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Abstract. We propose an XQuery cost model that is able to estimate
the performance gain of source-level transformation. The cost of ma-
jor language constructs, including FLWOR, quantified, path, element
construction, and predicate expressions are captured. The evaluation of
optimization using existing real engines suffer from problems, such as
lack of applicability to other engines, instability that comes from evolu-
tion, difficulties in reproduction as a result of difficulties in acquisition,
as well as unsuitability for evaluation of the optimization based on a
static analysis in the absence of run-time information. This research is
a first attempt to provide a virtual engine to facilitate the evaluation of
various optimization techniques without introducing real engines. The
cost model consists of simple recursive functions based on functional
language constructs. They are determined using formal semantics and
other known efficient algorithms. The model enables analytic compari-
son of costs between expressions before and after transformation in an
engine-independent manner. An engine-specific evaluation strategy can
be incorporated if necessary. We have succeeded in proving that various
transformations, including auxiliary ones used in optimization are not
cost-increasing, as well as in detecting cost-increasing transformations
that should be avoided.

1 Introduction

When we mention optimizations based on program transformations, we should
prove cost reduction as well as semantic equivalence.

Various transformation rules are applied in an attempt to reduce costs in
rewriting-based optimization of query languages. These rules include not only
transformations that obviously reduce costs, but also auxiliary transformations
whose cost benefits may be non-trivial. If those transformations turn out to
degrade the cost, they may hinder the total effectiveness of rewriting. There-
fore, each transformation applied in the course of the optimization should be
guaranteed not to increase cost. Consequently, estimating costs before and after
transformations are crucial in determining optimization guidelines.



XQ := literal
| (XQ) /* parenthesized expr. */
| XQ,XQ /* sequence */
| for $QName in XQ (where XQ)? return XQ /* for expr. */
| let $QName := XQ (where XQ)? return XQ /* let expr. */
| some $QName in XQ satisfies XQ /* existential */
| every $QName in XQ satisfies XQ /* universal */
| 〈QName〉{XQ}〈/QName〉 /* direct elem. constructor */
| element QName {XQ} /* computed elem. const. */
| XQ/QName | XQ//QName /* relative path expr. */
| XQ[XQ] /* predicate expr. */
| $QName /* variable reference */
| if (XQ) then XQ else XQ /* conditional expr */
| XQ or XQ | XQ and XQ /* logical expr. */
| /QName | //QName /* absolute path expr. */
| QName(XQ,XQ,. . . ,XQ) /* function call */
| op(XQ,XQ,. . . ,XQ) /* other uninterpreted functions

and n-ary operators */

Fig. 1. Abstract Syntax Tree of the XQuery subset discussed in this paper

One might verify those cost reduction using real-world engines. However, it is
almost impossible to test all the existing engines. Moreover, it is not applicable to
optimizations based on static analysis, in which run-time data cannot be inves-
tigated. Thus, some yardstick that is independent of the run-time information,
such as data quantities, are required.

We propose a cost model for XML query language XQuery [1]. The cost
model has granularity to the extent that it is able to capture the processing of
major language constructs shown in Fig. 1, including FLWOR, quantified, and
path expressions, while maintaining independence from specific engines. Please
note that operators that are not explicitly listed can be modeled as uninterpreted
functions, whose cost consists of the sum of the costs of arguments and the cost
of the body itself.

Our cost model is mostly derived from formal semantics. Two exceptions are
element construction and path expression. The former cost was not apparent
in formal semantics, while the latter has an evaluation algorithm proposed in
the literature that is more efficient than naively applying normalization rules in
formal semantics. The cost models of those expressions are derived separately
along with the verification of using real engines.

In this paper, we show the relative cost change by transformations applied in
XQuery source level optimizations. For query rewritings that are composed only
of cost-non-increasing transformations, the transformations on the whole can be
inductively guaranteed to maintain or decrease costs.

Research that deals with the complexity of XQuery already exists [2], where
the class of complexity is determined at the abstract level, such as in Turing
machines or logic circuits. In such an abstraction level, one can not determine,
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given two semantically equivalent XQuery codes, which is expected to run faster.
From the complexity theoretical point of view, both of them fall into the same
class, thus making no difference.

The cost model is intended to be used for optimizations based on static
analysis, in which relative cost before and after the rewriting is estimated. Con-
crete values are unnecessary. Therefore, the cost of subexpressions that do not
participate in the transformation can be safely left uninterpreted. Moreover,
components of the costs of those subexpressions, namely the selectivity or the
size can be determined in cooperation with other research contributions that
actually calculate concrete values [3, 4].

We have determined, for each XQuery language construct, simple recursive
cost functions that are expected to be satisfied. For example, in for expressions
without a where clause, evaluation cost with respect to a return clause is
determined by multiplying the cost of the return clause itself and the length of
expressions as a sequence in the in clause.

Many equalities in source level transformations have been presented in the
literature [5–9]. However, we were unable to find equalities that came along with
the cost model at the granularity we are dealing with.

XQuery formal semantics [10] includes transformation rules that convert
XQuery to its subset called XQuery Core. However, our transformation is wider
in scope.

Besides the XQuery research area, we found the approach by Fegaras et al.,
who deal with the normalization rules, along with the cost model in the context
of OQL [11], closest to ours. Although we found a strong affinity with our XQuery
cost model, some problems did not allow us to adopt this approach directly. A
detailed discussion is provided in section 2.4.

Once the cost model is determined, one can find out the specific transforma-
tions that should be avoided, which seems to be cost-preserving at first glance.
For example, the result of an and expression can be determined (if we do not
assume parallel processing) if either an operand first evaluated, turned out to
be false. The evaluation of the other operand is not necessary. However, there
are engines that always evaluate both operands (our experience can be seen in
section 4.2). This difference in evaluation strategies gives us warnings when a
transformation rule includes an and expression its result. Then we can choose
either, (1) not to do such rewriting or (2) replace the and expression with an
equivalent if expression.

The cost model provides an abstract estimation of the effectiveness of rewrit-
ing transformations. In the optimization research field, performance evaluation
is often conducted by experiments using real engines. However, as they are con-
ducted on their own engines [8]1, applicability to other engines is not guaranteed
for the results. Since many of the engines are still in the research stage, stable
reference engines available to everyone do not yet exist. In addition, these engines

1 [5–7, 12] cited earlier propose transformation rules, but do not include the perfor-
mance evaluation.
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make constant progress, which makes these results quickly obsolete. Installations
are also hard tasks.

This paper describes the first attempt to build a cost model that can serve
as a Virtual Engine to facilitate the evaluation of optimizations. Just like Light
XQuery [13] provides compact semantics sufficient for XQuery researches as a
whole, this cost model provides “semantics in the cost domain” for XQuery
source level optimization research. Indeed, this work is motivated by the desire
fore supporting the equalities used in [14], on the cost side.

The rest of this paper is organized as follows. Section 2 gives general re-
marks on the rationale of the cost definition. Section 3 defines the concrete cost
model. Cost changes caused by various transformations, including monad laws,
are shown in section 4. Most of them are proved to either maintain or reduce
costs. Section 5 refers related works, and finally the prospect of extending the
cost model with respect to query size is described in section 6, followed by a
conclusion and future work in section 7.

The transformation rules that appear in this paper are not exhaustive, be-
cause the purpose of this work is to provide cost formulas in relative form for
major language constructs depicted in Fig. 1. The authors believe that most of
the transformation rules that appear in the literature [5–9] can be captured by
those presented in this paper. Transformations that are not covered in this paper
include ones that are not cost-effective in terms of our XQuery source-to-source
level optimization and conversely, our transformations that did not appear in the
literature consist of either ones that are cost ineffective with respect to the un-
derlying specific engines, or ones that involve intractable language components
for these engines.

Although full-fledged FLWOR expressions or quantified expressions are not
explicitly handled, cost models of these expressions with successive in clauses
can be reduced to our model via the normalization rules in formal semantics [10].
In addition, cost changes of some of the other transformations related to join
operations that were originated from [15] were left out, because these transfor-
mations can be represented by a composition of other transformations described
in this paper. We plan to deal with a more complete set of transformation rules in
a separate paper. The semantic equivalences of most transformations described
here, unless explicitly mentioned, are proved in appendix A, all of which are
easily derived from formal semantics.

This paper assumes a certain knowledge about XQuery. Readers unfamiliar
with this query language may refer to introductory books such as [16, 17].

2 Rationale of cost model definitions

In this paper, weights of arbitrary XQuery expressions are statically estimated in
order to evaluate their cost before/after transformation and quantify the effect
of the optimization2.
2 Other possible approaches may include cost estimation based on actual test-
executions like in Weight Finder [18].
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Ultimately, concrete cost can be determined based on physical algorithm
(plan) [11]. Costs estimated at the abstraction level of XQuery expressions may
not suite the evaluation strategies in each real-world engine.

On the other hand, maintaining moderate abstraction levels, where no par-
ticular specialization in a specific engine is assumed, is essential in pursuing
optimizations applicable to wide range of engines.

Here we aim at building cost models that do not remarkably depart from
the physical plans. Verification using several existing engines are quoted where
necessary.

2.1 Justification of cost definition

Cost models can be justified by the following conditions:

1. Procedures that the cost model assumes are shown to yield the same results
as with XQuery (formal) semantics.(Required)

Example: In cases of for expressions, at first the in clause is determined.
The return clause is evaluated for each item of the resultant input sequence.
Note that lazy evaluation is not exploited here. Therefore, if the return
clause does not refer to the bound variable introduced in the for clause, it is
redundant to evaluate it as many times as the length of the input sequence.
However, it can be semantically justified in the sense that it is simulating an
engine that does return valid results.

2. Avoid redundant computation.
This condition should be necessary because the above condition alone is not
always realistic.

Example 1: Predicate of the some expressions are evaluated for all items in
in clauses regardless of the initial value of the predicates, without stopping
the evaluation even if one of the evaluations is found to yield true.

Example 2: For the processing of an order by clause, produce an instance
in which all the permutations for the input tuple stream are enumerated,
and all the permutations are scanned to return only the permutation that
satisfies the specification in the order by clause.
Both of these examples satisfy condition 1 yielding valid results. However,
these implementations are unrealistic from the standpoint of computational
complexity.

