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Synthesis of Timed Circuits based on
Decomposition

Tomohiro Yoneda, National Institute of Informatics, Japan
Chris Myers, University of Utah, USA

Abstract— This report presents a decomposition based method
for timed circuit design that is capable of significantly reducing
the cost of synthesis. In particular, this method synthesizes each
output individually. It begins by contracting the timed STG to
include only transitions on the output of interest and its possible
trigger signals. Next, the reachable state space for this contracted
STG is analyzed to determine a minimal number of additional
signals which must be reintroduced into the STG to obtain CSC.
The circuit for this output is then synthesized from this STG. Re-
sults show that the quality of the circuit implementation is nearly
as good as the one found from the full reachable state space, but it
can be applied to find circuits for which full state space methods
cannot be successfully applied. The proposed method has been
implemented as a part of our tool nutas (Nii-Utah Timed
Asynchronous circuit Synthesis system), and its very first version
is available at http://research.nii.ac.jp/∼yoneda.

Index Terms— Decomposition, abstraction, synthesis, timed
circuits, timed STGs.

I. INTRODUCTION

Logic synthesis [1]–[3] from low level specification lan-
guages is one of the major approaches to the automated syn-
thesis of asynchronous circuits. This approach can potentially
synthesize more optimized circuits with higher performance
than other methods such as syntax directed translation meth-
ods [4]–[9]. However, it usually requires enumeration of the
state space of the given specification, and it often suffers
from the state explosion problem. Thus, large specifications
expressed in hardware description languages have usually
been synthesized by syntax directed translation methods or
similar techniques that do not require state space enumeration,
sometimes with local optimization techniques such as [10].
This report tackles the challenge of using logic synthesis
also for large specifications derived from hardware description
languages, as it has the potential of providing further global
optimization through timed circuit synthesis [11]. In this
approach, a specification written in some high-level language
is first translated to a timed signal transition graph (STG),
and then, logic synthesis is applied to this timed STG. This
method uses a compiler that generates timed STGs with the
complete state coding (CSC) property. Its preliminary tool is
described in [12], and improved version is described in [13],
[14]. Guaranteeing CSC by such a correct-by-construction
method, which may not give optimal solutions in the number
of inserted state variables, is practical for large STGs, because
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automatic CSC solvers sometimes do not handle such large
STGs well. Furthermore, by using a special protocol shown
in [14], [15], the performance degradation caused by the
inserted state variables can be reduced to almost negligible
amount. A key issue to success of our approach is a new logic
synthesis technique that is efficient enough to handle large
STGs. This report aims at reducing the average cost for logic
synthesis from (timed) STGs by decomposing (or projecting)
a specification to many small sub-specifications and running
the logic synthesis procedure for each of them.

The idea for decomposition based synthesis is first proposed
by Chu [16]. In his work, one primary output is picked up,
and the given STG is modified by replacing each transition
for the signal that does not affect the output by a dummy
transition. Then, the modified STG is reduced by eliminating
selected dummy transitions while preserving the behavior. A
correct circuit can be synthesized from this reduced STG
with usually much smaller cost. He, however, left two open
problems. First, the reduction of STGs, called contraction, was
not formalized. For a simple STG such as a marked graph, its
contraction is straightforward. But, in the general case, the
formalized algorithm was unknown at that time. Second, it
was not straightforward to decide if a signal actually affects
the output signal or not, and no algorithm to make this decision
is given in his thesis. As for the first problem, Vogler and
Wollowski recently formalized the contraction algorithm using
a bisimulation relation in [17], and Zheng and Myers devel-
oped a timed contraction algorithm in [18]. On the other hand,
Puri and Gu tried to solve the second problem in [19]. Their
algorithm greedily removes an irrelevant signal (with respect to
the output signal) such that the number of CSC violations does
not increase by hiding that signal. This algorithm is, however,
not so helpful for our purpose, because it needs the state
graph of the original STG, which cannot be constructed due
to state explosion for very large STGs. Beister, Eckstein, and
Wollowski proposed a similar decomposition based method for
extended-burst-mode machines [20]. Recently, two separate
works, one by Carmona and Cortadella [21] and the other by
Khomenjko, Koutny and Yakovlev [22], have been proposed
for synthesizing speed-independent circuits efficiently based
on an idea similar to that in [19]. Both works first find the
necessary input signals (called support) for each output by
analyzing the original STG, and then synthesize each sub-
circuit with each output individually. Unlike the approach
of [19], these works do not use the state graph of the original
STG explicitly. That is, the original STG is analyzed using the
Integer Linear Programming (ILP) technique in the former and
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the Incremental Boolean Satisfiability (SAT) technique in the
latter, and hence, their methods are much more efficient than
that of [19].

The main contribution of our work is to propose a new
algorithm to find a sufficient set of input signals for a given
output for the decomposition based synthesis approach without
using the state graph of the original STG. The algorithm
starts with a small set of signals which are certainly needed
for the output signal, and uses only the state graphs of the
contracted STGs for determining other necessary input signals.
Since the state graphs of the contracted STGs are usually very
small, it does not suffer from the state explosion problem.
Furthermore, its decision procedure computes candidates of
the necessary signals in many cases more directly than the
greedy algorithm in [19], although some cases need heuristics.
Since our approach analyzes the state graphs of the contracted
STGs explicitly, it is very easy to handle timed STGs, and this
is the biggest difference between ours and the above ILP/SAT
based approaches. This report describes the theory and the
algorithms extended from [23] for the timed circuit synthesis.

The rest of this report is organized as follows. Section II
gives several definitions needed for this report, and Section III
shows the basic theory of our decomposition based synthesis.
Section IV describes the overview of the proposed method, and
Section V mentions how to explore timed state spaces and
to check synthesizability. Section VI explains in detail how
the input sets are determined, which is the main issue of this
report. Section VII describes the limitations of our method.
Several experimental results are shown in Section VIII, and
Section IX gives our conclusion.

II. SYNTHESIZABLE STGS

A timed STG G = (P, T, F, Eft, Lft, µ0, l, In, Out) is a
labeled net, where P is a finite set of places, T is a finite
set of transitions (P ∩ T = ∅), F ⊆ (P × T ) ∪ (T × P ) is
the flow relation, Eft : T → Q+, Lft : T → Q+ ∪ {∞} are
functions for the earliest and latest firing times of transitions
satisfying Eft(t) ≤ Lft(t) for all t ∈ T (Q+ denotes the
set of nonnegative rationals), µ0 ⊆ P is the initial marking,
l : T → (In ∪ Out) × {+,−} ∪ {λ} is the labeling function,
and In and Out are the input and output signal sets. Let sig(G)
denote In ∪ Out. A transition t with l(t) ∈ In × {+,−} is
called an input transition, t with l(t) ∈ Out × {+,−} is
called an output transition, and t with l(t) = λ is called
a dummy transition. For w ∈ sig(G), w-transition denotes
a transition t with l(t) = w+ or w−. For any transition t,
•t = {p ∈ P | (p, t) ∈ F} and t• = {p ∈ P | (t, p) ∈ F}
denote the source places and the destination places of t.
For a place p, •p and p• are defined similarly. Transitions
t and t′ such that •t ∩ •t′ 6= ∅ are said to be in conflict.
Let conflict(t) = {t′ | •t ∩ •t′ 6= ∅} − {t}. In the rest of
this report, when timed STGs G, G1, etc. are considered,
their corresponding components P , T , etc., P1, T1, etc. are
implicitly considered. Furthermore, a timed STG is simply
called an STG, if there is no confusion.

A marking µ of G is any subset of P . A transition t is
enabled in a marking µ if •t ⊆ µ (all its source places have

tokens in µ); otherwise, it is disabled. Let enabled(µ) be the
set of transitions enabled in µ. A timed state σ of G is a
pair (µ, clock), where µ is a marking and clock is a function
T → R+ (R+ denotes the set of nonnegative reals). The
initial timed state σ0 is (µ0, clock0), where clock0(t) = 0 for
all t ∈ T . A timed state changes if time passes or if a transition
fires. In timed state σ = (µ, clock), time τ ∈ Q+ can pass,
if for all t ∈ enabled(µ), clock(t) + τ ≤ Lft(t). In this case,
timed state σ′ = (µ′, clock′) is obtained from σ by passing τ ,
where

1) µ′ = µ, and
2) for all t ∈ T , clock′(t) = clock(t) + τ .

In timed state σ = (µ, clock), transition tf ∈ T can fire, if
tf ∈ enabled(µ) and clock(tf ) ≥ Eft(tf ). In this case, timed
state σ′ = (µ′, clock′) is obtained from σ by firing tf , where

1) µ′ = (µ − •tf ) ∪ tf•, and
2) for all t ∈ T ,

clock′(t) =







0 if t ∈ enabled(µ′)−
enabled(µ − •tf ),

clock(t) else.
That is, firing a transition tf consumes no time, but updates µ
and clock such that the clocks associated with newly enabled
transitions (i.e., transitions that are enabled in µ′ but not in µ−
•tf ) are reset to 0, and clock values of other transitions (i.e.,

transitions not affected by tf ) are left unchanged. Let σ
tf
→ σ′

denote that σ′ is obtained from σ by first passing some time
and then firing tf . For a sequence v = t1t2 · · · of transitions,
σ

v
→ σ′ is defined similarly (σ is equal to σ′ for an empty v).

v is called a trace, if there exists a σ′ such that σ0 v
→ σ′. Let

trace(G) denote the set of all traces of G. If there exists a trace
that leads to σ′, σ′ is called reachable. A trace may contain
multiple occurrences of the same transition. In this report, it
is assumed that those occurrences of the same transition are
distinguished by some appropriate way, such as, by attaching
firing counts, but those are omitted for simplicity in this report.
If every reachable timed state σ = (µ, clock) such that there
exist t and σ′ with σ

t
→ σ′ satisfies (µ−•t)∩t• = ∅, then G is

called one-safe. Intuitively, in a one-safe STG, a token is never
produced into a place that is already marked. Furthermore,
G is consistent, if for every trace v ∈ trace(G) and every
w ∈ sig(G) such that v includes two or more w-transitions,
the last two of them are different (i.e., w+ and w−, or w−
and w+) 1.

