreedyRSC heuristic was implemented and tested on a dataset consisting of 378,659 sparse feature
vectors on 40,000 attributes, each vector representing a bacterial open reading frame (protein sequence).
Each vector value was derived from a BLAST similarity score of the sequence with respect to a reference
sequence drawn from the same set, according to the methods outlined in [2, 15]. Values below a certain
minimum threshold were zeroed out, producing an average of roughly 125 non-zero attributes per vector.
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The role of the query oracle was played by a SASH approximate similarity search structure, using
the vector angle as the pairwise similarity measure. The SASH was chosen due to its ability to handle
data of extremely high dimensionality directly, without recourse to dimensional reduction techniques.
The node degree of the SASH was set to 16. The SASH query performance was then tuned to a speedup
of roughly 30 times over sequential search, for a recall rate of approximately 75%. The maximum
pattern size was set tob = 100. For more details on the SASH search structure and its uses, see [12].

For the implementation, a cluster candidateC was selected only if it met minimum thresholds on
two parameters: self-confidence and normalized squared set significance. The normalized squared set
significance is obtained from the set significanceZ1(C) or Z1(C,C ′) by dividing by

√
|Si| − 1 and

then squaring the result; here,Si is the sample from which the cluster pattern derives. For the purposes
of comparing the significance of clusters deriving from the same sample, or for cluster reshaping, the
outcome when using normalized squared significance is the same as for the original first-order set sig-
nificance. However, the normalized squared significance is interesting in that it equals|C| whenever
the self-confidence ofC equals one. Setting a normalized squared significance threshold ofk is thus
able to produce clusters of size as small ask, provided that the relevant sets of their items are in perfect
agreement. In the experiments, the minimum threshold value was chosen as 4. The clusters were also
required to achieve a minimum self-confidence score of 0.4.

Cluster similarity was assessed by means of normalized inter-set significance (that is, the set corre-
lation). A maximum threshold of 0.5 was applied.

The GreedyRSC implementation produced 8910 clusters for the protein sequence dataset, an average
of one cluster for roughly every 42.5 sequences. Figure 4 shows a plot of the sizes of the result clusters,
sorted from largest to smallest. In the same diagram, the normalized squared significances of the clusters
are also plotted. Most of the clusters follow the Zipf distribution (the exceptions being the very largest
clusters produced). The C++ implementation required approximately 18 hours of computation on a
3.0GHz single-processor workstation running Windows XP, as well as roughly 1.6Gb of main memory
and 22Gb of disk space.

As an example of the clusters produced by GreedyRSC, the contents of the cluster of median size
are listed in Figure 3. With respect to the cluster, the rank and normalized significance (correlation)
of each member sequence is given, together with the cumulative normalized squared significance that
would result if the cluster boundary were drawn just after the sequence in question. Finally, annotations
are given for the sequences where available. Note that the function of many of the sequences in the
cluster are unknown, although the top-ranked cluster members are otherwise in agreement. Clusters for
which some of the sequences have unknown functions, but the remainder have a common functionality,
are particularly interesting in that the unknown functionalities can be predicted in light of the known
functionalities.

5 Discussion and Conclusion

We conclude with a discussion of potential applications and other issues involving the RSC model that
merit further investigation.

5.1 Classification

As a byproduct of the GreedyRSC cluster reshaping step, every item whose relevant set intersects a
cluster pattern is listed as a potential member of the cluster; the reshaping step determines whether or
not the item is accepted as a cluster member. Regardless of whether or not the item is accepted, the
significance of its relationship with the cluster is computed. This information can be saved with each
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Cluster size: 20
Normalized squared significance: 13.7042
Self-confidence: 0.827778
Pattern size: 9
Sample size: 378,659

Rank Corr NSqSig Annotation

1 1.000 1.000 molybdopterin oxidoreductase, molybdopterin binding subunit — Molybdopterin oxidoreductase — Pyrobaculum
aerophilum IM2

2 1.000 2.000 tetrathionate reductase subunit A — Molybdopterin oxidoreductase — Salmonella enterica subsp. enterica serovar
Typhi CT18

3 1.000 3.000 TtrA — Molybdopterin oxidoreductase — Pasteurella multocida PM70
4 1.000 4.000 tetrathionate reductase subunit A — Molybdopterin oxidoreductase — Salmonella enterica subsp. enterica serovar

Typhi Ty2
5 1.000 5.000 hypothetical protein — Enterococcus faecalis V583
6 1.000 6.000 hypothetical protein — Molybdopterin oxidoreductase — Aeropyrum pernix K1
7 1.000 7.000 putative tetrathionate reductase, subunit A — Molybdopterin oxidoreductase — Vibrio parahaemolyticus O3:K6 RIMD