To claim the adherence to condition 2, it is necessary to show that the cost
model can simulate the behavior of a real engine that is considered useful (or
conversely, it has to be shown that the real engine behaves similar to the cost
model from the point of view of computational complexity).

For the cost of language constructs that are not intuitively apparent, we try
to avoid the departure of the cost model from the real world by conducting a
verification using an existing engine, such as Galax [19] or eXist [20].

5



2.2 Our cost definition strategy

Cost functions are mostly based on formal semantics [10].
However, Gottlob et al. [21]s combined (data and query) complexity is used

for the path expression. To summarize,

Estimation based on formal semantics: Formal semantics are utilized for
expressions like for, whose physical plan is expected to match formal semantics.

Estimation is based on the inference rules and judgments in formal semantics.
For each inference rule, the cost of the expression in the consequence part

can be obtained by the sum of the cost of the expressions in the premise part.

Estimation based on preceding particular research: For the expressions
whose costs can be calculated in prior research, the contribution is utilized.

– Gottlob et al. [21] have proposed an evaluation strategy in polynomial order
for Core XPath.
In this paper, behaviors of real engines are investigated for path expressions.
For engines that can be considered to actually obey, Gottlob’s polynomial
model is adopted. Details are described in section 2.3.

– For monoid comprehension, which corresponds to FLWOR (excluding or-
dering portions) expression, Fegaras et al. [11] had proposed a simple cost
model.
Although some definitions are not intuitive, the method to recursively define
the cost function using the size and selectivity function, have been adopted
because we find an affinity with the functional aspect of the XQuery in the
method. Section 2.4 describes this in detail.

Expressions whose execution models can be found in neither of the
above: Our original estimations apply. For example, specification requires that
element constructors copy its content. However, due to a lack of explicit de-
scriptions in formal semantics, and in prior research, for that matter, we have
estimated cost based on experiments. The results showed the linear cost in the
size of the contents. Section 2.5 elaborates on this subject.

2.3 Cost on evaluation of path expressions

According to [21], data and query complexity (i.e., computational complexity
with respect to the size of the input data and input query, respectively) of the
path expressions are both polynomial in time. Even linear evaluation time can
be assumed for the defined Core XPath there.

We have evaluated Galax3 [19], which strictly adheres to formal semantics,
and another secondary-storage implementation of XQuery called eXist4 [20], for
the behavior of the path expression execution.
3 http://www.galaxquery.org/
4 http://exist.sourceforge.net/
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The query used to expand the length of a query size is

//a/b/parent::a/b/ . . . parent::a/b︸ ︷︷ ︸
|Q|−1

which follows [21]. Similarly, the size of input data |D| is adjusted using data
structure denoted in Fig. 2.

a

b b b b

|D|

Fig. 2. Data structure used for Gottlob’s scalability test
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Fig. 4. Gottlob test (eXist, |Q| = 4)

eXist behaves linearly with respect to the query size of the test query(Fig. 3).
Figure 4 shows the linear behavior with respect to the data size as well.

No evaluation has yet been conducted on the behaviors for more complex data
or queries, but Galax proved the exponential behavior (Fig. 5), which implies
possible performance degradation in transformations where the number of path
expression occurrence is increased.

For Galax, secondary storage implementation using BerkeleyDB5 is included
in the Version 0.4.0 release. However, the exponential behavior seemed to be
inherited (Figs. 7 and 8).

5 http://www.sleepycat.com/products/db.shtml
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Polynomial behavior had been seen with respect to data size |D| for both
main-memory and secondary storage implementations (Figs. 6 and 9)6.

2.4 Cost of monoid comprehension

As FLWOR and quantified expressions correspond to monoid comprehension
(accumulator for the FLWOR is a sequence concatenation operator “,”, while
for quantified expressions it is boolean or/and operators), we refer to [11], which
includes the cost model of the comprehension syntax, as in Fig. 10.

size�⊕{e � r}� = size�r� (S1)

size�r, v ← e� = size�e� × size�r� (S2)

size�r, pred� = size�r� × selectivity�pred�
(S3)

size�r, v ≡ e� = size�r� (S4)

size�� = 1 (S5)

cost�⊕{e � r}� = cost�e� + cost�r� + size�r�
(C1)

cost�r, v ← e� = cost�e� + cost�r� (C2)

cost�r, pred� = cost�pred� + cost�r� (C3)

cost�r, v ≡ e� = cost�e� + cost�r� (C4)

cost�� = 0 (C5)

Fig. 10. Cost model by [11]

Since both transformation rules and the cost model are provided in the form
of a comprehension syntax, they are easily converted to XQuery bidirectionally.

For example, the FLWOR expression

[XQuery] for $v1 in e1

...
let $v2 := e2

...
where ew

return er

is equivalent to the comprehension representation

,{er � v1 ← e1, . . . , v2 ≡ e2, . . . , ew}

whose cost model is quoted in Fig. 10. We follow this style of cost function con-
struction, where three basic functions (cost, size, and selectivity) are combined
with each other. However, this model was unable to be directly adopted.

Consider the cost estimation of the following FLWOR expression:

for $x in e1 where pred return e3
≡ ,{e3 � x ← e1, pred}

6 Secondary storage implementation ran faster than main-memory implementation for
XMark benchmark data and queries.
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cost�,{e3 � x ← e1, pred}�
= (C1)

cost�e3� + cost�x ← e1, pred� + size�x ← e1, pred�
= (C3),(S3)

cost�e3� + cost�x ← e1� + cost�pred� + size�x ← e1� × selectivity�pred�
= (C2),(S2)

cost�e3� + cost�e1� + cost�pred� + size�e1� × selectivity�pred�,

which means the cost with respect to e3 and pred do not depend on any other
expressions.

The above cost model assumes that the head part, which is equivalent to
a return clause in FLWOR expression, has to be evaluated only once. On the
other hand, the return clause is evaluated in proportion to the length of the
resultant sequence in the in clause after filtering based on specified selectivity.
This is not captured in the above cost model. Moreover, pred, which is a where
clause equivalent, is also considered to be evaluated only once. In XQuery, the
cost should also be proportional to the sequence size of the in expression. Our
cost model leads to the following different conclusion:

cost�for $x in e1 where pred return e3�
= (Cwfor)

cost�e1� + size�e1� · (cost�pred� + selectivity�pred� · cost�e3�)
=

cost�e1� + size�e1� · cost�pred� + size�e1� · selectivity�pred� · cost�e3�,

which successfully captures the cost with respect to the where and return
clauses proportional to the size of the input sequence. Besides, [11] intermixes
terms with different dimensions (cost and size) in additive expressions, where
ours does not.

2.5 Estimating cost of element construction

Specification requires that an element constructor make a whole copy of its
content. However, since a description that could lead to the estimation of the
element construction cost itself, was not included in the formal semantics, the
cost was not able to be immediately inferred.

However, by intuition, the cost will be proportional to the size of the contents
of the element constructor.

In this section, Galax was used to estimate the cost.
Figure 11 shows the topology of the node data that was used in the evaluation.

The number of branches (w-ary) and depth (d) was varied to adjust the number
of nodes. The relationship between the node number n and w,d is described by
the equation

n =
d−1∑
k=1

wk = w
wd−1 − 1
w − 1

.
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Fig. 11. Topology of trees used in experi-
ments
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The query that was used to produce the diverse number n of nodes is shown
in Fig. 15.

To exclude time for processing besides than element construction, data that is
copied from was loaded from an external XML file rather than generated within
the query. The output cost of the copied elements was also excluded by letting
Galax return separate constant data instead, as a query result.

The iterated generation of content data could have been implemented using
a for expression with a range expression as its input. However, to avoid the for
expression cost getting mixed in, inline direct element constructors were used
instead.

In this query, the result of the element construction subexpression is dis-
carded by the projection of following predicate.

If the static analysis had partially evaluated the expression, to discard the
redundant element construction, we would not have been able to measure the
cost. We confirmed, by examination of the output of the physical plan avail-
able in Galax 0.4.0, that no such aggressive optimization had been applied, and
consequently the element construction subexpression was actually executed.

let $x := $d/a return (1 ,<y>{$x}</y> . . . ,<y>{$x}</y>
| {z }

n

)[1]

Fig. 15. Dummy query to measure element construction cost

Element constructors, according to the specification, copy constructs supplied
as their arguments and allocates new node IDs for them. This cost is expected
to be proportional to the number of nodes and copies. Figure 12 shows the cost
with respect to the number of nodes, while Figs. 13 and 14 show the costs with
respect to the number of copies. These experiments show the linear behavior of
the engines.

3 Cost model

In this section, with reference to the preceding sections, cost models are defined
for each language construct (expression) of XQuery. Cost functions are summa-
rized in Table 1.

3.1 Structure of cost model

The cost model consists of the cost function C(e), which defines the cost of
expression e, and two auxiliary functions S(e) and P(e).

cost function C(e) is recursively defined by the cost, size, and probability func-
tions of the subexpressions.
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(auxiliary) size function S(e) is defined in terms of size and probability func-
tions of the subexpressions. It doesn’t depend on the cost of the subexpres-
sions.

(auxiliary) probability function P(e) is defined in terms of the probability
and size functions of the subexpressions. It is also independent of the costs
of the subexpressions.

3.2 Cost function definitions for each syntax

For expressions

C(for $x in s return f($x))
= C(s) + S(s) · C(f) (Cfor)

In the above XQuery expression and hereafter, an expression that refers to
the variables $v1, $v2, . . . , $vn is denoted by f($v1, $v2, . . . , $vn) to clarify its
dependence on these variable bindings. Although this syntax is identical to that
of a function call, no explicit distinction is made when it is contextually apparent.