A reachable timed state is mapped to a signal state, which
is a binary vector representing the values of signals in In ∪
Out. Different timed states may be mapped to the same signal
state. It is sometimes convenient to annotate a signal state
with the information whether the outputs are excited to rise
or fall. For this purpose, R or F is used in addition to 0 or
1 in signal states. R represents that the corresponding output
signal has the binary value of 0, but it is excited to rise. F
indicates the signal has a value of 1, but it is excited to fall.
When these two notations with or without R/F should be
distinguished, we call the former decorated signal states, and
the latter nondecorated signal states. For example, suppose

1Remember that trace(G) is prefix-closed.



3

that two timed states σ and σ′ have decorated signal states
(1010) and (101R) 2. They have the common nondecorated
signal state (1010), but the behavior of the output is different
in those timed states. This situation is called a CSC violation,
and these two timed states are a CSC violation pair. If an STG
has a CSC violation pair, we say that the STG does not have
CSC. Otherwise, it has CSC. If an STG does not have CSC,
a circuit cannot be synthesized from the STG without adding
a state variable, reducing concurrency, or otherwise changing
the behavior of the STG in some way.

This detection of CSC violations is, however, a little com-
plicated, if G has dummy transitions. Suppose σ′ is obtained
from σ by firing the dummy transition, and that an output
signal is excited in σ′, but not in σ. σ and σ′ have the
same nondecorated signal state, while they have different
decorated signal states. In this case, however, σ and σ′ cannot
be distinguished from the outside (i.e., a dummy transition
is invisible), and so, it should not be considered that they
cause a CSC violation. In order to define this signal excitation
formally, it is useful to define a dummy-free version of a state
graph. A timed state graph of an STG G is a graph 〈V, E〉
with an initial timed state σ0, denoted by GG = (〈V, E〉, σ0),
such that V is the set of all reachable timed states of G,
and E is the timed state transition relation of G, that is,
{(σ, t, σ′) | ∃v.σ0 v

→ σ, σ
t
→ σ′}. A dummy-free timed state

graph of GG is a graph 〈V ′, E′〉 with an initial timed state
σ0′

, denoted by Gdf
G = (〈V ′, E′〉, σ0′

), satisfying,

1) σ0′

= σ0,
2) V ′ = {σ | (σ′, t, σ) ∈ E, t 6= λ} ∪ {σ0′

},
3) E′ = {(σ, t, σ3) | σ ∈ V ′, (σ, u1u2 · · ·un, σ2) ∈

E∗, n ≥ 0, ∀i.ui = λ, (σ2, t, σ3) ∈ E, t 6= λ}.

This dummy-free timed state graph is constructed based on the
fact that timed state transitions by a (possibly empty) sequence
of dummy transitions followed by a nondummy transition can
be replaced by the single nondummy transition. Figure 1 (a)
shows a simple timed STG G (the transition labeled by t is
a dummy transition), and its timed state graph and dummy-
free timed state graph are shown in Figures 1 (b) and (c),
respectively. Note that a+, for example, can fire at any time
between 1 and 2 after it becomes enabled, and so, there exist
an infinite number of timed states reached from σ0 by firing
a+. These figures show for simplicity only timed states that
have different markings.

Now, the signal excitation can be defined on this Gdf
G =

(〈V ′, E′〉, σ0′

). An output signal w is excited in a timed state
σ, if ∃σ′.(σ, t, σ′) ∈ E′ with l(t) = w+ or l(t) = w−. For
example, x is excited to rise in σ1. This straightforward defi-
nition is, however, not sufficient for the timed case. Consider
σ2 of Figure 1 (b). In this timed state, both x+ and y+ are
enabled, but, only x+ can fire in this state, because the earliest
firing time of y+ is larger than the latest firing time of x+.
Thus, σ1 has only one successor state reached by firing x+ in
Figure 1 (c). It is, however, necessary to define that y is also
excited in σ1 in order to synthesize a circuit for the output y
correctly, because y is triggered by a+, not by x+, as shown

2Note that in (1010), some inputs may be excited, but only outputs are
decorated in our definition.
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Inputs: a
Outputs: x, y
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[1,3][7,9]
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[1,2]

[1,2]

[1,2]

Fig. 1. (a) Simple STG with a dummy transition. (b) Timed state graph.
(c) Dummy-free timed state graph. (d) Dummy-free timed state graph with
decorated signal states.

in the STG. Therefore, the signal excitation should be defined
based on the enabledness information instead of the existence
of outgoing edges in the state graph. This is complicated by
the fact that either x+ or y+ is not yet enabled in σ1.

The definition of signal excitation proposed in this report
is as follows. An output signal w is excited in a timed
state σ of Gdf

G = (〈V ′, E′〉, σ0′

), if there exists a (possibly
empty) sequence u1u2 · · ·un of dummy transitions such that
(σ, u1u2 · · ·un, σ2) ∈ E∗, σ2 = (µ2, clock2), and t ∈
enabled(µ2) with l(t) = w+ or l(t) = w−, where GG =
(〈V, E〉, σ0). Let out excited(σ) be a set of output signals
that are excited in σ. Then, it is defined that a timed state σ
has R (or F ) for an output w in its decorated signal state, if
and only if w ∈ out excited(σ) and the binary value of w in
σ is 1 (or 0). For example, the decorated signal state of σ1

in the previous example is (a, x, y) = (1RR). Figure 1 (d)
shows decorated signal states on the dummy-free timed state
graph. Based on this definition of decorated signal states, the
detection of CSC violations can be done in the same way as
STGs without dummy transitions.

The property called output semi-modularity is also neces-
sary to synthesize a circuit from an STG. For the untimed
case, this property is formally stated as follows. An STG
G is output semi-modular, if its dummy-free state graph
Gdf

G = (〈V ′, E′〉, σ0′

) satisfies that for any (σ, t, σ′) ∈ E′

with l(t) = x+ or l(t) = x−, if a signal w (6= x) is
excited in σ, but not in σ′, then signals w and x are both
input. This definition again has a problem in the timed case.
Consider the STG shown in Figure 2 (a), where t1 and t2 are
dummy transitions. It has the timed state graph and dummy-
free timed state graph as shown in Figures 2 (b) and (c).
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Inputs: a
Outputs: x, y

Fig. 2. (a) STG with conflicting dummy transitions. (b) Timed state graph.
(c) Dummy-free timed state graph.

According to the excitation defined above, in the dummy-free
timed state graph, x is excited in both σ1 and σ5 as well as y is
excited in both σ1 and σ4. Thus, this STG satisfies the above
property. Hence, if only the untimed behavior of this STG is
considered, a circuit such that a+ triggers both x+ and y+
is synthesized from it. However, it is impossible to find any
delay assignment to this circuit under which the circuit satisfies
the timed behavior of the STG, because when x+ fires later
than y+, x+ should fire totally 40 time units later than the
firing of a+, while otherwise it should fire only 20 time units
later than the firing of a+. Hence, this timed STG should
not be considered to be synthesizable. In this report, we use
the following simplified definition of output semi-modularity
for timed STGs. A timed STG G is output semi-modular, if
for any conflicting transitions that are enabled in the same
timed state of GG, every (possibly empty) path of dummy
transitions starting from each of them on the STG ends with
an input transition. For the STG shown in Figure 2 (a), t1 and
t2 that are in conflict with each other are enabled in σ1, and
the path of dummy transitions from t1 on the STG, which is t1
itself, ends with an output transition x+. Thus, this STG is not
output semi-modular in our definition. Although this definition
is sometimes unnecessarily too strong (e.g., the case that both
x+ and y+ have [0,0] delays in the above STG.), it is, in our
experience, not a practical problem.

Although one-safeness of STGs is not required for synthesis,
our timed state space enumeration algorithm supports only
one-safe STGs like other tools such as petrify [1] and at-
acs [24]. Furthermore, the consistency significantly simplifies
the analysis and synthesis algorithms. Thus, we say that an
STG G is synthesizable, if G is one-safe, consistent, output
semi-modular, and has CSC.

There is another property needed especially for timed circuit
synthesis. The timed circuit synthesis method assumes that a
synthesized logic function for an output is implemented with a
delay within the firing time bounds (i.e., [Eft(t), Lft(t)]) of the
corresponding output transitions in the given timed STG. This
assumption, however, may not work, if the output transitions

related to the same output signal have different firing time
bounds, or even a dummy transition that precedes those output
transitions has a non-zero delay. In order to simplify the
problem, this report considers a class of timed STGs satisfying
the following timed-implementability. A timed STG G is timed
implementable, if for every output signal x of G, every x-
transition has the same firing time bounds, and in any path of
dummy transitions on G that ends with an output transition,
all dummy transitions have [0,0] bounds.

III. DECOMPOSITION THEORY

There are several definitions of correctness in the context of
the decomposition based synthesis. In [16], it is defined that
the parallel composition of the contracted STGs for all outputs
has the state graph isomorphic to that of the original STG.
In [17], it is similar to the conformance used in [25]. Although
this correctness is less strict than the Chu’s one, STGs must
be deterministic (e.g., dummy-free). Our correctness is similar
to the latter in the case that the given STG is untimed and
deterministic. Ours is, however, different from these two,
because the parallel composition is not used for the correctness
definition, and STGs with dummy transitions can be naturally
handled by defining correctness based on sets of signal states
that are obtained from dummy-free timed state graphs. This
section gives the formal definition of our correctness and
several lemmas and a theorem that are important for our
method. It is assumed that the given STG G is synthesizable
and timed implementable.