2210633 chromosome 1
8 1.000 8.000 tetrathionate reductase complex, subunit A — Molybdopterin oxidoreductase — Salmonella typhimurium LT2
9 1.000 9.000 molybdopterin oxidoreductase, molybdopterin binding subunit, putative — Molybdopterin oxidoreductase — Ar-

chaeoglobus fulgidus DSM 4304
10 0.889 9.779 hypothetical protein — Sulfolobus tokodaii 7
11 0.778 10.343 hypothetical protein — Leptospira interrogans lai 56601 chromosome 1
12 0.778 10.915 hypothetical protein — Escherichia coli O157:H7 RIMD 0509952
13 0.778 11.491 hypothetical protein — Zn-finger, C2H2 type — Sulfolobus solfataricus P2
14 0.778 12.071 hypothetical protein — Escherichia coli O157:H7 EDL933
15 0.667 12.452 Oxydoreductase, putative — Sulfolobus solfataricus P2
16 0.667 12.840 hypothetical protein — Protein of unknown function DUF192 — Agrobacterium tumefaciens C58 (Cereon) circular

chromosome
17 0.667 13.235 hypothetical protein — Protein of unknown function DUF192 — Agrobacterium tumefaciens C58 (U. Washington)

circular chromosome
18 0.556 13.443 50S ribosomal protein L36 — Ribosomal protein L36 — Blue (type 1) copper domain — Tropheryma whipplei

TW08/27
19 0.556 13.661 hypothetical protein — Sulfolobus tokodaii 7
20 0.444 13.704 putative isomerase — Salmonella enterica subsp. enterica serovar Typhi Ty2

21 0.222 13.404 hypothetical protein — Neisseria meningitidis MC58
22 0.222 13.136 hypothetical protein — Streptococcus agalactiae 2603V/R
23 0.222 12.896 Unknown — Streptococcus agalactiae NEM316
24 0.222 12.679 hypothetical protein — Neisseria meningitidis MC58
25 0.222 12.484 hypothetical protein — Streptococcus pyogenes MGAS315

Figure 3: Details of the median-size protein sequence dataset cluster.Rankdenotes the rank of the
protein sequence in the cluster;Corr denotes the correlation (significance) between the sequence and
the cluster;NSqSigdenotes the normalized squared set significance of the cluster if the boundary were
to be drawn after the current protein sequence;Annotationdenotes annotation information available for
the protein sequence.
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Figure 4: Plot of cluster size versus cluster rank, together with normalized squared significance. The
maximum cluster size is 69859, the minimum size is 4. 8910 clusters were produced.
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item as it is generated, to produce a list of associated clusters for the item together with the significances
of the associations.

Consequently, the GreedyRSC can be adapted to provide a classification of the dataset items, in
which each item is assigned to the cluster to which its item-to-cluster significance is highest. The
classification technique is in some sense similar to nearest-neighbor classification (see [3] for a general
reference), with set correlations playing the role of distances.

5.2 Postprocessing of query results

The reliance of RSC-based clustering on relevant set information for dataset items makes it particularly-
well suited for the clustering of query result sets for information retrieval applications. If relevant sets
have been precomputed and stored for every item in the database, large query results can be organized
into clusters before presentation to the user, allowing greater ease of comprehension.

Alternatively, items from the result set can be classified in advance with respect to a pre-existing
dataset clustering by means of item-to-cluster significances, as stated above.

5.3 Cluster mapping

In the final step of the GreedyRSC heuristic, the surviving clusters arising from each of the data samples
are combined, with over-similar cluster pairs having one of the two clusters deleted. As a byproduct,
all cluster pairs having inter-set significance scores above a minimum threshold can be recorded. Taken
together, these relationships give rise to a graph of significant cluster relationships, in which each cluster
is represented by a node of the graph, and each edge indicates a significant inter-cluster relationship.
The notion of a cluster mapping was originally proposed in [11] in the context of PM-based clustering,
and examples of such graphs can be found there.

5.4 Integration of clustering results

The RSC model provides a means for assessing the significance of the relationship between any two
candidate cluster sets. As such, it can be used to assess the interrelationships between different cluster-
ings of the same data set, particularly when two or more clusterings are to be integrated, even when the
clusterings are produced by different methods. When a pair of clusters is found to have inter-set signif-
icance above a maximum threshold value, the cluster having smaller set significance can be deleted, or
the contents of the two clusters can be merged. The clustering integration technique could potentially
be used to track significant changes to datasets that may occur over time as a result of updates, to as-
sess the impact of different similarity measures on classification and search performance, or to establish
relationships between data clusters and the groupings of a pre-existing taxonomy.

5.5 Clustering in the presence of constraints

The reliance of RSC-based clustering on relevant sets instead of neighborhoods or similarity measures
allows for clustering subject to additional constraints, provided that the constraints can be reflected in
the relevancy rankings of individual items. For example, if it is known that itemsv andw should always
appear together in any clustering, the relevancy rankings of items could conceivably be adjusted so as
to encourage this. Traditional distance measures, due to their continuous and spatial natures, generally
cannot easily be adjusted to handle special cases in the way that discrete relevancy rankings can. A
clustering method that can take additional constraints into account have already been developed based
on fuzzyk-means [7].
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