Proof. (rationale)
According to dynamic semantics (Dynamic Evaluation section)7 of for ex-

pressions

dynEnv 
 Expr 1 ⇒ Item1 , . . . , Itemn

statEnv 
 VarRef of var expands to Variable
dynEnv + varValue(Variable ⇒ Item1) 
 Expr2 ⇒ Value1

. . .
dynEnv + varValue(Variable ⇒ Itemn) 
 Expr2 ⇒ Valuen

dynEnv 
 for VarRef in Expr 1 return Expr2 ⇒ Value1 , . . . , Valuen

(costs related to looking up variable symbol tables and variable binding are
disregarded here)

C(dynEnv 
 for VarRef in Expr1 return Expr2 ⇒ Value1 , . . . , Valuen)
= C(dynEnv + varValue(Variable ⇒ Item1) 
 Expr 2 ⇒ Value1)

+ · · · +
C(dynEnv + varValue(Variable ⇒ Itemn) 
 Expr 2 ⇒ Valuen)

The number of judgments is equal to n, which is the size of the items in input
sequence s. We assume uniform cost for each Expr i. �

FLWOR(For+Where+Return)

C(for $x in s where p($x) return f($x))
= C(s) + S(s) · (C(p) + P(p) · C(f)) (Cwfor)

The cost of the predicate (p) evaluation, as well as its selectivity, is taken into
consideration. �
7 http://www.w3.org/TR/xquery-semantics/#id-for-expression
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FLWOR with multiple generators
C(for $x1 in s1, $x2 in s2($x1) return f($x))

= C(s1) + S(s1) · C(s2) + S(s1) · S(s2) · C(f) �

literals

C(literal) = constant
For relative cost evaluations, the cost of the literal may be left uninterpreted.

�

Direct Element Construction

C(〈QName〉{e}〈/QName〉) = C(e) + S(e//∗) · Ce (Cdec)

S(e//∗), which is defined at (Sdstep) later in section 3.3, represents the number
of elements copied. Ce denotes the unit cost of the element construction, while
the second term, as a whole, captures the deep copy cost of e. �

Computed Element Construction Cost of the computed element construc-
tion with literal QName is identical to that of the direct element construction,
since they are semantically equivalent.

C(element QName {e}) = C(e) + S(e//∗) · Ce (Ccec)

If the QName part is not constant, the cost of evaluation of that part is simply
added to yield

C(element e1 {e2}) = C(e1) + C(e2) + S(e2//∗) · Ce

�

Step expression C(e/QName)

if e is a path expression then the cost proportional to

|D|c · |Q|d

in [21] is used to yield

C(e/q1/q2/ · · · /qN ) = C(e) + S(e)c ×Nd · k (Cgstep)

if e is not a path expression Substitute N in (Cgstep) with 1 yields

C(e/QName) = C(e) + S(e)c · k (Ccstep)

This is consistent with the following formulation using formal semantics:
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left hand side
= normalization of /QName and (2)

C(e/child::*[self::QName])
= (Cpred)

C(e/child::*) + S(e/child::*) · C(self::QName)
= normalization rule of path expression

C(e) + S(e) · C(child::*) + S(e) · S(child::*) · C(self::QName)
=

C(e) + S(e) · (C(child::*) + S(child::*) · C(self::QName))
= treat coefficient of S(s) as constant k

right hand side (with exponent c = 1)
�

C(e//QName)

C(e//QName) = C(e) + k · S(e//∗) (Cdstep)

Proof. Using the properties

e/descendant::node()

= e/descendant-or-self::node()/child::node() (1)
axis::QName = axis::*[self::QName] (2)

lhs
= normalization of // and (1)

C(e/descendant::node()[self::QName])
= (Cpred)

C(e/descendant::node()) + S(e/descendant::node()) · C(self::QName)
= normalization rule of path expression

C(e) + S(e) · C(descendant::node())
+S(e/descendant::node()) · C(self::QName)

= let k be a unit cost of child axis access
C(e) + S(e) · k · S(descendant::node())
+S(e/descendant::node()) · C(self::QName)

=
C(e) + k · S(e/descendant::node())
+S(e/descendant::node()) · C(self::QName)

=
C(e) + (k + C(self::QName)) · S(e/descendant::node())

= (1) and let k′ = (k + C(self::QName))
rhs

�

Absolute Step expression As the absolute path expressions can be normal-
ized by [10] into relative path expressions, cost functions, such as C(//QName)
can be derived from (Ccstep):
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C(/QName)
= normalization rule of /
C(fn:root(self::node()) treat as document-node())/QName)

= (Ccstep)
C(fn:root(self::node()) treat as document-node())
+ S(fn:root(self::node()) treat as document-node())c · k

=
C(fn:root(self::node()) treat as document-node()) + k (Cacstep)

�

C(//QName)
= normalization rule of //
C(fn:root(self::node()) treat as document-node())//QName)

= (Cdstep)
C(fn:root(self::node()) treat as document-node())
+ k · S(fn:root(self::node()) treat as document-node()//∗)

(Cadstep)

�

Comma (sequence construction) expression

C(e1, e2) = C(e1) + C(e2) (Cseq)

Cost of concatenation is omitted here. �

Let expression

C(let $x := s return f($x)) = C(s) + C(f) (Clet)

Variable reference expression

C($x) = constant = Cvr (Cvr)

This cost may be ignored depending on the context.
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Quantified expression

C(some $x in s satisfies p($x)) = C(s) + S(s) · C(p) (Cnsome)

Note that this formula cannot capture the behavior where the result of a true
value is returned as soon as p evaluates to true for some item in input sequence
s.

This behavior can be modeled as follows.

C(s) + C(p(x1)) + C(p(x2))(1 − P(p(x1)))
+ C(p(x3))(1 − P(p(x1)))(1 − P(p(x2)))

...
+ C(p(xn))(1 − P(p(x1))) · · · (1 − P(p(xn−1)))

= C(s) +
n∑

i=1


C(p(xi))

i−1∏
j=1

(1 − P(p(xj)))


 (3)

where

(x1, x2, . . . , xn) = s

n = S(s)

Moreover, if C(p(x1)) = C(p(x2)) = · · · = C(p(xn)) = C(p), P(p(x1)) =
P(p(x2)) = · · · = P(p(xn)) = P(p) can be assumed as in (Cnsome),

C(s) +
1 − (1 − P(p))S(s)

P(p)
C(p) (Csome)

Similarly, the cost of universal quantification can be captured by

C(s) +
1 − P(p)S(s)

1 − P(p)
C(p) (Cevery)

As quantified expressions with multiple variable bindings are equivalent to
nested quantified expressions according to normalization rules in the formal se-
mantics, their costs can be calculated by recursive applications of the above cost
formulas.

Corollary 1

C(some $x in s satisfies p($x)) < C(s) +
C(p)
P(p)

Figure 16 shows the curve of the cost function with respect to the length of
input sequence s, for representative values of p. As the length increases, the cost
approaches the right hand side of the inequality. �
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Fig. 16. Cost of quantified expression
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Fig. 17. 3D plot of quantified expression
cost

Corollary 2 For P(p) = 0,

C(some $x in s satisfies p($x)) = C(s) + S(s) · C(p)

Proof. Substitute P(p) with 0 in eq. (3). �
P(p) cannot be replaced by 0 in (Csome). However, taking limits yields

similar results as follows.

Proof.
let n = S(s)

lim
P(p)→+0

(
C(s) +

1 − (1 − P(p))n

P(p)
C(p)

)
(∵ d

dx {1 − (1 − x)n} = n(1 − x)n−1)

= lim
∆(P(p))→+0

(
C(s) +

n(1 −∆P(p))n−1∆P(p)
∆P(p)

C(p)
)

= C(s) + n · C(p)
�

Conditional expression

C(if (e1) then e2 else e3) = C(e1) + P(e1) · C(e2) + (1 − P(e1)) · C(e3) (Cif)

Logical expression

C(e1 or e2) = C(e1) + (1 − P(e1)) · C(e2) (Cor)

C(e1 and e2) = C(e1) + P(e1) · C(e2) (Cand)

The optimized evaluation strategy, in which the result of either operand
determines (if possible) the result of the entire expression, without evaluating
another operand, is modeled.
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Considering that the cost model itself may determine which operand should
be tested first, rather than always testing the left operand first, the following
formulation models the more efficient evaluation strategies:

C(e1 or e2) = C(el) + (1 − P(el)) · C(eu) (Coor)

C(e1 and e2) = C(el) + P(el) · C(eu) (Coand)

where

l = {j | C(ej) = min
i∈{1,2}

C(ei)}
u = {j | C(ej) = max

i∈{1,2}
C(ei)}

There may be implementations that evaluate both operands regardless of the
result of either of the operands. In this case, the cost is simply equal to the sum
of the costs of both operands. �

Predicate expression

C(e1[e2]) = C(e1) + S(e1) · C(e2) (Cpred)

Function call

C(QName(e1, e2, . . . , eN))
= C(e1) + C(e2) + · · · + C(eN) + C(function body(QName)) (Cfcall)

It does not capture lazy evaluation.

3.3 Definitions of size functions

Built-in function fn:count() returns, for argument as a sequence, the number
of items. This value is statically estimated following formal semantics:

S(for $x in s return f($x)) = S(s) · S(f) (Sfor)

Proof. Estimation is based on dynamic evaluation formal semantics of a for
expression, similar to the estimation of the cost functions. As

dynEnv 
 Expr1 ⇒ Item1 , . . . , Itemn

statEnv 
 VarRef of var expands to Variable
dynEnv + varValue(Variable ⇒ Item1) 
 Expr2 ⇒ Value1

. . .
dynEnv + varValue(Variable ⇒ Itemn) 
 Expr2 ⇒ Valuen

dynEnv 
 for VarRef in Expr1 return Expr2 ⇒ Value1 , . . . , Valuen
,
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S(for VarRef in Expr1 return Expr2)
= S(Value1 , . . . , Valuen)
= S(Value1) + . . . + S(Valuen)
= S(Expr 2) + . . . + S(Expr 2) = n · S(Expr 2) = S(Expr 1) · S(Expr 2).