A signal w is a possible trigger signal for an output
x, if one of its corresponding transitions can reach on G
some of x-transitions either directly or through only dummy
transitions (i.e., without passing any other signal transitions).
Let trigger(x) denote the set of all possible trigger signals for
x.

For x ∈ Out, ES(x+) denotes a set of nondecorated signal
states mapped from reachable timed states of a dummy-free
timed state graph Gdf

G where their decorated signal states have
R for x, and QS(x+) denotes a set of similar nondecorated
signal states except that their decorated signal states have 1
for x. ES(x−) and QS(x−) are defined similarly. The other
nondecorated signal states are unreachable, and this set is
denoted by UR. From the definition of CSC, if and only if an
STG has CSC, its ES(x+), QS(x+), ES(x−), and QS(x−)
are disjoint for each x ∈ Out.

A circuit is defined by a set of logic functions (i.e., the
technology mapping is beyond the scope of this report), and
a logic function is specified by a cover, which is a set of
nondecorated signal states where the logic function takes
the value 1. In this report, the implementation technologies
considered are atomic gates and generalized-C (gC) elements.
In the atomic gate implementation, an STG G defines for each
x ∈ Out a cover, denoted by C(x), satisfying

C(x) − UR = ES(x+) ∪ QS(x+).

In the gC implementation, G defines two covers C(x+) and
C(x−) satisfying

ES(x+) ⊆ C(x+) − UR ⊆ ES(x+) ∪ QS(x+),
ES(x−) ⊆ C(x−) − UR ⊆ ES(x−) ∪ QS(x−).
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An STG G1 is cover-correct with respect to G, if for each
output signal of G1, the covers C1(x) or C1(x+), C1(x−)
for G1 satisfy the above conditions of the covers for G. For
example, in the case of the atomic gate implementation, C1(x)
satisfying C1(x) − UR1 = ES1(x+) ∪ QS1(x+) must satisfy
C1(x) − UR = ES(x+) ∪ QS(x+).

In order that a correct delay can be assigned to the synthe-
sized circuit, another property is needed for the correctness
of G1. An STG G1 is delay-correct with respect to G, if G1

is timed implementable, and for every output signal x of G1,
every x-transition of G1 has the same firing time bounds (i.e.,
[Eft(t), Lft(t)]) as x-transitions in G.

If G1 is both cover-correct and delay-correct with respect
to G, G1 is correct with respect to G. Intuitively, a circuit
synthesized from G1 behaves as expected in G in a sense that
the logic function takes the value one in the states if and only
if G expects the output to be excited or stable high, as long
as the circuit is in the context that G considers. Note that
from the timed implementability of G, the delay-correctness
of G1 is easily achieved by disallowing the contraction for the
transitions in trigger(x) ∪ {x} for x ∈ Out1. Thus, the rest of
this section focuses on the cover-correctness.

For STGs G1 and G2 with Out1 = Out2 and In1 = In2, a
simulation from G1 to G2 is a relation S between timed states
of Gdf

G1
= (〈V ′

1 , E′

1〉, σ
0
1) and Gdf

G2
= (〈V ′

2 , E′

2〉, σ
0
2) satisfying

• (σ0
1 , σ0

2) ∈ S,
• for any (σ1, σ2) ∈ S, out excited(σ1) = out excited(σ2)

holds, and
• for any (σ1, σ2) ∈ S and any (σ1, t1, σ

′

1) ∈ E′

1,
there exists some t2 and σ′

2 such that l(t2) = l(t1),
(σ2, t2, σ

′

2) ∈ E′

2, and (σ′

1, σ
′

2) ∈ S hold.

Let G1 ; G2 denote that G1 and G2 have the same input
and output signal sets, and that there exists a simulation from
G1 to G2.

Lemma 1: For STGs G1 and G2, if G1 ; G2 and G2 has
CSC, then for x ∈ Out1, the following hold.

ES1(x+) ⊆ ES2(x+), ES2(x+) − ES1(x+) ⊆ UR1,
QS1(x+) ⊆ QS2(x+), QS2(x+) − QS1(x+) ⊆ UR1,
ES1(x−) ⊆ ES2(x−), ES2(x−) − ES1(x−) ⊆ UR1,
QS1(x−) ⊆ QS2(x−), QS2(x−) − QS1(x−) ⊆ UR1,
UR1 ⊇ UR2.

Proof: For s1 ∈ ES1(x+), let σ1 denote a timed
state of Gdf

G1
from which s1 is mapped, and suppose that

σ1 is reached from σ0
1 by a sequence v1 of transitions on

Gdf
G1

. From G1 ; G2, a timed state, denoted by σ2, is
reachable on Gdf

G2
by a sequence v2 of transitions such that

l(v1) = l(v2), where l(t1t2 · · ·) = l(t1)l(t2) · · · (note that λ
is deleted in this sequence). Thus, σ2 is mapped to also s1.
Since out excited(σ1) = out excited(σ2) and s1 ∈ ES1(x+)
hold, s1 ∈ ES2(x+) also holds. Hence, ES1(x+) ⊆ ES2(x+)
holds. The other three cases can be proved similarly. Next,
suppose that s2 ∈ ES2(x+) − ES1(x+) holds. Since the
value for x is 0 in s2, s2 is included in either QS1(x−)
or UR1. If s2 ∈ QS1(x−) holds, then s2 ∈ QS2(x−) holds
from QS1(x−) ⊆ QS2(x−). This, however, violates that G2

has CSC from s2 ∈ ES2(x+). Hence, s2 must be in UR1.
The remaining three cases can be proved similarly. Finally,

since additional reachable signal states in G2 are in UR1,
UR1 ⊇ UR2 holds.

The key of this proof is that the corresponding timed states
in Gdf

G1
and Gdf

G2
have the same set of excited signals. For

untimed methods, the trace equivalence relation is used to
guarantee this (e.g. in [21]). For timed methods, however, such
a relation on traces are not helpful, because excited transitions
does not necessarily fire as shown in Figure 1, i.e., the traces
defined by transition firings do not give sufficient excitation
information. Hence, the simulation relation defined above is
necessary.

For a nondecorated signal state s and a set D of signals, the
D-closure of s, denoted by CD(s), is a set of all nondecorated
signal states, including s, such that their binary vectors are
the same if the signals in D are projected out. The core of a
D-closure is the common binary vector obtained by projecting
out the signals in D. For example, for s = (abcd) = (1101)
and D = {a, b}, CD(s) = {0001, 0101, 1001, 1101} and its
core is (cd) = (01). The mappings from D-closure CD(s) to
its core s′ and its inverse are defined by projD(CD(s)) and
proj−1

D (s′). Note that both are the one-to-one mappings. The
D-closure and these mappings are extended to sets as follows:
CD(S) =

⋃

s∈S CD(s), projD(CD(S)) = {projD(CD(s)) | s ∈
S}, and proj−1

D (S′) =
⋃

s′∈S′ proj−1
D (s′).

For an STG G and x ∈ Out, a set D of signals is an
irrelevant input set for x, if

1) D ⊆ In ∪ Out − {x},
2) CD(ES(x+)) − UR = ES(x+), and
3) CD(ES(x−)) − UR = ES(x−).

From this definition, the following lemma holds.
Lemma 2: For x ∈ Out and any irrelevant input set D for

x, the following hold.

CD(QS(x+)) − UR = QS(x+),
CD(QS(x−)) − UR = QS(x−).

Proof: Suppose CD(QS(x+)) − UR 6= QS(x+). From
QS(x+) ⊆ CD(QS(x+)), this means that for some s ∈
CD(QS(x+)) − UR, s 6∈ QS(x+) holds. From x 6∈ D, such
s must be in ES(x−). Since s ∈ CD(QS(x+)) holds, there
exists s2 ∈ QS(x+) such that s ∈ CD(s2). From s ∈ CD(s),
CD(s) and CD(s2) have a common element, which implies
CD(s) = CD(s2) and so s2 ∈ CD(s). From s ∈ ES(x−)
and CD(ES(x−)) − UR = ES(x−), s2 ∈ ES(x−) is derived,
which however, contradicts that G has CSC and so ES(x−)
and QS(x+) are disjoint. The remaining case can be proved
similarly.

For an STG G, x ∈ Out and a set D of signals with
x 6∈ D, let GD,x denote an STG obtained from G by making
transitions related to signals in D dummy, which has the input
signal set sig(G)−D−{x} and the output signal set {x}. Let
ES1, QS1 and so on be for GD,x.

Lemma 3: For x ∈ Out and any irrelevant input set D for
x, the following hold.

proj−1
D (ES1(x+)) = CD(ES(x+)),

proj−1
D (ES1(x−)) = CD(ES(x−)),

proj−1
D (QS1(x+)) = CD(QS(x+)),

proj−1
D (QS1(x−)) = CD(QS(x−)),

proj−1
D (UR1) ⊆ UR.
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Fig. 3. Relation between G
df

G
and G

df

GD,x
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Proof: Since GD,x has the same flow relation as G except
that some transitions are dummy in GD,x, there exists a one-
to-one mapping between timed states of GG and GGD,x

. In the
dummy-free timed state graph Gdf

GD,x
, however, some timed

states that are in Gdf
G are deleted from the construction of the

dummy-free timed state graphs, as shown in Figure 3. Note
that Gdf

G and GGD,x
also have a one-to-one mapping if G have

no dummy transitions, and Figure 3 shows this case.
The proof of this lemma first shows ES1(x+) ⊆

projD(CD(ES(x+))). Suppose that s1 ∈ ES1(x+), and let σ1

be the timed state in Gdf
GD,x

that is mapped to s1. This σ1 exists

also in Gdf
G from the above relation between Gdf

G and Gdf
GD,x

,
and let s be its signal state. Then, s1 = projD(CD(s)) holds.
Furthermore, s ∈ ES(x+) holds from the following reason.
From the signal excitation of Gdf

GD,x
, x+ must be excited to rise

in some timed state reached only by transitions related to the
signals in D, such as σ2 shown in Figure 3. Let s2 be its signal
state. Then, s2 ∈ ES(x+) and s ∈ CD(s2)−UR hold. Since D
is an irrelevant input set, CD(ES(x+))−UR = ES(x+) holds,
and so, s ∈ ES(x+) holds. Hence, s1 ∈ projD(CD(ES(x+)))
is derived.

Next, ES1(x+) ⊇ projD(CD(ES(x+))) is proved by show-
ing that for s ∈ ES(x+), s1 = projD(CD(s)) satisfies s1 ∈
ES1(x+). Let σ be the timed state in Gdf

G that is mapped
to s. This σ may or may not exist in Gdf

GD,x
. In the former

case, it has the signal state s1 = projD(CD(s)) in Gdf
GD,x

, and
x is excited to rise in σ. Hence, s1 ∈ ES1(x+) is derived.
In the latter case, from the construction of dummy-free state
graphs, there exists a timed state σ1 included in both Gdf

G and
Gdf

GD,x
, from which σ is reached only by transitions related to

the signals in D (see Figure 3). From this relation between
σ and σ1, σ1 has the signal state s′ ∈ CD(s) − UR and
s1 = projD(CD(s)) in Gdf

GD,x
. Since D is an irrelevant input

set, CD(ES(x+))−UR = ES(x+) holds, and so, s′ ∈ ES(x+)
holds. Thus, x is excited to rise in σ′ in Gdf

G , and therefore,
s1 ∈ ES1(x+) is derived.

Hence, ES1(x+) = projD(CD(ES(x+))) is shown. Apply-
ing proj−1

D derives the first property. The proofs for the other
three properties are similar.

Furthermore, from the above discussion, if σ mapped to s is
reached in Gdf

G , then some σ′ mapped to s1 = projD(CD(s))

is also reached in Gdf
GD,x

. Thus, if s1 ∈ UR1 holds, then every

s ∈ proj−1
D (s1) is also in UR. Hence, the final property holds.

Lemma 4: For x ∈ Out and a set D of signals with D ⊆
In ∪ Out − {x}, if GD,x has CSC, and D ∩ trigger(x) = ∅
holds, then D is an irrelevant input set.

Proof: Suppose that D is not an irrelevant input set.
Then, there exist signal states s ∈ ES(x+) and s′ ∈ CD(s) −
UR such that s′ 6∈ ES(x+), or there exist signal states s ∈
ES(x−) and s′ ∈ CD(s) − UR such that s′ 6∈ ES(x−). In
this proof, the former case is considered, but the latter case
can be proved similarly. There exist timed states σ and σ′ in
Gdf

G whose signal states are s and s′, respectively. From the
construction of the dummy-free timed state graphs, there exist
timed state σ1 and σ′

1 in Gdf
GD,x

whose signal states are s1 and
s′1, satisfying s1 = projD(CD(s)) and s′1 = projD(CD(s′))
(see Figure 3). Note that s1 = s′1 holds from projD(CD(s)) =
projD(CD(s′)). These σ1 and σ′

1 cannot be the same from the
following reason. σ and σ1 can be the same, only when one
of them is reached from the other on Gdf

G only by transitions
related to the signals in D. In this case, however, from s ∈
ES(x+) and s′ 6∈ ES(x+), either x+ is disabled without firing
x+, which violates the output semi-modularity of G, or x+ is
enabled without firing any transition in trigger(x) from D ∩
trigger(x) = ∅, which is impossible. Thus, σ1 and σ′

1 must
be different. Since x is excited to rise in σ, so is it in σ1 of
Gdf

GD,x
. On the other hand, although x is not excited in σ′, x

may be considered to be excited to rise in σ′

1 of Gdf
GD,x

from
the excitation definition, if x+ is enabled in some timed state
of GGD,x

(such as σ2 in Figure 3) that is reached from σ′ by
only dummy transitions. But, this cannot happen, because x+
is disabled in σ′ and D∩ trigger(x) = ∅ holds. Therefore, x is
not excited in σ′

1 of Gdf
GD,x

, either. This contradicts that GD,x

has CSC, because x is excited in σ′, not excited in σ′

1, and
s1 = s′1 holds. Hence, D should be an irrelevant input set.

Lemma 5: For x ∈ Out and any irrelevant input set D for
x, suppose that G′ satisfies GD,x ; G′. If G′ has CSC, then
G′ is cover-correct with respect to G.

Proof: This proof focuses on the gC implementation, and
furthermore, only the cover for x+ is considered, because the
proofs for the other cases can be done similarly. Let ES1, QS1,
and UR1 be for GD,x, and ES2, QS2, and UR2 be for G′.

Let C2(x+) denote the cover for G′ and x+. From the
definition of covers,

ES2(x+) ⊆ C2(x+) − UR2 ⊆ ES2(x+) ∪ QS2(x+). (1)

holds. This proof shows that C2(x+) is also a cover of G.
Since C2(x+) should be considered in the signal state space
of G, this is shown by

ES(x+) ⊆ proj−1
D (C2(x+)) − UR

⊆ ES(x+) ∪ QS(x+).
(2)

To show the above, this proof first shows

ES1(x+) ⊆ C2(x+) − UR1 ⊆ ES1(x+) ∪ QS1(x+), (3)

and then (2) is shown.
The above (1) is rewritten by removing UR1 as follows.

ES2(x+) − UR1 ⊆ C2(x+) − UR2 − UR1

⊆ ES2(x+) ∪ QS2(x+) − UR1.
(4)
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From UR1 ⊇ UR2 as shown in Lemma 1,

C2(x+) − UR2 − UR1 = C2(x+) − UR1

holds. Furthermore, ES2(x+) − UR1 is rewritten to ES1(x+)
as follows using Lemma 1.

ES2(x+) − UR1

= ES1(x+) ∪ (ES2(x+) − ES1(x+)) − UR1

= ES1(x+) − UR1

= ES1(x+).

Similarly, QS2(x+) − UR1 = QS1(x+) holds. Hence, (4) is
rewritten to (3).

Next, applying proj−1
D to (3) derives

proj−1
D (ES1(x+)) ⊆ proj−1

D (C2(x+) − UR1)

⊆ proj−1
D (ES1(x+) ∪ QS1(x+)).

From Lemma 3, this is rewritten as

CD(ES(x+)) ⊆ proj−1
D (C2(x+) − UR1)

⊆ CD(ES(x+)) ∪ CD(QS(x+)),

and, by removing UR,

CD(ES(x+)) − UR ⊆ proj−1
D (C2(x+) − UR1) − UR

⊆ (CD(ES(x+)) − UR) ∪ (CD(QS(x+)) − UR))

is obtained. Since D is an irrelevant input set, CD(ES(x+))−
UR = ES(x+) holds, and from Lemma 2, CD(QS(x+)) −
UR = QS(x+) holds. Thus,

ES(x+) ⊆ proj−1
D (C2(x+) − UR1) − UR

⊆ ES(x+) ∪ QS(x+)
(5)

holds. The above proj−1
D (C2(x+)−UR1)−UR can be rewritten

as follows from proj−1
D (UR1) ⊆ UR by Lemma 3.

proj−1
D (C2(x+) − UR1) − UR

= proj−1
D (C2(x+)) − proj−1

D (UR1) − UR

= proj−1
D (C2(x+)) − UR. (6)

Hence, from (5) and (6), (2) is obtained.
For an STG G, x ∈ Out, and V ⊆ sig(G) such that x ∈ V ,

let abs(G, V, x) be any STG such that GD,x ; abs(G, V, x)
with D = sig(G) − V . The main theorem is as follows.

Theorem 1: If abs(G, V, x) has CSC for V with
trigger(x) ⊆ V , then abs(G, V, x) is cover-correct with
respect to G.

Proof: From trigger(x) ⊆ V , D = sig(G) − V satisfies
D ∩ trigger(x) = ∅. abs(G, V, x) has CSC. Thus, from
Lemma 4, D is an irrelevant input set for x. From the above
definition, GD,x ; abs(G, V, x) holds, and abs(G, V, x) has
CSC. Hence, from Lemma 5, abs(G, V, x) is cover-correct
with respect to G.

IV. DECOMPOSITION BASED SYNTHESIS OVERVIEW

The top level algorithm for the proposed decomposition
based synthesis is shown in Figure 4. For a given synthesizable
and timed implementable STG G, our algorithm tries to
compute an abstraction Gabs for each output signal x of G,

decomposition based synthesis(G) {
forall x ∈ Out {

Gabs = obtain abs(G, x);
Cx = timed logic synthesis(Gabs);

}
}

Fig. 4. Top-level algorithm for synthesis.

obtain abs(G, x) {
V = {x} ∪ trigger(x);
while(true) {

Gabs = contract STG(G, V );
(res, ssg) = check synthesizable(Gabs);
if (res == “synthesizable”) return Gabs;
if (res == “one-safeness violation”) {

if (no transition can be contracted) abort;
disallow contraction of some transitions;
continue;

}
if (res == “consistency or O.S.M violation”) abort;
CSCV = obtain CSC violation trace set(Gabs, ssg);
forall g ∈ CSCV {

candidate =
analyze CSCV trace(g, G, V , x);

if (candidate == “not found”) abort;
add constraints matrix(candidate);

}
newV = solve covering problem();
V = V ∪ newV ;

}
}

Fig. 5. Algorithm to obtain an abstraction.

such that a correct circuit for x can be synthesized from it.
Then, a timed circuit synthesis algorithm is applied to Gabs.