Note that the size of the result of each return expression is considered identical.
�

Similarly,

S(for $x in s where p($x) return f($x)) = S(s) · P(p) · S(f) (Swfor)

�
S(for $x1 in s1, $x2 in s2($x1) where p($x1, $x2) return f($x1, $x2))
= S(s1) · S(s2) · P(p) · S(f)

S(e/QName) = k · P(nodename == QName) · S(e) (Scstep)

S(e//∗) = S(e/child::∗) +
∑

x∈e/child::∗
S(x//∗)

S(e//QName) = S(e//∗) · P(nodename == QName) (Sdstep)

For the absolute path expressions, the same arguments as for (Cacstep) can
apply:

S(/QName)
= normalization rule of /

S(fn:root(self::node()) treat as document-node())/QName)
= (Scstep)
k · P(nodename == QName)
· S(fn:root(self::node()) treat as document-node())

=
k · P(nodename == QName) (Sacstep)

�

S(//QName)
= normalization rule of //

S(fn:root(self::node()) treat as document-node())//QName)
= (Sdstep)

S(fn:root(self::node()) treat as document-node()//∗)
· P(nodename == QName) (Sadstep)

�
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S(literal) :This value may be left uninterpreted.

S(e1, e2) = S(e1) + S(e2) (Sseq)

S(let $x := s return f($x)) = S(f) (Slet)

S($x) = S(dereference($x)) (Svr)

Note that this is always 1 for the variables $x bound in for or quantified expres-
sions (these are called “in-bound” variables in the remainder of this paper).

The size of the expressions that yield scalar (boolean values, for example) is
always 1.

S(some $x in s satisfies p($x)) = 1 (Ssome)

S(every $x in s satisfies p($x)) = 1 (Severy)

S(e1 or e2) = 1 (Sor)

S(e1 and e2) = 1 (Sand)

S((e)) = S(e) (Sparen)

S(〈QName〉{e}〈/QName〉) = 1 (Sdec)

S(element QName {e1, e2, . . . , eN}) = 1 (Scec)

S(if (e1) then e2 else e3)
= P(e1) · S(e2) + (1 − P(e1)) · S(e3) (Sif)

S(e1[e2]) = P(e2) · S(e1) (Spred)

S(QName(e1, e2, . . . , eN ))(function call)
= S(function body(QName)) (Sfcall)

More concrete values obtained using [4] may replace the above mentioned
size functions where necessary.

3.4 Definitions of probability functions

The probability that boolean expression e evaluates to true is denoted by P(e),
which is defined as follows:
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Probability of logical expression yields true

P(e1 and e2) = P(e1) · P(e2) (Pand)

P(e1 or e2) = 1 − (1 − P(e1)) · (1 − P(e2)) (Por)

Probability of quantified expression yields true

P(every $x in s satisfies p($x))

= P(p)S(q) (Pevery)

Probability that a some expression is evaluated to true is a complement of the
probability that all instances of the body expression are evaluated to false.

P(some $x in s satisfies p($x))

= 1 − (1 − P(p))S(q) (Psome)

4 Cost change estimation for each transformation rule
using proposed cost model

4.1 Role of cost change calculation

In this section, the cost change for various transformations applied for the pur-
pose of optimization is proved using the cost functions defined in this paper.
These proofs inductively imply that a program transformation that consists only
of transformations that maintain or reduce costs will always maintain or improve
costs.

Semantic equivalence of these transformations is proved in appendix A.

4.2 Rules and cost changes

Theorem 1 (monad left unit law (for expression)). Transformation

is singleton(s)
for $x in s return f($x) ⇒ let $x := s return f($x)

(Tflu)

doesn’t change cost.

Proof.

C(lhs)
= (Cfor)

C(s) + S(s) · C(f)

C(rhs)
= (Clet)

C(s) + C(f)

By the way, is singleton(s) implies S(s) = 1. Thus, the costs of both sides
are equal. �
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Theorem 2 (monad left unit law (quantified expressions)). Transforma-
tion

is singleton(s)
some $x in s satisfies f($x) ⇒ let $x := s return f($x)

(Tslu)

doesn’t change cost.

Proof.

C(lhs)
= by (Cnsome)

C(s) + S(s) · C(f)

C(lhs)
= by (Csome)

C(s) + 1−(1−P(f))S(s)

P(f) · C(f)

C(rhs)
= (Clet)

C(s) + C(f)

By the way, the premise implies S(s) = 1. Therefore, both cost definitions
(Cnsome),(Csome) lead to identical costs for both sides, yielding the same con-
clusion for the for version. The same arguments apply for universally quantified
(every) expressions.

is singleton(s)
every $x in s satisfies f($x) ⇒ let $x := s return f($x)

(Telu)

�
Theorem 3 (monad right unit law (for expression)). Transformation

for $x in s return $x = s (Tfru)

reduces costs.

Proof.

C(lhs)
= (Cfor)

C(s) + S(s) · C($x)

C(rhs)
=

C(s)

Thus, C(lhs) > C(rhs). �
Disregarding variable reference cost leads to cost preservation, but not an in-
crease.

Corollary For path expression s:
C(lhs) = C(for $x in e/a return $x)
= C(e/a) + S(e/a)·C($x) = C(e/a) + S(e/a)· Cvr

C(rhs) = C(e/a)
Hence, the difference of both sides does not depend on the difference in the

cost functions (Whether Gottlob’s evaluation strategy is used or not doesn’t
affect the difference).
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Monad right unit law (quantified expression) Unlike for expressions,
quantified expressions with identity (variable reference only) as their bodies do
not yield identities. This can be explained in terms of ΦQ

8 as follows.

some $x in s satisfies $x
= ΦQ (λx.x) ∨ False s
= s1 ∨ s2 ∨ · · · ∨ sN

The difference comes from the fact that the input and the output monoids
are different(((), ”,”) and (False, ∨)). Therefore, we do not deal with such trans-
formations.

Theorem 4 (monad associative law (for expression)). Transformation

for $x in for $y in q
return g($y)

return f($x)
=

for $y in q
return for $x in g($y)

return f($x)
(Tfa)

doesn’t change cost.

Proof.

C(lhs)
= (Cfor)

C(for $y in q return g($y)) + S(for $y in q return g($y)) · C(f($x))
= (Cfor),(Sfor)

C(q) + S(q) · C(g($y)) + S(g($y)) · S(q) · C(f($x))

C(rhs)
= (Cfor)

C(q) + S(q) · C(for $x in g($y) return f($x))
= (Cfor)

C(q) + S(q) · (C(g($y)) + S(g($y)) · C(f($x)))
=

C(q) + S(q) · C(g($y)) + S(g($y)) · S(q) · C(f($x))
Therefore, the cost of both sides are equal. �

Theorem 5 (associative law of for expressions that has where clauses).
Transformation

for $x in for $y in q
where h($y)
return g($y)

where e($x)
return f($x)

=

for $y in q
where h($y)
return for $x in g($y)

where e($x)
return f($x)

(Twfa)

doesn’t change cost.

8 ΦQ is defined in appendix A.
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Proof.

C(lhs)
= (Cwfor)

C(for $y in q where h($y) return g($y))
+S(for $y in q where h($y) return g($y)) · (C(e) + P(e) · C(f))

= (Cwfor),(Swfor)
C(q) + S(q) · C(h) + S(q) · P(h) · C(g) + S(q) · P(h) · S(g) · C(e)
+S(q) · P(h) · S(g) · P(e) · C(f)

C(rhs)
= (Cwfor)

C(q) + S(q) · (C(h) + P(h) · C(for $x in g($y) where e($x) return f($x))
= (Cwfor)

C(q) + S(q) · (C(h) + P(h) · (C(g) + S(g) · (C(e) + P(e) · C(f))))
=

C(q) + S(q) · C(h) + S(q) · P(h) · (C(g) + S(g) · (C(e) + P(e) · C(f)))
=

C(q) + S(q) · C(h) + S(q) · P(h) · C(g) + S(q) · P(h) · S(g) · C(e)
+S(q) · P(h) · S(g) · P(e) · C(f)

Thus, the cost of both sides are equal. �

Theorem 6 (associative law for quantified expression). Transformations

some $x in (for $y in q return g($y))
satisfies f($x)

=
some $y in q
satisfies some $x in g($y)

satisfies f($x)
(Tsa)

doesn’t change or even improves cost. For universal quantification,

every $x in (for $y in q return g($y))
satisfies f($x)

=
every $y in q
satisfies every $x in g($y)

satisfies f($x)
(Tea)

Proof using cost(Cnsome)

Proof.

C(lhs)
= (Cnsome)

C(for $y in q return g($y)) + S(for‘$y in q return g($y)) · C(f($x))
= (Cfor),(Sfor)

C(q) + S(q) · C(g) + S(g) · S(q) · C(f)
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C(rhs)
= (Cnsome)

C(q) + S(q) · C(some $x in g($y) satisfies f($x))
= (Cnsome)

C(q) + S(q) · (C(g) + S(g) · C(f))
=

C(q) + S(q) · C(g) + S(g) · S(q) · C(f)

Therefore, the costs of both sides are equal. �
Similar arguments apply for universal quantification.

Proof using cost (Csome)

Proof.

C(lhs)
= (Csome)

C(for $y in q return g($y)) + C(f)·(1−(1−P(f))S(for $y in q return g($y)))
P(f)

= (Cfor),(Sfor)
C(q) + S(q) · C(g) + 1−(1−P(f))S(q)·S(g)

P(f) · C(f)

C(rhs)
= (Csome)

C(q) + C(some $x in g($y) satisfies f($x))
P(some $x in g($y) satisfies f($x))

·(1 − (1 − P(some $x in g($y) satisfies f($x)))S(q))
= (Csome),(Psome)

C(q) +
C(g)+ 1−(1−P(f))S(g)

P(f) ·C(f)

1−(1−P(f))S(g) · (1 − (1 − (1 − (1 − P(f))S(g)))S(q))
=

C(q) +
C(g)+ 1−(1−P(f))S(g)

P(f) ·C(f)

1−(1−P(f))S(g) · (1 − (1 − P(f))S(g)·S(q))
=

C(q) + 1−(1−P(f))S(g)·S(q)

1−(1−P(f))S(g) · C(g) + 1−(1−P(f))S(g)·S(q)

P(f) · C(f)

By definition of the cost model of for expressions, uniform size/cost of g($y) is
assumed, and by definition of the cost model of some expressions, the expected
value of f($x) is assumed to be uniform.

By the way, as P(f) approaches 0, the predicate of the some expressions has
to be evaluated for every item of the input sequences; chances of finding cases
where f evaluates to true become smaller, and consequently, the cost difference
before and after transformation approaches 0 as well.