The algorithm for obtaining such an abstraction is shown
in Figure 5. It first constructs the initial input set V for x
by taking x and its possible trigger signals. As shown in
Theorem 1, the input signal set needs to include those trigger
signals in order to obtain a correct abstraction.

The algorithm next contracts dummy transitions in G′, if
possible, where G′ is an STG obtained from G by replacing
transitions related to signals in sig(G) − V by dummy transi-
tions. This contraction of transitions should produce a reduced
STG G′′ such that G′

; G′′ and G′′ is delay-correct with
respect to G′. Such contraction of timed STGs can be done in
a way similar to that shown in [18]. Our method, however, ap-
plies the contraction to only transitions with a restricted class
of the flow relation, such that consistency and output semi-
modularity are preserved. We prefer this exact contraction
3, because it synthesizes more optimal circuits than general
contraction. The further details about the contraction algorithm
are omitted in this report. Note that the resultant STG may
contain dummy transitions due to the exact contraction.

The reduced STG Gabs obtained by the contraction is then
checked if it is synthesizable or not. This process needs to enu-

3In order to preserve consistency, it is necessary to keep the timing
information exactly. That’s why it is called exact contraction. Note that it
(or any contraction algorithm of timed STGs) cannot preserve one-safeness
in general.
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merate its timed state space and construct the decorated signal
state graph ssg that corresponds to its dummy-free timed
state graph. If Gabs is synthesizable, the algorithm returns
it, because it is correct with respect to the original STG from
Theorem 1. If it has one-safeness violation, some transitions
that may cause the one-safeness violation are flaged to show
that they should not be contracted. Selecting those transitions
depends on the contraction algorithm, but it is not difficult.
In the case that every transition is already flaged, the original
STG is not one-safe. Thus, the algorithm aborts. Otherwise, the
contraction process is restarted. If consistency or output semi-
modularity is violated (indicated by “consistency or O.S.M
violation”), it is violated also in the original STG, because
our contraction is exact. Thus, the algorithm aborts.

The remaining case is that Gabs does not simply have CSC.
This happens when the input signal set does not contain some
relevant signals. In this case, some set of traces of Gabs that
cause CSC violations, CSCV , is extracted 4 from ssg. The
algorithm then analyzes each g ∈ CSCV and tries to find
candidate inputs to be added in order to resolve the CSC
violation. It fails to find the candidate inputs (indicated by
“not found”), when the original STG does not have CSC. In
this case, the algorithm aborts. Otherwise, the set candidate
contains a set of requirements such that each requirement,
which is a set of signals, is satisfied if at least one of the
signals in the requirement is added to V . In order to resolve
the CSC violation, every requirement must be satisfied. Those
requirements are added in the constraint matrix to set up a
covering problem. This process is repeated for every CSC
violation trace in CSCV . Finally, the covering problem is
solved for those requirements, and the optimal set of signals
are added to V . This V is used to compute a new Gabs, and
the algorithm repeats the above process.

V. CHECKING SYNTHESIZABILITY

The reduced STG Gabs is checked if it is synthesizable or
not in check synthesizable as shown in Figure 5. This is done
by exploring the timed state space of Gabs and obtaining its
corresponding decorated signal state graph. Since the timed
state space of a timed STG is potentially infinite, equivalence
classes of timed states are actually explored. Let I be a set
of inequalities of the form t − u ≤ c, where t and u are
variables to represent the next firing times of transitions t and
u, and c is a constant. For a given marking µ, if I over the
variables related to the transitions enabled in µ is considered,
then I determines the bounds of the firing time separation
of those transitions. Thus, (µ, I) represents an equivalence
class of timed states, which is called a timed state class.
Let α0 = (µ0, I0) be the initial timed state class, and for
a timed state class α, firable(α) denotes the set of firable
transitions, i.e., the set of transitions that can fire earlier than
any other transition in α. It is known that the timed state
class space is finite [26], [27], and so, its space enumeration
is done by firing every firable transition from α0 until no new
timed state classes are reached. The inclusion of timed state

4In our current implementation, one shortest trace is selected for each CSC
violation pair, because using all CSC violation traces is very expensive.

classes is considered in this process. A timed state class (µ, I)
includes another timed state class (µ′, I ′), if µ = µ′ and the
solution set of I includes that of I ′. If a timed class α that
is newly generated is included by some timed class α′ that
is generated previously, the traversal from α is stopped. On
the other hand, if α includes α′, then α′ is removed, the arcs
from the predecessors of α′ to α′ are reconnected to α, and
the traversal from α is continued.

When enumerating the equivalence classes, one-safeness
can be easily checked. Once the graph of this equivalence
classes is constructed, its dummy free version is obtained by
the way explained in Figure 1. This modified graph is then
projected to a decorated signal state graph by considering
only decorated signal states. It is straightforward to check
the consistency, output semi-modularity, and CSC on this
decorated signal state graph.

The above timed state class enumeration can be improved
using the ideas of the partial order reduction and POSET
method, which are similar to that proposed in [28] and [29].
Since the firing order of dummy transitions does not affect
the dummy-free timed state class graph if they are concurrent
with any other transitions, the state space explored can be
reduced by only considering a single interleaving of firable
those dummy transitions. This is effective especially in our
case, because the exact timed contraction can contract only
a restricted class of dummy transitions, and many dummy
transitions sometimes remain in Gabs.

VI. ANALYZING CSC VIOLATION TRACE

If Gabs does not have CSC, a set of CSC violation traces
is constructed by obtain CSC violation trace set from the
decorated signal state graph. Each of such CSC violation traces
is analyzed by analyze CSCV trace, which is the core part
of this report.

The algorithm analyze CSCV trace first generates a con-
crete trace of the original STG G which corresponds to the
given CSC violation trace of Gabs. This is done by a technique
similar to the one developed for the partial order reduction,
which we call guided simulation. Then, it finds a set of
requirements for an appropriate input set by analyzing the
concrete CSC violation trace. The overall procedure is shown
in Figure 6.

This section first discusses the algorithm to analyze the
concrete CSC violation traces, because guided simulation is
strongly related to this algorithm. The guided simulation is
then discussed. In the following, an interface signal means the
signals used in Gabs, i.e., the signals in V , and a noninterface
signal means the remaining signals of G, i.e., the signals in
D = sig(G) − V . The corresponding transitions are called
similarly.

A. Regular concrete traces

Each CSC violation trace g of Gabs, constructed by ob-
tain CSC violation trace set, is assumed to be of the form
g = 〈g0, g1, g2〉, s0

g0
→ s1, s1

g1
→ s2, and s2

g2
→ s3, where s0

is the initial signal state of Gabs, s1 and s2 are the first two
signal states that correspond to the CSC violation pair, and
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analyze CSCV trace(g, G, V , x) {
f = guided sim phase1(g, G, V , x, α0, null);
can = find inputs(f , G, V , x);
if (can == false) return “not found”;
else return can;

}

Fig. 6. Algorithm for analyzing CSC violation trace.

α0

α1

α2

α4

f0

f1

f1h

f1t

f

α3

f2

Fig. 7. Labeling of a concrete trace.

g2 contains exactly one (interface) transition. For this g, the
corresponding concrete trace f is constructed by the guided
simulation shown later, where f = 〈f0, f1, f2〉 such that for
0 ≤ i ≤ 2, projecting out noninterface and dummy transitions
from fi is equal to gi. It is assumed that f is separated into
fi’s when interface transitions fire, i.e., each fi ends with an
interface transition. Let α1, α2, and α3 denote the timed state
classes of G obtained by f0, f1, and f2, respectively (see
Figure 7). Since some noninterface or dummy transitions fire
concurrently with the interface transitions, there exist many
such concrete traces that correspond to g. Thus, we first define
an equivalence class of traces based on the causality relation.

For two interface transitions a and b in f , if a fires before
b without any interface transitions between them, it is denoted
by (a, b) ∈ Rf

1 . For any two transitions t1 and t2 in f , if t2
fires by consuming the token produced by the firing of t1, it
is denoted by (t1, t2) ∈ Rf

2 . In the untimed case, the actual
causality relation for f is defined by the transitive closure of
the union of Rf

1 and Rf
2 , i.e., (t1, t2) ∈ (Rf

1 ∪ Rf
2 )∗. In the

timed case, however, it is further needed to consider timed
causality, which is defined in [30]. For any two transitions
t and u with (t, u) ∈ (Rf

2 )∗, let pathf (t, u) denote a set of
paths from t to u defined by the relation Rf

2 , where each path
is represented by a set of transitions. That is,

pathf (t, u) =







∅ if t = u,
{

{u} ∪ q | (t′, u) ∈ Rf
2 ,

q ∈ pathf (t, t′)
}

else.

For example, if f is a concrete trace obtained from
the STG shown in Figure 9 (a), then pathf (c+, x−) is

{

{a+, x+, a−, x−}, {a+, b−, a−, x−}}. Furthermore, let

max eftf (t, u) = maxq∈pathf (t,u)

(
∑

t∈q Eft(t)
)

,

max lftf (t, u) = maxq∈pathf (t,u)

(
∑

t∈q Lft(t)
)

.