The cost difference only appears at the second term, so

C(lhs) − C(rhs)
=

(
S(q) − 1−(1−P(f))S(g)·S(q)

1−(1−P(f))S(g)

)
· C(g).
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As P(f) approaches 0 in the above expression, the second term of the coef-
ficient of C(g) approaches S(q).

(1 −P(f))S(g) represents the probability that f yields false S(g) times. The
second term, namely


S(q)−1∑

k=0

((1 − P(f))S(g))k


 · C(g),

represents that for the inner some expression, only if for every binding of $y,
the previous evaluation of f always yields false for every item of g($y), it is
evaluated for the next binding of $y.

Furthermore, since this coefficient of C(g($y)) is always smaller than S(q),
the cost is always improved by the transformation. �

Next, we would like to study cases where for expressions on the lhs include
where clauses. The corresponding associative law can be defined as,

some $y in (for $z in q where h($z) return g($z))
satisfies f($y)
=
some $z in q
satisfies

(h($z) and (some $y in g($z) satisfies f($y))),

and the cost reduction by this transformation can also be proved.

Proof. Let p($z)
def
= h($z) and (some $y in g($z) satisfies f($y)).

P(p($z))
= (Pand)

P(h) · P(some $y in g($z) satisfies f($y))
= (Psome)

P(h) · (1 − (1 − P(f))S(g))

C(lhs)
= (Csome)

C(for $z in q where h($z) return g($z))
+C(f) · 1−(1−P(f))S(for $z in q where h($z) return g($z))

P(f)

= (Cfor),(Sfor)
C(q) + S(q) · (C(h) + P(h) · C(g))

+C(f) · 1−(1−P(f))S(q)·P(h)·S(g($z))

P(f)

=
C(q) + S(q) · (C(h) + P(h) · C(g)) + C(f)

P(f) · (1 − (1 − P(f))S(q)·P(h)·S(g))
=

C(q) + S(q) · C(h) + P(h) · S(q) · C(g) + 1−(1−P(f))S(q)·P(h)·S(g)

P(f) · C(f)
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C(rhs)
= (Csome)

C(q) + C(p)
P(p) · (1 − (1 − P(p))S(q))

= (Cand)
C(q) + C(h)+P(h)·C(some $y in g($z) satisfies f($y))

P(p) · (1 − (1 − P(p))S(q))
= (Csome),(Pand)

C(q) +
C(h)+P(h)·(C(g)+ C(f)

P(f) ·(1−(1−P(f))S(g)))

P(h)·(1−(1−P(f))S(g))

·(1 − (1 − P(h) · (1 − (1 − P(f))S(g)))S(q))
=

C(q)
+(C(h) + P(h) · C(g) + P(h)·C(f)

P(f) · (1 − (1 − P(f))S(g)))

·1−(1−P(h)·(1−(1−P(f))S(g)))S(q)

P(h)·(1−(1−P(f))S(g))

=
C(q) + 1−(1−P(h)·(1−(1−P(f))S(g)))S(q)

P(h)·(1−(1−P(f))S(g))
· C(h)

+ 1−(1−P(h)·(1−(1−P(f))S(g)))S(q)

1−(1−P(f))S(g) · C(g) + 1−(1−P(h)·(1−(1−P(f))S(g)))S(q)

P(f) · C(f)

For each term in the above cost formulas, the cost is proven to be maintained
or reduced.

For costs related to C(h), h is always evaluated S(q) times on the lhs, while
for the rhs, the evaluation of the outermost some expression can be stopped as
soon as the predicate evaluates to true. Therefore, the cost is always improved
by the transformation.

Proof. P(h) · (1 − (1 − P(f))S(g)) denotes the probability that h is true and f
evaluates to false S(g) times, so the first factor of the first term

S(q)−1∑
k=0

(1 − P(h) · (1 − (1 − P(f))S(g)))k


 · C(h),

represents the expected number of evaluations of h.
As (1 − P(h) · (1 − (1 − P(f))S(g))) denotes the probability that the outer

satisfies clause evaluates to false, its expected value is always smaller than S(q).
Therefore, rhs is cheaper than lhs with respect to C(h). �

For the cost regarding the evaluation of g, transformation always improves
the cost.

Proof. On the rhs, the coefficient of C(g) equals to the coefficient of C(h) multi-
plied by P(h). On the lhs, the coefficient is S(q) · P(h). Preceding proof showed
that the coefficient of C(h) is smaller than S(q). Therefore, even if they are mul-
tiplied by the same value P(h), rhs is always smaller than lhs. �

Lastly, cost with respect to the evaluation of f is always improved by the
transformation.
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Proof. Cost difference (lhs−rhs) with respect to the cost regarding the evaluation
of f is

((1−(1−P(f))S(q)·P(h)·S(g))−(1−(1−P(h)·(1−(1−P(f))S(g)))S(q)))
P(f) · C(f)

=
((((1 − P(f))P(h))S(g)))S(q) − (1 − P(h) · (1 − (1 − P(f))S(g)))S(q)) · C(f)

P(f)

Let (1 − P(f))S(g) = y. Then the above expression looks like

((1 − P(h) · (1 − y))S(q) − (yP(h))S(q))
C(f)
P(f)

.

We would like to show that (1 − P(h) · (1 − y))S(q) − (yP(h))S(q) is always
positive, while paying attention to the fact that 0 ≤ P(h) ≤ 1 and 0 < y ≤ 1.

As both terms have equal exponents, only the base numbers are compared
to determine their inequality relationship.

When y = 1, both terms are equal to 1.
As

d

dy
(1st term) = P(h),

d

dy
(2nd term) = P(h) · yP(h)−1,

d

dy
(2nd term)

∣∣∣∣
y=1

= P(h)

As P(h) is less than 1, this differential coefficient monotonically increases as
y decreases. Therefore, it is always the case where 2nd term ≤ 1st term. Thus,
the cost on the rhs, with respect to evaluation of f , is shown to always be less
than that on the rhs. �

Therefore, all the coefficients of C(h),C(g),C(f), excluding C(q), are shown to
decrease by the transformation.

Consequently, the total cost, which is the sum of these costs, is always re-
duced. �

Effect of the difference in evaluation strategy of and expression to
the associative law with where clause Despite the above proofs, we have
observed a cost increase in the application of the associative law for Galax 0.3.5
and eXist snapshot-20041119.

We have concluded that the evaluation strategy of and expressions in both
implementations, where both operands are always evaluated(in Galax 0.4.0, the
right operand is not evaluated if the left operand is evaluated to be false) accounts
for the speed reduction.

Actually, we can model the speed reduction by incorporating the evaluation
strategy of Galax 0.3.5 into our cost model in the following way.
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For p($z)
def
= h($z) and (some $y in g($z) satisfies f($y)), cost is modeled by

C(p($z))
= C(h) + C(some $y in g($z) satisfies f($y))

= C(h) + C(g) +
1 − (1 − P(f))S(g)

P(f)
C(f)

Note that the cost of both operands for the and expression are simply added.

C(rhs)
= (Csome)

C(q) +
1 − (1 − P(p))S(q)

P(p)
· C(p)

= definition of p above and (Pand)

C(q) +
1 − (1 − P(h) · (1 − (1 − P(f))S(g)))S(q)

P(h) · (1 − (1 − P(f))S(g))

·(C(h) + C(g) +
1 − (1 − P(f))S(g)

P(f)
C(f))

=

C(q) +
1 − (1 − P(h) · (1 − (1 − P(f))S(g)))S(q)

P(h) · (1 − (1 − P(f))S(g))
· C(h)

+
1 − (1 − P(h) · (1 − (1 − P(f))S(g)))S(q)

P(h) · (1 − (1 − P(f))S(g))
· C(g)

+
1 − (1 − P(h) · (1 − (1 − P(f))S(g)))S(q)

P(h) · P(f)
· C(f)

Compared to the optimized evaluation of and expressions, the cost with
respect to the evaluation of g and f is changed. More specifically, they are
multiplied by 1/P(h). As P(h) is smaller than 1, it causes a cost increase. This
increment becomes larger for smaller P(h).

Furthermore, depending on the value of P(h), the cost of rhs may be larger
than that of lhs.

As P(h) becomes smaller, chances of g being evaluated becomes very limited.
So, the cost of a for expression approaches C(q) + C(h) · S(q), and the size of a
for expression approaches 0. Lhs as a whole approaches

C(q) + S(q) · C(h) +
1 − (1 − P(f))P(h)·S(q)·S(g)

P(f)
· C(f)

and the third term approaches P(h) · S(q) · S(g) · C(f) as P(f) becomes smaller.
On the rhs, the number of evaluations of the outer satisfies clause approaches

S(q). As the inner some expression is evaluated as many times as h($z) is
evaluated, the cost with respect to g($z) approaches S(q) · C(g).
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Therefore, the cost of rhs approaches

C(q) + S(q) · C(h) + S(q) · C(g) + S(q) · 1 − (1 − P(f))S(g)

P(f)
C(f) .

It can be concluded that the rhs becomes heavier as the selection by the where
clause no longer works for cost regarding to g.

For implementations that always evaluate both operands of the and expres-
sion, the associative law can be expressed in terms of if expressions to avoid this
cost increase. As it is semantically equivalent to the and version, this will be
the implementation-independent associative law.

some $y in (for $z in q
where h($z)
return g($z))

satisfies f($y)

=

some $z in q
satisfies if (h($z))

then some $y in g($z)
satisfies f($y)

else fn:false()

(Tsaif)

Theorem 7 (distribution (for expression)). Transformation

for $x in (q, q′)
return f($x) =

(for $x in q return f($x)),
(for $x in q′ return f($x)) (Tfd)

doesn’t change cost.

Proof.
C(lhs)

= (Cfor)
C(q, q′) + S(q, q′) · C(f($x))

= (Cseq),(Sseq)
C(q) + C(q′) + (S(q) + S(q′)) · C(f($x))

=
C(q) + C(q′) + S(q) · C(f($x)) + S(q′) · C(f($x))

C(rhs)
= (Cseq)

C(for $x in q return f($x)) + C(for $x in q′ return f($x))
= (Cfor)

C(q) + S(q) · C(f($x)) + C(q′) + S(q′) · C(f($x))

Hence, C(lhs) = C(rhs) �
Theorem 8 (distribution (quantified expression)). Transformation

some $x in (q, q′)
satisfies f($x) =

(some $x in q satisfies f($x))
or (some $x in q′ satisfies f($x)) (Tsd)

maintains (under (Cnsome)) or reduces (under (Csome)) cost.
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proof for evaluation strategy by (Cnsome) Transformation (Tsd) doesn’t
change cost.

Proof.

C(lhs)
= (Cnsome)

C(q, q′) + S(q, q′) · C(f)
= (Cseq),(Sseq)

C(q) + C(q′) + (S(q) + S(q′)) · C(f)
=

C(q) + C(q′) + S(q) · C(f) + S(q′) · C(f)

C(rhs)
= (Cor)

C(some $x in q satisfies f($x)) + C(some $x in q′ satisfies f($x))
= (Cnsome)

C(q) + S(q) · C(f) + C(q′) + S(q′) · C(f)

Therefore,the cost on both sides is equal. �

Similar arguments apply for universal quantification.

every $x in (q, q′)
satisfies f($x) =

(every $x in q satisfies f($x))
and (every $x in q′ satisfies f($x)) (Ted)

Proof using early escaping (Csome) evaluation strategy Transforma-
tion (Tsd) reduces cost.

Proof.
C(lhs)

= (Csome)

C((q, q′)) + 1−(1−P(f))S((q,q′))

P(f) · C(f)
= (Cseq),(Sseq)

C(q) + C(q′) + 1−(1−P(f))(S(q)+S(q′))

P(f) · C(f)

C(rhs)
= (Cor),(Csome)

C(q) + 1−(1−P(f))S(q)

P(f) · C(f)

+(1 − P(some $y in q satisfies f($x))) · (C(q′) + 1−(1−P(f))S(q′)

P(f) · C(f))
= (Psome)

C(q) + (1 − P(f))S(q) · C(q′) + 1−(1−P(f))(S(q)+S(q′))

P(f) · C(f)
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The cost difference comes from the coefficients of C(q′). As 0 ≤ (1−P(f)) ≤
1, it is always smaller than or equal to 1 on the rhs. This implies that the
transformation reduces the probability of q′ being evaluated, thus leading to a
cost reduction. This effect becomes prominent as P(f) or S(q) increases. �
Theorem 9 (folding of child axis). Transformation

〈QName〉{e}〈/QName〉/child:: ∗ = e (Tc)

reduces cost.

Note that semantic equivalence comes from the fact that child axis access
on the lhs yields the content of the direct element constructor. Even though the
step expression entails the removal of duplicate nodes and sorting by document
order, copy semantics of the element constructor ensures that no duplicate or
order skew occurs inside e, thus rhs is simply represented by e.

Proof.
C(lhs)

= (Ccstep)
C(〈QName〉{e}〈/QName〉) + k × S(〈QName〉{e}〈/QName〉)c

= (Cdec),(Sdec)

C(e) + S(e//∗) × Ce + k × 1c

=
C(e) + S(e//∗) × Ce + k

C(rhs) = C(e)
Hence, C(lhs) > C(rhs) �

Other filtering and projection transformation Transformations, such as

(〈QName1〉{e1}〈QName1〉, 〈QName2〉{e2}〈QName2〉)[self ::QName1]
= 〈QName1〉{e1}〈QName1〉

involve static evaluation of filtering. These transformations obviously simplify
expressions, thus always leading to cost reductions. �

β reduction(expansion of let binding)

let $x := e1 return e2 = e2[e1/$x] (Tlet)

Rhs denotes e2, with all the occurrences of $x replaced by e1.
The evaluation of e1 takes place as many times as the number of occurrences

of $x inside e2. So, more than one occurrence of $x will increase costs. This is
exactly the opposite transformation of the common subexpression elimination
optimization.

Moreover, if an element construction expression is included within e1, con-
struction processing itself is copied as well, which leads to different semantics.

Only one occurrence of $x can avoid an increase in costs. �
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Theorem 10 (merger of selection(filter/1)9). Transformation

for $x in for $y in q
where g($y)
return $y

where f($x)
return $x

=
for $x in q
where g($x) and f($x)
return $x

(Tf1)

doesn’t increase cost.

Proof.

C(lhs)
= (Cwfor),(Cvr)

C(q) + S(q) · (Cvr + C(g) + P(g) · C($y)
+S(for $y in q where g($y) return $y) · (C(f) + P(f) · C($x))

= (Swfor),(Cvr)
C(q) + S(q) · (Cvr + C(g)) + S(q) · P(g) · Cvr

+S(q) · P(g) · S($y) · (C(f) + P(f) · Cvr )
= (Svr)

C(q) + S(q) · Cvr + S(q) · C(g) + S(q) · P(g) · Cvr + S(q) · P(g) · C(f)
+S(q) · P(g) · P(f) · Cvr

C(rhs)
= (Cwfor)

C(q) + S(q) · (C(g($x) and f($x)) + P(g($x) and f($x)) · C($x))
= (Cand),(Pand),(Cvr)

C(q) + S(q) · ((Cvr + C(g) + P(g) · (Cvr + C(f))) + P(g) · P(f) · Cvr )
=

C(q) + S(q) · Cvr + S(q) · C(g) + S(q) · P(g) · Cvr + S(q) · P(g) · C(f)
+S(q) · P(g) · P(f) · Cvr

Thus, costs on both sides are equal. �

Note that the cost of the variable reference is included here, as a return expression
consists of only a variable reference. However, ignoring this cost does not affect
the equality of the cost estimation. Therefore, the cost of the variable reference
is omitted henceforth.

9 The numbering scheme comes from [15], as it partially inspired our work. We have
exploited similar equivalences in XQuery, although not all of them can be mapped
to XQuery due to differences in the data model. For example, setmap/4 equivalent
XQuery transformation does not exist, because the sequence in XQuery is build on
a non-commutative sequence concatenation operator, unlike the union operator for
sets.

34



Theorem 11 (moving selection (filter/2)). Transformation

for $x in for $y in q
where g($y)
return $y

return f($x)

=
for $x in q
where g($x)
return f($x)

(Tf2)

doesn’t change cost.

Proof.
C(lhs)

= (Cwfor),(Cfor)
C(q) + S(q) · (C(g) + P(g) · C($y))
+S(for $y in q where g($y) return $y) · C(f)

= (Swfor)
C(q) + S(q) · (C(g) + P(g)) + S(q) · P(g) · S($y) · C(f)

= (Svr)
C(q) + S(q) · C(g) + S(q) · P(g) · C(f)

C(rhs)
= (Cwfor)

C(q) + S(q) · (C(g) + P(g) · C(f))
=

C(q) + S(q) · C(g) + S(q) · P(g) · C(f)
Therefore, the cost is unchanged by the transformation. �

Note that the explicit introduction of the variable reference cost leads to the
conclusion of a cost reduction, not a cost increase.

Theorem 12 (filter/3). Transformation

for $x in for $y in q
return f($y)

where g($x)
return $x

=

for $y in q
return

for $x in f($y)
where g($x)
return $x

(Tf3)

doesn’t change cost.

Proof.
C(lhs)

= (Cwfor),(Cfor)
C(q) + S(q) · C(f) + S(for $y in q return f($y)) · C(g)

= (Swfor)
C(q) + S(q) · C(f) + S(q) · S(f) · C(g)
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C(rhs)
= (Cfor)

C(q) + S(q) · C(for $y in f($x) where g($y) return $y)
= (Cwfor)

C(q) + S(q) · (C(f($x)) + S(f($x)) · (C(g($y)) + P(g) · C($y)))
=

C(q) + S(q) · (C($x) + C(f)) + S(f) · (C($y) + C(g))
=

C(q) + S(q) · C(f) + S(q) · S(f) · C(g)
Thus, C(lhs) = C(rhs) �

The introduction of an explicit variable reference cost did not change the above
equivalence.

Theorem 13 (interchanging selection(filter/5)). Cost change in transfor-
mation

for $x in for $y in q
where g($y)
return $y

where f($x)
return $x

=

for $x in for $y in q
where f($y)
return $y

where g($x)
return $x

(Tf5)

can be expressed using cost of predicates as
C(lhs) − C(rhs) = S(q) · ((1 − P(f)) · C(g) − (1 − P(g)) · C(f)).

Proof.
C(lhs)

= (Cwfor),(Swfor)
C(q) + S(q) · (C(g($y)) + P(g) · C($y))
+(S(q) · P(g) · S($y)) · (C(f($x)) + P(f) · C($x))

= (Svr)
C(q) + S(q) · C(g) + S(q) · P(g) · C(f)

=
C(q) + S(q) · P(g) · C(f) + S(q) · C(g)

C(rhs)
= swap f and g in the lhs

C(q) + S(q) · P(f) · C(g) + S(q) · C(f)

C(lhs) − C(rhs) = S(q) · ((1 − P(f)) · C(g) − (1 − P(g)) · C(f))

Note that the explicit introduction of the variable reference cost didn’t change
the cost difference.

Therefore, for smaller P(f) and larger C(g), or larger P(g) and smaller C(f),
the cost is reduced by the transformation. �
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Corollary 3 When C(g) = C(f), if P(g) > P(f) then the cost is reduced by
the transformation. That is, placing a high-selectivity filter upstream is cost-
beneficial.

Proof.
C(lhs) − C(rhs)

= S(q) · {(1 − P(f) − 1 + P(g))} · C(f)
= S(q) · (P(g) − P(f)) · C(f)
> 0

�
Corollary 4 When P(g) = P(f), if C(g) > C(f), then the transformation re-
duces cost. That is, placing cheaper filter upstream is cost-beneficial.

Proof.
C(lhs) − C(rhs) = S(q) · (1 − P(f))(C(g) − C(f))

�
Theorem 14 (if/1). Transformation

if (e1)
then if (e2)

then e3
else e4

else e4

=
if (e1 and e2)
then e3
else e4

(Tif1)

doesn’t change cost.