Finally, for any two transitions t1 and t2 in f , if there exists a
transition t3 in f such that (t3, t1) ∈ (Rf

2 )∗, (t3, t2) ∈ (Rf
2 )∗,

and max lftf (t3, t1) < max eftf (t3, t2), then it is denoted by
(t1, t2) ∈ Rf

3 . Intuitively, (t1, t2) ∈ Rf
3 implies that t1 and t2

has a common ancestor t3, and the maximal time separation
between t3 and t1 is smaller than the minimal time separation
between t3 and t2. Thus,t1 cannot fire before t2 under the
causality relation Rf

2 . This timed causality relation can be
computed using a time separation algorithm such as shown
in [11].

Using the above relations, we say that t1 is an ancestor of
t2 in f , denoted by [t1 ;f t2], if t1 and t2 are related by
the transitive closure of the union of Rf

1 , Rf
2 and Rf

3 . This
ancestor relation represents an actual causality relation with
respect to the specific abstracted trace g. In the rest of this
report, we use the following terminology.

• t1 causes t2, if [t1 ;f t2] holds.
• t1 and t2 are ordered, if either [t1 ;f t2] or [t2 ;f t1]

holds.
• t1 and t2 are concurrent, if they are not ordered.
This actual causality relation defines equivalent classes of

traces of G. For a trace f , let ‖f‖G denote a set of traces of
G (including f ) such that for any f ′ ∈ ‖f‖G, (Rf ′

1 ∪ Rf ′

2 ∪

Rf ′

3 )∗ = (Rf
1 ∪ Rf

2 ∪ Rf
3 )∗ holds.

For a given abstracted trace g, our algorithm constructs one
particular concrete trace f satisfying a property which we call
regularity, and analyzes it to handle all traces in ‖f‖G. A
trace f is regular, if for every interface transition t in f , all
noninterface or dummy transitions that are concurrent with t
fire before t in f . This regularity is necessary for the following
reason. As shown later, for a transition t, which is an ancestor
of an interface transition x in f , it is necessary to find a
noninterface signal w such that every w-transition in f is
ordered with t. If every w-transition appears in f , it is easy
to check the above property, i.e., this can actually be done by
constructing a data structure similar to an occurrence net [31].
Otherwise, however, it is not clear when the generation of f
should be terminated to check the above property with respect
to every w-transition, if f is nonregular, because a concurrent
w-transition may fire a long time later. On the other hand, if
f is regular, every transition concurrent with x is fired before
x. Hence, if a regular trace f is generated up to x, it can be
decided whether every w-transition is ordered with t or not,
because a w-transition that does not appear in f , if it exists,
is caused by x, and so, it is caused by t from [t ;f x].

B. Determining the input set

The idea to resolve the CSC violation between α1 and α2

is to add to the input set a noninterface signal w such that f1

contains odd number of w-transitions. If w-transition fires in
f1 in odd times, then the signal takes different values in α1

and α2, and so, the CSC violation is resolved by adding w to
the input set. However, such w may not work for other traces
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Fig. 8. A nested subtrace pair.

in ‖f‖G, unless the causality relation guarantees that it fires
certainly odd-times in traces in ‖f‖G. Thus, we need to define
the following notions.

For a (sub)trace h, let final(h) denote the last transition
in h, and before(h) the transition fired just before the first
transition of h in a currently designated trace. When h starts
from the initial timed state class, before(h) is the virtual
transition v that is assumed to cause the first transition of
every trace. For a trace f , (l1, l2) is a nested subtrace pair
of f , if before(l1), before(l2), final(l2), and final(l1) are
distinct, and they are caused in this order, i.e., [before(l1) ;f

before(l2)], [before(l2) ;f final(l2)], [final(l2) ;f final(l1)]
(see Figure 8). For a signal w and a nested subtrace pair (l1, l2)
of f , w is semi-essential with respect to (l1, l2) in f , if

• none of before(l1), before(l2), final(l2), and final(l1) is
a w-transition, and

• every w-transition is ordered with before(l1), before(l2),
final(l2), and final(l1).

Similarly, w is essential with respect to (l1, l2) in f , if w is
semi-essential with respect to (l1, l2) in f , and l2 contains an
odd number of w-transitions while neither l12 nor l21 contains
any w-transition, where l12 and l21 are the subtraces of l1
before l2 and after l2 as shown in Figure 8. As mentioned
previously, it is easy to check whether w is (semi-)essential
or not, if f is regular and contains interface transitions at the
end of l1 or later.

For f ′ ∈ ‖f‖G, a nested subtrace pair (l′1, l
′

2) of f ′ that
corresponds to (l1, l2) in f is the nested subtrace pair defined
by using before(l1), before(l2), final(l2), and final(l1). For
a subtrace l, let TS(l) denote a set of timed state classes in
which the transitions in l fire (see Figure 8). SS(l) denotes the
corresponding signal state set. The following lemma holds.

Lemma 6: Let (l1, l2) be a nested subtrace pair of f and w
be essential with respect to (l1, l2). For any f ′ ∈ ‖f‖G and the
nested subtrace pair (l′1, l

′

2) of f ′ that corresponds to (l1, l2),
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Fig. 9. (a) A simple STG. (b) Its CSC violation trace.

the signal states in SS(l′12) are distinguished from those in
SS(l′21) by the signal w.

Proof: The proof is straightforward from the definition
of the essentialness.

Consider the first interface transition in f1, and divide f1

into f1h and f1t with it, i.e., f1 = 〈f1h, f1t〉 and f1h ends
with this first interface transition in f1. Figure 7 shows the
relation among f0 · · · f2 as well as f1h and f1t. Let l1 =
〈f1, f2〉 and l2 = f1t. Then, l12 = f1h and l21 = f2 hold.
From the definitions of f0, f1h, f1, and f2, they end with
interface transitions. Thus, each of them are different, and they
are caused in this order. Hence, (l1, l2) = (〈f1, f2〉, f1t) is a
nested subtrace pair of f . The following theorem holds.

Theorem 2: The CSC violation with respect to f ′ ∈ ‖f‖G

with f = 〈f0, f1, f2〉 is resolved by adding a noninterface
signal w to the input set, if w is essential with respect to
(l1, l2) = (〈f1, f2〉, f1t) in f .

Proof: For any f ′ ∈ ‖f‖G and the nested subtrace pair
(l′1, l

′

2) of f ′ that corresponds to (l1, l2), the CSC violation is
caused between the timed state classes in TS(l′12) and those
in TS(l′21). Those signal states are distinguished by w from
Lemma 6.

For example, consider an STG shown in Figure 9 (a). The
output x has the possible trigger signal a, and so, the initial
V is {a, x}. Then, the reduced STG with interface signals
a and x has one CSC violation trace, and its corresponding
concrete trace f is shown in Figure 9 (b). This trace is regular,
because a noninterface transition b− is concurrent with an
interface transition x+, and b− fires before x+ in this trace.
‖f‖G contains another trace f ′ obtained by swapping b−
and x+ in f . (〈f1, f2〉, f1t) is a nested subtrace pair of f ,
and the noninterface signal c is essential with respect to it.
The noninterface signal b is not semi-essential, because it is
not ordered with final(l1) = x+. TS(l12) = {α1, α

′

1} and
TS(l21) = {α2, α

′

2} cause the CSC violation, and it is resolved
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Fig. 10. A nested subtrace pair reduced from the original nested subtrace
pair.

by adding the essential signal c to V . Actually, for this new
V = {a, c, x}, the reduced STG has CSC, and a circuit for x
can be synthesized from it.

If there is no essential signal with respect to (〈f1, f2〉, f1t)
in f , the CSC violation cannot be resolved by adding a single
noninterface signal. However, CSC violations can be resolved
by adding two or more noninterface signals to the input set.
There are two cases depending on the existence of semi-
essential noninterface signals.

If there exist in f1h or f2, noninterface signals that are semi-
essential with respect to (〈f1, f2〉, f1t), the problem can be re-
duced to several sub-problems that can be solved by the above
approach. Suppose that such a semi-essential noninterface
signal w changes as shown in Figure 10. Then, by adding w to
the input set, the timed state classes that cause CSC violation
(i.e., those in TS(f1h) and TS(f2)) are divided into two
groups: one is TS(h1) and TS(h4), and the other is TS(h2)
and TS(h3). The first group can be handled by considering
a nested subtrace pair (〈f1, f2〉, 〈h2, f1t, h3〉). Even if there
exists no essential noninterface signal for (〈f1, f2〉, f1t), this
(〈f1, f2〉, 〈h2, f1t, h3〉) may have it, because 〈h2, f1t, h3〉 is
longer than f1t. Similarly, the second group can be handled
by a nested subtrace pair (〈h2, f1t, h3〉, f1t), and it may
have an essential noninterface signal, because 〈h2, f1t, h3〉 is
shorter than 〈f1, f2〉. We say that (〈f1, f2〉, 〈h2, f1t, h3〉) or
(〈h2, f1t, h3〉, f1t) is reduced from (〈f1, f2〉, f1t) with respect
to a semi-essential signal w. As mentioned above, it is impor-
tant that a reduced nested subtrace pair may have an essential
noninterface signal, even if the original nested subtrace pair
does not. If every reduced nested subtrace pair has an essential
noninterface signal, adding those essential signals as well as
w to the input set resolves the CSC violation in ‖f‖G. If there
exists no essential noninterface signal for some reduced nested
subtrace pair (l1, l2), the above process can be applied to it
as long as semi-essential noninterface signals exist for (l1, l2),
which may solve the CSC violation using more noninterface
signals.

Inputs : a, b
Output : c, x1, x2
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Fig. 11. An STG that has no essential signals.