Proof.
C(lhs)

= (Cif)
C(e1) + P(e1) · C(if (e2) then e3 else e4) + (1 − P(e1)) · C(e4)

= (Cif)
C(e1) + P(e1) · (C(e2) + P(e2) · C(e3)
+(1 − P(e2)) · C(e4)) + (1 − P(e1)) · C(e4)

=
C(e1) + P(e1) · C(e2) + P(e1) · P(e2) · C(e3)
+P(e1) · (1 − P(e2)) · C(e4) + (1 − P(e1)) · C(e4)

=
C(e1) + P(e1) · C(e2) + P(e1) · P(e2) · C(e3) + (1 − P(e1) · P(e2)) · C(e4)

C(rhs)
= (Cif)

C(e1 and e2) + P(e1 and e2) · C(e3) + (1 − P(e1 and e2)) · C(e4)
= (Cand),(Pand)

C(e1) + P(e1) · C(e2) + P(e1) · P(e2) · C(e3) + (1 − P(e1) · P(e2)) · C(e4)
Therefore, C(lhs) = C(rhs) �
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Theorem 15 (if/4). Transformation

f(if (e1) then e2 else e3) = if (e1) then f(e2) else f(e3) (Tif4)

doesn’t change cost.

Proof.
C(lhs)

= (Cfcall)

C(if (e1) then e2 else e3) + C(f)
= (Cif)

C(e1) + P(e1) · C(e2) + (1 − P(e1)) · C(e3) + C(f)

C(rhs)
= (Cif)

C(e1) + P(e1) · C(f(e2)) + (1 − P(e1)) · C(f(e3))
= (Cfcall)

C(e1) + P(e1) · (C(e2) + C(f)) + (1 − P(e1)) · (C(e3) + C(f))
=

C(e1) + P(e1) · C(e2) + (1 − P(e1)) · C(e3) + C(f)
Therefore, C(lhs) = C(rhs) �

4.3 Summary

In this section, the cost changes in various transformation rules are proved based
on the proposed cost model. These proofs guarantee that by constructing op-
timization, using only the cost-non-increasing subsets of these transformations,
keep or decrease costs, because each transformation applied in this optimization
will keep or improve costs.

5 Related works on cost models

In this section, we describe the preceding work related to the XQuery cost model.
Cost models must be based on a physical plan. We have already discussed

this subject in Section 2. For implementations in which XML data is stored in
RDB and XQuery is transformed to SQL, the cost models are discussed based
on those of SQL engines.

In [22], published at the initial stage of development of the formal semantics,
the cost models were supposed to be developed for each physical storage. Opti-
mizing XQuery while keeping the semantics of the query unchanged, which was
considered a difficult task, was expected to be supported by formal semantics.
We have actually quoted formal semantics within the context of optimization.
However, the cost model was not determined in that paper, probably because
Galax was not tightly coupled with physical storage at that time.

In [23], which describes the XQuery processor in streaming context, a cost
model is explicitly avoided. Reasons are also mentioned, which are quoted here
along with our opinion (following →).
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– From a stream processing standpoint, cost model development in the world
of the Internet is difficult, because statistical information is unpredictable. →
As we are using a relative cost model (do not calculate concrete values), we
are in a position where discussions that are independent of the data source
are possible.

– Development of an effective cost model itself is difficult for an XQuery engine.
→ We are not dealing with run-time plan selection based on a cost model,
which is inherently difficult. Instead, we calculate the gain or loss that can
be statically determined.

– Role of the cost model for XQuery is smaller than that of SQL. As the
XQuery data model prohibits reordering (which seems to refer to noncom-
mutativity of the sequence constructor “,”), there is much less freedom in
transformations, so it is less effective. Good heuristics are more important
for covering the lack of a cost model.
→ As we have enumerated in this paper, there are many transformation
rules in spite of the lack of freedom of permutations. We had to determine
for these transformations the relative loss or gain that is independent of the
input data, so the cost model is quite important.

– The cost model turned out to be unimportant for the real-world applications
that the authors had dealt with.
→ We have encountered the behavior of engines (a change of execution
speed that depends on the syntactic position of a selection), that made us
recognize the importance of the cost model. Although each of these may seem
heuristics, the cost calculation of the arbitrarily nested XQuery expressions
may require a decision that is beyond heuristics.

[24] deals with the optimization based on a cost model within the context
of XML data stored in RDB. The cost model is based on the selectivity of
predicates as well as statistical information. Specifically, the cost model for RDB
[25] is adopted. Conversely, [25] mentions as their target of optimization the
relational query which is transformed from XML-QL. Elaborated cost formulas
are described.

Although a concrete cost model is not mentioned in [26], it provides a bird’s-
eye view of the cost model, in the context of transaction processing, by classifying
the level of cost discussion in language, logical access, and storage. RDB seems
to be assumed as a back-end.

TIMBER [27] translates queries including XQuery into their tree algebra, in
which cost estimator plays an important role. An algorithm to generate query
execution plans to derive optimal pipeline processing is proposed. The grounding
cost function uses the estimation of selectivity in a path expression [3] and the
size function [4]. [4] does not handle XQuery as a whole, but deals with the
estimates for twig queries. That is, they estimate portions that match the tree
patterns. Their focus includes concrete operations like join.

We are dealing with XQuery in general, including FLWOR and the quantified
expression. Although there are prior research conducted on selectivity estimation
and size function in general, we can safely leave the subcomponent of the body of
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the cost functions uninterpreted, as long as they do not participate in the trans-
formation, i.e., they remain unchanged throughout the transformation. Thus we
can discuss the costs independently of the return value of those functions.

6 Discussions

6.1 Cost model with respect to query size

We have not in general specified the cost with respect to the query size, because
unlike XPath, a simple measure of the query size is not available.

However, a cost model combined with a query size can be derived from our
proposed cost functions from various points of view.

For example, if the query size is defined in terms of the nesting depth of for
expressions, the combined cost function can be obtained by applying the original
cost function on nested for expressions with depth n. Under the definition of the
query size in terms of the number of cascading for expressions, the combined
cost functions can be similarly obtained.

6.2 Estimating gain for whole expression

As a concrete example, we have calculated the cost difference of a sample query
that consists of XMark10 [28] Q10 and the query on it. Details are described in
Appendix B.

7 Conclusion

In this paper, within the context of XQuery optimization based on source level
query rewriting, a cost model is defined to quantify the costs of expressions,
upon which a relative cost change for every transformation rule described in this
paper is provided.

Cost models have to reflect engines’ evaluation strategies. During our cost
model construction, formal semantics were adopted for expressions that are ex-
pected to have evaluation strategies in formal semantics. For expressions whose
efficient evaluation strategies were proposed in the literature, the specific strate-
gies were adopted. For the cost of element construction that is not apparent in
the formal semantics, the cost modeling was conducted quoting experiments on
real engines. It has been proved that as long as rewriting consists of transforma-
tion rules that do not degrade the cost, rewriting on the whole can be guaranteed
to improve costs. Since real world engines, as well as specifications themselves
are still unstable, we expect our cost model to play the role of “virtual engine”
as a simple evaluation tool for XQuery optimization research.

Acknowledgements We are grateful to Dr. Yasunori Ishihara at Osaka University
for his valuable comments and suggestions.
10 http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt
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A Proofs of semantic equivalences of transformations

A.1 Preliminaries

Transformations and free variables For all expressions that include free vari-
ables, corresponding environment which uniquely determines the bindings of the
variables are assumed.

Statement Expr1 = Expr2 means that if both sides are evaluated under
identical environments, equivalence is guaranteed in any of such environments.
That is, let the variable binding environment be Γ ,

∀Γ

Γ 
 Expr1 yields Value1

Γ 
 Expr2 yields Value2

Value1 == Value2


∀Γ 
 Expr 1 = Expr2

Proof of this statement consists of the reduction of expressions on both sides
into an identical expression.

For variables appearing on both sides, that have identical names, under the
above assumption that both are provided with identical environments, identical
values are bound. Therefore, identical expression is evaluated to identical values,
and consequently, the existence of free variables does not hinder the validity of
the statement.

ΦQ introduction to unify some and for expressions To uniformly treat
for and quantified expressions, a binary reduction operator ΦQ is introduced as
follows.

ΦQ :: (a→ b) → (b → b → b) → b → (a) → b

definition
(1) ΦQ f op e () = e
(2) ΦQ f op e (x) = f x
(3) ΦQ f op e (q , q′) = (ΦQ f op e q)
op (ΦQ f op e q′)

For the type of q, a sequence of arbitrary type a is assumed. Associativity
of the operator op is also assumed. In the above definition, (1) is for an empty
input, (2) is for a singleton input, and (3) is for a concatenation of the two input
sequences.

Typing rule
f :: a→ b op :: b → b → b e :: b q :: (a)

(ΦQ f op e q) :: b
,

where e :: T denotes that expression e has type T .

Theorem 16 (ΦQ ↔ for expression correspondence).

(for $x in q return f($x)) = (ΦQ f($x) , () q)
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Proof. (1) for empty input:
It is apparent from formal semantics that

for $x in () return f($x) ⇒ () = (ΦQ f op , () ())

(2) for singleton input:
According to formal semantics with input length equal to 1

for $x in y return f($x) ⇒ f($y) = (ΦQ f op () (y))

(3) for arbitrary sequence q

Proof by induction.
Induction hypothesis:

for $x in q return f($x) = ΦQ f , () q

for (q, y) (y denotes a singleton)

for $x in (q, y) return f($x)
= formal semantics of for
f(q1), f(q2), . . . , f(qN ), f(y)

= (2) above
(for $x in q return f($x)), (ΦQ f , () y)

= induction hypothesis
((ΦQ f , () q), (ΦQ f , () y))

= definition (3) of ΦQ

(ΦQ f , () (q, (y)))

i.e., if q′ satisfies

for $x in q′ return f($x) = (ΦQ f , () q′)

then (q′, y) satisfies

for $x in (q′, y) return f($x) = ((ΦQ f , () (q′, (y))))

By the way, for empty and singleton input sequence q,

for $x in q return f($x) = ΦQ f($x) , () q

holds. Therefore, it is inductively proved that

for $x in q return f($x) = ΦQ f($x) , () q.

�
Theorem 17 (ΦQ ↔ some/every correspondence).

some $x in q satisfies f($x) = (ΦQ f ∨ false q)
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Proof. (1) empty input

some $x in () satisfies f($x) = false = (ΦQ f ∨ false ())

Formal semantics with negation of the condition of at least one of the input
makes f() yield true.