Second, if there exists in f1h or f2 no noninterface sig-
nal that is semi-essential with respect to (〈f1, f2〉, f1t), a
more complicated process is necessary to resolve the CSC
violation in ‖f‖G. For such a nested subtrace pair (l1, l2),
our algorithm chooses a noninterface transition t fired in
f , such that t is concurrent with a transition in a set
{before(l1), before(l2), final(l2), final(l1)}. Let u denote such
a transition in the above set. It then generates two traces f ′

and f ′′ from f by interleaving t and u. The idea is that our
algorithm tries to predict from those interleavings the situation
where the noninterface signal w related to t is added to the
input set and its every transition is ordered with the other
interface transitions, before actually doing it. Interleaving t
and u can be done as follows. Suppose that t and u fire in
this order in f . The new trace f ′ is obtained simply by adding
[t ;f u] to the ancestor relation of f . Similarly, f ′′ is obtained
by adding [u ;f t] to the ancestor relation of f , but in order
to make the firing order of f ′′ consistent with this modified
ancestor relation, it is necessary to move t and the noninterface
transitions caused by t and fired before u, next to u.

For example, consider the STG shown in Figure 11 and its
output c. The possible trigger signals for c are a and b. For
V = {a, b, c}, Gabs has a CSC violation trace g = c + a +
b + b − c− with g0 = c + a+, g1 = b + b− and g2 = c−.
The guided simulation generates f0 = c + x1 + x2 + a+,
f1 = b + x1 − b−, and f2 = c− as shown in Figure 12
(a). Our algorithm first looks for a semi-essential noninterface
signal for (〈f1, f2〉, f1t), but both noninterface transitions x1+
and x2+ are concurrent with before(〈f1, f2〉) = a+. Thus,
this STG has no semi-essential signals. Here, choose x1 and
before(〈f1, f2〉) = a+, and generate f ′ and f ′′ by interleaving
them. It is not easy to illustrate these traces in a figure like
Figure 12, because it does not show the ancestor relation
precisely, but assume that in Figure 12, x1+ causes a+ in f ′

while a+ causes x1+ in f ′′. Note that in f ′′, x1+ and x2+
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Fig. 12. (a) Original traces. (b) Newly generated traces.

(which is caused by x1+ and fired before a+) are moved next
to a+. In f ′, x1 is now essential with respect to (〈f1, f2〉, f1t),
because every x1-transition is ordered with a+, b+, b−, c−,
and only one x1− exists in f1t. Thus, this CSC violation can
be resolved in ‖f‖G by adding x1 in the input set. In f ′′, x1
is semi-essential, but not essential, because x1 fires in f1h.
This corresponds to the first case above, and can be handled
by considering one reduced nested subtrace pair (l1, l2) as
shown in Figure 12 (b), because only α1 and α2 cause the
CSC violation after adding x1. Then, our algorithm looks for
another noninterface transition that is essential with respect to
(l1, l2) in f ′′, which is x2 in this case. In other words, x2
can resolve the CSC violation between TS(l12) = {α1} and
TS(l21) = {α2}. Therefore, the CSC violation with respect to
f ′′ can be resolved in ‖f ′′‖G by adding both x1 and x2.

In general, the above process should be repeated by gener-
ating new traces by interleaving some concurrent transitions.
Furthermore, there are usually many choices for noninter-
face signals. Thus, generating as many such combinations
as possible is desirable. The whole process for both cases
is described by the pseudo code shown in Figure 13. This
procedure constructs a Boolean expression E over a set of
noninterface signals such that for each feasible assignment
of E, the CSC violation is resolved in ‖f‖G by adding the
noninterface signals that have 1 in the assignment. Then, it
is converted to a conjunctive normal form (CNF). Thus, one
noninterface signal in each clause of the CNF should be added
to resolve the CSC violation. Hence, this CNF represents a
set of requirements, and solving the covering problem that
all these requirements are satisfied obtains the optimal set
of signals to be added, which is done in obtain abs as
mentioned previously.

The following theorem holds.
Theorem 3: The algorithm shown in Figure 13 returns

“false”, only when the given STG have no CSC.
Proof: It can return “false”, only when there exists

find input(f , G, V , x) {
A = build ancestor relation(f , G);
〈f0, f1, f2〉 = f ;
〈f1h, f1t〉 = f1;
E = find essential(〈f1, f2〉, f1t, f , A);
return convert to CNF(E);

}

find essential(l1, l2, f , A) {
E = false;
for each noninterface signal w {

if (w is essential w.r.t. (l1, l2) in f )
E = E ∨ w;

}
if (E 6= false) return E;
for each noninterface signal w {

if (w is semi-essential w.r.t. (l1, l2) in f ) {
F = w;
N = reduce nested subtrace pairs(w, l1, l2, f );
forall (h1, h2) ∈ N {

F ′ = find essential(h1, h2, f , A);
F = F ∧ (F ′);

}
E = E ∨ F ;

}
}
if (E 6= false) return E;
(t, u) = pick concurrent transitions(l1, l2);
if (such (t, u) does not exist) return false;
N = generate interleavings(t, u, f );
E = true;
forall (l′1, l

′

2, f
′, A′) ∈ N {

F = find essential(l′1, l′2, f ′, A′);
E = E ∧ (F );

}
return E;

}

Fig. 13. Algorithm for determining the input set.

no noninterface transition that is concurrent with some of
before(l1), before(l2), final(l2), and final(l1). It implies that
every noninterface signal except for the signals related to
before(l1), before(l2), final(l2), and final(l1) is semi-essential.
Since no essential signal exists and no reduced nested subtrace
pair works, such every noninterface signal included in 〈f1, f2〉
must appear in f1t even times. Hence, the CSC violation
in TS(f1h) and TS(f2) cannot be resolved, even if every
noninterface signal is used. This implies that the given STG
has no CSC.

C. Guided simulation

For a given abstracted trace g, the guided simulation obtains
a regular trace f of G such that a trace obtained by projecting
out the noninterface and dummy transitions from f is equal
to g. The algorithm is shown in Figure 14. It consists of two
phases. The phase 1 generates a concrete trace h that satisfies
the projection condition but not the regularity. Actually, for
each interface transition t appearing in g, the noninterface and
dummy transitions that cause t (by Rf

2 and Rf
3 ) are certainly

contained before t in h, but those that are concurrent with t
may either appear after t or not appear in h. In the phase 2,
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guided sim(g, G, V , x) {
h = guided sim phase1(g, G, V , x, α0, null);
f = guided sim phase2(h, G, V , x, α0);
return f ;

}

guided sim phase1(g, G, V , x, α, h) {
if (g is empty) return h;
if ((g, α) is already visited) return “backtrack”;
g1 = head(g);
nec = necessary(α, g1);
dep = ∅;
forall t ∈ nec

dep = dep ∪ dependent(α, t);
forall t ∈ dep {

α′ = fire(α, t);
if (t == g1) g′ = tail(g);
else g′ = g;
h′ = append(h, t);
result = guided sim phase1(g′, G, V , x, α′, h′);
if (result 6= “backtrack”) return result;

}
return “backtrack”;

}

dependent(α, t) {
E = new = {t};
while(true) {

new′ = ∅;
forall x ∈ new

forall y ∈ conflict(x) ∩ NonIF Dum
new′ = new′ ∪ necessary(α, y) − E;

if (new′ == ∅) break;
E = E ∪ new′;
new = new′;

}
return E;

}

necessary(α, t) { /* α = (µ, I) */
if (t is already visited) return ∅;
if (t ∈ enabled(µ))

if (t ∈ firable(α)) return {t};
else return {choose one(firable(α) ∩ NonIF Dum)};

E = ∅;
p =choose one(•t − µ);
forall x ∈ •p ∩ NonIF Dum

E = E ∪ necessary(α, x);
return E;

}

Fig. 14. Algorithm for guided simulation (1).

the concurrent noninterface or dummy transitions are added to
h or moved in order to satisfy the regularity.

In guided sim phase1, if g is nonempty, it picks the first
transition of g, denoted by g1, and computes its necessary set,
i.e., the set of transitions that should be fired for firing g1,
by necessary. In necessary, if t is not enabled, one of its
empty source places is traversed upward along the noninterface
or dummy transitions (NonIF Dum denotes the set of all non-
interface and dummy transitions) recursively. If t is enabled
and firable, it is returned. If t is enabled, but not firable, some
firable transition must precede g1, and so, one of the firable
noninterface or dummy transitions chosen by choose one is
returned. In the net shown in Figure 15, where t1 · · · t5 are

g1

t5

t6

g2

t1
t2

t4 t3

t7
[0,10]

t8 t9
[1,5]

[1,5] [1,5]

[1,5][1,5][1,5]

[1,5] [1,5]

[1,5]

[1,5]

Fig. 15. Examples for the guided simulation.

noninterface transitions, and g1 and g2 are interface transitions,
the necessary set of g1 is {t1}. guided sim phase1 then
computes a dependent set of each necessary transition. The
dependent set of a transition t is a set of transitions whose
firings may be necessary before t in order to avoid missing
the possible concrete traces. For example, consider generating
a concrete trace of the net shown in Figure 15 for an abstracted
trace g1g2. As shown above, the necessary set of g1 is {t1}.
If t1 is fired from the current marking, g1 becomes enabled,
but, g2 can never be fired. In this case, firing t3, t2, t4, and t1
in this order leads to the correct concrete trace. It is, however,
not easy to find such a correct firing sequence directly. Instead,
our algorithm guarantees to generate the correct concrete trace
by the backtracking mechanism with firing a sufficient set of
transitions in each step. Such a sufficient set of transitions is
the dependent set. It is formally stated that a dependent set
of transition t is a set E of transitions, satisfying t ∈ E,
and for each x ∈ E, the necessary transitions of conflict(x) ∩
NonIF Dum are also in E. The dependent set can be defined as
a closure, and so, the while loop in Figure 14 computes it. In
our example, the dependent set of t1 is {t1, t3}. Hence, even
if guided sim phase1 fires t1 first, it eventually can fire t3
and then t2 after several backtrackings. After firing t2, it is
straightforward to fire t4 and t1, because they are the necessary
transitions for g1. When g1 becomes enabled, its necessary set
is {g1} and its dependent set is {g1, t6}. The correct transition
to be fired here is t6, and is again guaranteed to be found by the
backtracking mechanism. The fired transitions are appended to
the trace h, and it is returned when g becomes empty. Then,
the trace h is passed to guided sim phase2 in order to
generate a regular trace based on h.

In guided sim phase2, each transition determined by
find firing trans is fired until h, which is updated by also
find firing trans, becomes empty as shown in Figure 16.
In find firing trans, if the first transition t of h is interface,
it implies that t is enabled in the current marking because all
its necessary transitions are supposed to be fired. In order to
satisfy the regularity, however, firable noninterface or dummy
transitions that are concurrent with t should be fired before t, if
they exist. This should be done carefully, if such a noninterface
or dummy transition x is in conflict with some other transition.
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guided sim phase2(h, G, V , x, α) {
f = null;
fired = null;
while(true) {

(t, h) =find firing trans(α, h);
f = append(f , t);
α = fire(α, t);
if (h is empty) break;

}
return f ;

}

find firing trans(α, h) {
while(true) {

(t, h′) = (head(h), tail(h));
if (t is interface)

return find concur trans(α, t, h, h′);
else

if (t 6∈ fired) return (t, h′);
else {

fired = fired − {t};
h = h′;

}
}

}

find concur trans(α, t, h, h′) {
find x ∈ firable(α) ∩ NonIF Dum

s.t. conflict(x) ∩ (prefix(h, x) − fired) = ∅;
if (such x exists) {

fired = fired ∪ {x};
return (x, h);

}
else return (t, h′);

}

Fig. 16. Algorithm for guided simulation (2).

In such a case, an appropriate transition should be chosen
such that it is consistent with the rest of h (up to the point
where x fires). Let prefix(h, x) denote a prefix of h before
the occurrence of x. It is equal to h if x is not included
in h. Then, if conflict(x) ∩ prefix(h, x) 6= ∅, it implies that
some other transition conflicting with x fires before x in h,
and so, x should not be fired in the current timed state class.
Thus, it is necessary to find a noninterface or dummy firable
transition x such that conflict(x) ∩ prefix(h, x) = ∅. If such
a x is found, it is returned with the unupdated h keeping the
interface transition in its head. In this case, x is added to a
global variable fired to avoid firing it again when it is in the
top of h. If such x does not exist, either there are no firable
noninterface or dummy transitions, or every such transition
conflicts with some interface transition in h. In either case, no
firable noninterface or dummy transitions are concurrent with
t. Hence, t and h′ = tail(h) are returned 5.

If t is noninterface or dummy, the regularity just requires
that t should be fired. But, it may be already fired as mentioned
above to generate regular traces when it is concurrent with
some interface transition. Thus, if t ∈ fired, it is just
removed from fired, and the next transition of h is processed.

5If transitions conflicting with interface transitions form loops, then there
can exist many nonequivalent concrete traces that correspond to g. In our
current implementation, one shortest regular concrete trace is selected.

Otherwise, t and h′ = tail(h) are returned.
In the previous example, for an abstracted trace g1g2,

t3 t2 t4 t1 t6 t5 g1 t7 t9 g2

is obtained by guided sim phase1. This does not satisfy
regularity, because t7 and t9 fire after g1. When h =
g1 t7 t9 g2 is first given to find firing trans, (t7, h) is
returned with fire = {t7}. After firing t7, both t8 and t9
become firable. t8 is not chosen, because conflict(t8) = {t9}
and prefix(h, t8) = {t9}. After firing t9, however, t8 is chosen
and fired. Finally, g2 is fired, and the following regular trace
is obtained.

t3 t2 t4 t1 t6 t5 t7 t9 t8 g1 g2

Note that this second phase is deterministic (backtracking
is not necessary), because every causal transition needed for
interface transitions in g is found in the phase 1. An alternative
of the guided simulation with only one phase may be possible,
but we believe that the above approach minimizes the number
of the backtrackings.

VII. LIMITATIONS

The proposed algorithm currently has the following restric-
tions on the class of timed STGs to be handled.

• Any loop in the given timed STG must contain at least
one transition with non-zero delay (i.e., its earliest firing
time is greater than 0). This restriction is necessary to
guarantee the termination of the second phase of the
guided simulation. In the untimed case, this termination is
not guaranteed, if a loop formed only by noninterface or
dummy transitions exists [23]. In the timed case, however,
even if such a loop exists, time certainly passes in the
loop from the above restriction, and eventually, other
transitions are fired. Thus, the guided simulation can
terminate.

• For every two reachable timed state classes of the STG,
either one is reachable from the other. This restriction
is necessary, because every CSC violation pair is found
along a single path from the initial timed state class in
our algorithm.

VIII. EXPERIMENTAL RESULTS

The proposed method has been naively implemented using
the C language 6. This section evaluates the potential perfor-
mance of the proposed method and the area overhead of the
synthesized circuits. The experiments here have been done on
a 2.8 GHz Pentium 4 workstation with 4 gigabytes of memory.

For speed independent circuit synthesis, tools moebius [21]
and csat [22] use the similar idea of the decomposition
based synthesis. Since our method is extended for timed
circuit synthesis and they run on different machines, the
precise comparison with those tools is not very meaningful.
According to the rough comparison on the several circuits used
in [23] and [21], the performance of the synthesis and the

6The interleaving generation part in find essential is not fully imple-
mented currently.
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TABLE I

EXPERIMENTAL RESULTS (1).

Circuit Literal counts
atacs Proposed

alloc-outbound 16 16
atod 9 9
chu150 11 11
chu172 6 6
converta 12 12
dff 8 8
master-read 26 26
mp-forward-pkt 16 16
nak-pa 20 20
nowick 18 18
pe-rcv-ifc 50 51
pe-send-ifc 60 61
ram-read-sbuf 20 20
rcv-setup 8 8
sbuf-ram-write 19 19
sbuf-read-ctl 13 13
sbuf-send-pkt2 19 19
sendr-done 5 5
trimos-send 21 21
vbe10b 21 21
vbe4a 6 6
vbe6a 17 17
vmebus-arb 9 9
wrdata 11 11
wrdatab 29 26
rappid 152 152

literal counts of the synthesized circuits do not make much
difference.

For the timed circuit synthesis, in order to evaluate the area
overhead of the proposed method, small timed specifications,
which are obtained from the standard benchmarks by adding
the fixed lower bound and upper bounds to each transition
([3,5] for output transitions, [8,10] for input transitions), are
synthesized by the proposed method and a timed circuit syn-
thesis tool atacs [24], and the literal counts of the synthesized
circuits are compared. Table I except for the last line shows
these results. These results show that the quality at least with
respect to the area size is not badly affected, even though
our method uses restricted information for synthesizing sub-
circuits, and so may choose non-optimal input sets. Since these
example are small, the CPU times for both methods are almost
the same.

The last example shown in Table I is the control circuit for
RAPPID. This example is larger, and so, atacs cannot com-
plete the synthesis on the flat specification without hierarchical
decomposition. The literal count shown for atacs in the table
is obtained using hierarchical decomposition. The proposed
method synthesizes it within 15 seconds.

Table II shows the results for much larger examples, which
are taken from [14]. They are specifications for IIR filters, FIR
filters, and portions of the Discrete Cosine Transform (DCT)
circuits obtained from SpecC/Balsa high-level specifications
(slightly modified versions are used for this experiment due to
some improvement of our Balsa compiler). Those with “ b”
are allowed to use more operational units. Thus, they have
more concurrency than those with “ a”. In order to evaluate

TABLE II

COMPARISON BETWEEN UNTIMED AND TIMED CIRCUIT SYNTHESIS.

Circuits Synthesis time (sec.) Literal counts
Untimed Timed Untimed Timed

IIR a 13.9 18.1 449 391
IIR b 19.2 65.0 567 462
FIR a 215.5 268.0 1155 923
FIR b 285.7 952.7 1604 1116
DCT a 2952.0 3700.3 2207 1870
DCT b 2752.2 3345.9 2496 1902

the performance of the timed circuit synthesis, this table also
shows the performance of synthesis of the untimed version
(Speed Independent) of the above specifications. Note that the
partial order reduction and POSET techniques are used for
these examples, because otherwise the timed circuit synthesis
does not terminate due to many dummy transitions left by
the exact timed net contraction (the untimed circuit synthesis
is not improved much by these techniques). Although the
timed circuit synthesis takes longer time especially for the
specifications with more concurrency, much more compact
circuits (compared with the untimed versions) are successfully
synthesized (by using the above techniques) without significant
performance penalty.

The untimed version of IIR a is synthesized by atacs in
about 200 seconds, but it runs out of memory for the other
specifications. Since there are no hierarchy information for
those designs, the hierarchal synthesis of atacs does not
work. The only circuit synthesized by atacs from the untimed
version of IIR a has the same literal count 449 as the one
synthesized by our method.

IX. CONCLUSION

This report presents a decomposition based method for
efficient synthesis of large timed circuits. The idea proposed
for the speed independent circuits [23] has been extended
for the timed circuit synthesis. Since the state spaces of
the original timed STGs are not needed to be explored, the
proposed method allows for the synthesis of large timed
circuits that could not be synthesized using conventional flat
synthesis methods. Although this method does have some area
overhead for small circuits, the experimental results show that
the overhead appears to be very small.
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