(2) singleton input

some $x in y satisfies f($x) = f(y) = (ΦQ f ∨ false (y))

Formal semantics with only input y that solely depends on its application
to f(y).

(3) for arbitrary sequence input q
Proof by induction.
Induction hypothesis:

some $x in q satisfies f($x) = (ΦQ f ∨ false q)

For input sequence q with singleton y concatenated

some $x in (q, y) satisfies f($x)
= formal semantics
f(q1) ∨ f(q2) ∨ · · · ∨ f(qN ) ∨ f(y)

= formal semantics, (2) above
some $x in q satisfies f($x) ∨ (ΦQ f ∨ false (y))

= induction hypothesis
(ΦQ f ∨ false q) ∨ (ΦQ f ∨ false (y))

= definition (3) of ΦQ

(ΦQ f ∨ false (q, (y)))

For every expression, similar arguments apply which result in

every $x in q satisfies f($x) = (ΦQ f ∧ true q)

�

A.2 Proofs of tranformation rules

TR 1 (where ↔ if)

for $x in q where f($x) return g($x)
= for $x in q return if f($x) then g($x) else () (Twif)

Proof. Normalization rule of For expressions in Formal semantics �
TR 2 (for left unit (Tflu))

Direct consequence of the second definition of ΦQ and ΦQ↔ for expression
correspondence. �
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TR 3 (quantified left unit (Tslu),(Telu))

Direct consequence of the 2nd definition of ΦQ and Theorem 17. �

TR 4 (for right unit (Tfru))

Proof. For q = (q1, q2, . . . , qN ), by Formal Semantics:

for $x in q return $x = q1, q2, . . . , qN = q

�

TR 5 (quantified distributive (Tsd),(Ted))

Direct consequence of the 3rd definition of ΦQ and Theorem 17. �

Theorem 18 (ΦQassociative).

ΦQ f op e (ΦQ g , () q) = ΦQ (ΦQ f op e g) op e q (Tpa)

Proof.

lhs
= definition of ΦQ

ΦQ f op e (g(q1), g(q2), . . . , g(qN ))
= 3rd definition of ΦQ (quantified distributive)

(ΦQ f op e g(q1)) op (ΦQ f op e g(q2)) op . . . op (ΦQ f op e g(qN ))
= 3rd definition of ΦQ (rhs to lhs)

ΦQ (ΦQ f op e g) op e q

Note that even if g is in the scope of the variable binding of outer ΦQ at the
rhs, g in the lhs is not. Consequently, g should not include the bound variable
introduced by the outer ΦQ . �

TR 6 (for associative (Tfa))

Substitute op and e in (Tpa) with , and (), respectively.

TR 7 (some/every associative (Tsa),(Tea))

Substitute op and e in (Tpa) with ∨ and false in case of some, ∧ and true in
case of every, respectively.

TR 8 (if/4 (Tif4))

f(if (e1) then e2 else e3) = if (e1) then f(e2) else f(e3)
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Proof.

lhs
=
if (e1) then f(if (true) then e2 else e3) else f(if (false) then e2 else e3)

= definition of if
if (e1) then f(e2) else f(e3)

�

TR 9 (if/1 (Tif1))

if e1 (if e2 e3 e4) e4) = if (e1 and e2) then e3 else e4

Proof.

lhs
=
if (e1 and e2) then
(if (true) (if (true) then e3 else e4) else e4)
else (if (e1) (if false then e3 else e4) else e4)

= definition of if
if (e1 and e2) then e3 else (if (e1) then e4 else e4)

= property of if
if (e1 and e2) then e3 else e4

�

TR 10 (Left unit law of for expression with where clause)

Proof. for singleton y,

for $x in y where f($x) return g($x)
= (Twif)
for $x in y return if (f($x)) then g($x) else ()

= (Tflu)
if (f(y)) then g(y) else () (Twflu)

�

TR 11 (associative law of for with where clause (Twfa))
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Proof.

lhs
=
for $x in (for $y in q

where e($y) return f($y)) where g($x) return h($x)
= (Twif)
for $x in for $y in q return if (e($y)) then h($y) else ()
return if (g($x)) then h($x) else ()

= (Tfa)
for $y in q return for $x in (if (e($y)) then h($y) else ())
return if (g($x)) then h($x) else ()

= (Tif4)
for $y in q return if (e($y)) then
(for $x in h($y) return if (g($x)) then h($x) else ()
else (for $x in () return if (g($x)) then h($x) else ()

= for with empty input
for $y in q return if (e($y)) then
(for $x in h($y) return if (g($x)) then h($x) else ()
else ()

= (Twif)
for $y in q where (e($y))
return for $x in h($y) where (g($x)) return h($x)

�

TR 12 (filter/0) 11

This transformation pulls filtering h($x) up.

for $x in for $y in q where g($y) return $y where h($x) return f($x)
= for $y in q where (g($y) and h$(x)) return f($x) (Tf0)

Proof.

lhs
= (Twfa)
for $y in q where g($y) return for $x in $y where h($x) return f($x)

= (Twflu)

11 This transformation is introduced for the purpose of simplification of the proofs.
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for $y in q where g($y) return if (h$(y)) then h($y) else ()
= (Twif)
for $y in q return if (g($y)) then (if (h$(y)) then h($y) else ()) else ()

= (Tif1)
for $y in q return if (g($y) and h$(y)) then h($y) else ()

= (Twif), reverse
for $y in q where (g($y) and h$(y)) return f($y)

�
TR 13 (filter/1(Tf1))

Proof.

lhs
=
for $x in for $y in q where g($y) return $y where f($x) return $x

= (Tf0)
for $y in q where (g($y) and f($y)) return $y

=
rhs

�
TR 14 (filter/2(Tf2))

Proof.

lhs
=
for $x in for $y in q where g($y) return $y return f($x)

= dummy where introduction
for $x in for $y in q where g($y) return $y where true return f($x)

= (Tf0)
for $y in q where (g($y) and true) return f($y)

= property of and
for $y in q where g($y) return f($y)

�
TR 15 (filter/3(Tf3))

Proof.

lhs
=
for $x in for $y in q return f($y) where g($x) return $x

= (Twfa)
for $y in q return for $x in f($y) where g($x) return $x

�
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TR 16 (filter/5(Tf5))

Proof.

lhs
=
for $x in (for $y in q where g($y) return $y) where f($x) return $x

= (Tf1)
for $y in q where (g($y) and (f($y))) return $y

= property of and
for $y in q where (h($y) and (g($y))) return $y

= (Tf1) (rhs→ lhs)
for $x in for $y in q where h($y) return $y where g($x) return $x

=
rhs

�

B Concrete example of cost calculation

The cost estimation for a concrete sample of XQuery is described in this section.
The query consists of XMark Q10 as a view definition, and another query to the
view definition that picks up cities where citizens with more than 10000 income
resides.

(: Q10: Grouping :)
(: Q10: List all persons according to their interest; use French markup in the result. :)
let $view := (
for $i in distinct-values($auction/site/people/person/profile/interest/@category)
let $p := for $t in $auction/site/people/person

where $t/profile/interest/@category = $i
return
<personne>
<statistiques>
<sexe> { $t/profile/gender/text() } </sexe>
<age> { $t/profile/age/text() } </age>
<education> { $t/profile/education/text() } </education>
<revenu> { fn:data($t/profile/@income) } </revenu>

</statistiques>
<coordonnees>
<nom> { $t/name/text() } </nom>
<rue> { $t/address/street/text() } </rue>
<ville> { $t/address/city/text() } </ville>
<pays> { $t/address/country/text() } </pays>
<reseau>
<courrier> { $t/emailaddress/text() } </courrier>
<pagePerso> { $t/homepage/text() } </pagePerso>

</reseau>
</coordonnees>
<cartePaiement> { $t/creditcard/text() } </cartePaiement>

</personne>
return <categorie>

<id> { $i } </id>
{ $p }

</categorie>
)
for $p in $view/personne
where $p/statistiques/revenu > 10000
return $p/coordonnees/ville
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After optimization:
for $i in distinct-values($auction/site/people/person/profile/interest/@category)
for $t in $auction/site/people/person
where ($t/profile/interest/@category = $i) and

(<revenu> { fn:data($t/profile/@income) } </revenu> > 10000)
return <ville> { $t/address/city/text() } </ville>

Results of the cost reduction estimations of this optimization are as follows:

+S(distinct-values($auction/site/people/person/profile/interest/@category))
·(S($auction/site/people/person)·P($t/profile/interest/@category = $i)
·(C( <personne>

. . .
<revenu> {fn:data($t/profile/@income) } </revenu> (: 1 :)
. . .
<ville> { $t/address/city/text() } </ville> (: 2 :)
. . .
</personne>)

−C(<revenu> { fn:data($t/profile/@income) } </revenu>) (: 1’ :)

−P(<revenu> { fn:data($t/profile/@income) } </revenu> > 10000)
·C(<ville> { $t/address/city/text() } </ville>) (: 2’ :)

+(C($p1/statistiques/revenu)
+P($p1/statistiques/revenu > 10000)
·C($p1/coordonnees/ville))

)
+C(<categorie><id>{$i}</id>{$p}</categorie>)

)
+C($view/personne)

Note that (: 1 :) and (: 2 :) cancel with (: 1’ :) and (: 2’ :) (2’ has a co-
efficient which is smaller than one), respectively, leaving only positive values.
Consequently, the above transformation is guaranteed to speed up query eval-
uations. Quantitatively, the result shows that the reduction is proportional to
the 2nd power of the document size (s). Actual query evaluation time using real
engine is depicted in Fig. 18.

The experiment was conducted on a 1.5GHz quad Xeon SMP machine run-
ning Linux kernel 2.4.20. Time reduction (T ) can be measured by subtracting
opt from normal, which fits to T = 0.27s1.9 using a regression analysis12. This
experimental result shows that the cost model can actually simulate the effect
of optimization for a real engine.

12 The ratio of the difference between the corrected total sum of squares (with intercept
term) and the residual sum of squares to the corrected total sum of squares, which
is a possible definition of R2 for a nonlinear regression, was 1.0.
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