
 

 

ISSN 1346-5597

 

NII Technical Report 

 

On the Semantics of Classical First-Order Logic with  
Constructive Double Negation         
               
               
 
Ken Kaneiwa                              
               
               
               

 
NII-2004-010E  
Dec. 2004  
 



On the Semantics of Classical First-Order Logic

with Constructive Double Negation

Ken Kaneiwa

National Institute of Informatics
kaneiwa@nii.ac.jp

Abstract
Constructive negation in intuitionistic logic (called strong nega-

tion [7]) can be used to directly represent negative assertions, and for
which its semantics [8, 1] is defined in Kripke models by two satisfaction
relations (|=

P
and |=

N
). However, the interpretation and satisfaction

based on the conventional semantics do not fit in with the definition of
negation in knowledge representation when considering a double nega-
tion of the form ∼¬, for strong negation ∼ and classical negation ¬
(which we call constructive double negation). The problem is caused
by the fact that the semantics makes the axiom ∼¬A ↔ A valid. By
way of solution, this paper proposes an alternative semantics for con-
structive double negation ∼¬A by capturing the constructive meaning
of the combinations of the two negations. In the semantics, we con-
sider the constructive double negation ∼¬A as partial to the classical
double negation ¬¬A and as exclusive to the classical negation ¬A.
Technically, we introduce infinite satisfaction relations to interpret the
partiality that is sequentially created by each constructive double nega-
tion (of the forms ∼¬A,∼¬∼¬A, . . . ).

1 Introduction

Various logic negations have been motivated and proposed in the fields of
knowledge representation and logic programming. For example, negation as
failure [2] in logic programming languages [6] is based on the closed world
assumption (CWA), for which ¬A is true if the proposition A is not provable,
which is obviously different from negation in classical logic (called classical
negation). Ordinary logic programming cannot assert negative facts since it
prohibits negation occurring in the head of each Horn clause. To settle this
weakness, Wagner [9, 10] proposed a logic programming language equipped
with strong negation. This logic program considers both negation as failure
(called weak negation) and strong negation where strong negative literals
(the strong negation of atomic formulas) are allowed in the heads of Horn
clauses.

1



Strong negation is considered a useful connective for directly expressing
negative assertions that are not represented by other negations (classical
negation, Heyting negation, etc.). The law of double negation holds for
strong negation but the law of excluded middle does not. In contrast, both
laws are valid for classical negation, and they are not valid for Heyting
negation (in intuitionistic logic). Strong negation (or called constructive
falsity) was first introduced by Nelson [7], and the semantics of first-order
logic with strong negation, defined by Kripke models, was considered in
[8]. Moreover, Akama [1] formalized an intuitionistic logic with Heyting
negation and strong negation, and its model theory. There has been related
research on negation in logic and linguistics (cf. [4]). Kaneiwa and Tojo [5]
proposed an order-sorted logic with implicitly negative sorts where some
lexical negations are treated as a strong negation of sorts.

However, in the existing semantics of strong negation, combinations of
strong negation and classical negation (i.e., double negation) give rise to
inapplicable meaning from the viewpoint of knowledge representation. Let
∼ be strong negation and ¬ be classical negation. Then, there is a semantic
problem such that for characterizing the double negation of the form ∼¬A
(which we will call constructive double negation), the axiom ∼¬A ↔ A is
valid in the Kripke semantics [1]. Based on this we remark that ∼¬A→ A

is adequate but ∼¬A← A is undesirable in knowledge representation since
A does not imply the strong negation ∼¬A for the classical negation ¬A.

In this paper, to eliminate the axiom ∼¬A← A in the logic, we present
an alternative semantics for the constructive double negation ∼¬A. We
modify the semantics of the intuitionistic logic with Heyting negation and
strong negation [1] into a classical version of first-order logic with strong
negation. In the semantics, strong negation ∼A is partial to classical nega-
tion ¬A and exclusive to positive assertion A. Analogously, constructive
double negation ∼¬A is interpreted by the partiality to classical double
negation ¬¬A and by the exclusivity to classical negation ¬A. Based on the
partiality of each constructive double negation, satisfaction relations corre-
sponding to the partial negations are infinitely introduced in the improved
semantics. We present a complete logical system for the constructive double
negation, i.e., any valid formula in the semantics can be derived from the
axioms.

This paper is arranged as follows: As a classical variant of intuitionis-
tic logic, Section 2 defines the syntax and semantics of first-order logic with
strong negation and classical negation. In Section 3, we raise an objection to
the semantics of Section 2, and then discuss negative assertions in knowledge
representation, relevant to the meaning of strong negation, classical nega-
tion, and constructive double negation. Based on the specification, we define
models, interpretations, and satisfaction relations that follow the property
of constructive double negation. Section 3.3 establishes axioms and rules
for the first-order logic with constructive double negation. In Section 4, we

2



prove the completeness of the logical system.

2 First-order logic with strong negation

We define the syntax and semantics of first-order logic with strong negation
and classical negation. This logic is characterized as a classical variant of
intuitionistic logic with Heyting negation and strong negation [1].

2.1 Syntax

An alphabet of a first-order predicate language L contains the following
symbols: C is the set of constant symbols, F is the set of function symbols,
and P is the set of predicate symbols. ∧ (conjunction), ∨ (disjunction),
→ (implication), ¬ (classical negation), and ∼ (strong negation) are logical
connectives; ∀, ∃ are universal and existential quantifiers, respectively; and
(, ) are parentheses. In particular, Pn denotes the set of n-ary predicate
symbols and Fn denotes the set of n-ary function symbols. V is the set of
variable symbols.

In the usual way of first-order logic, terms are defined by the following:

Definition 2.1 (Terms) The set TERM of terms is the smallest set defined
by the following rules.

1. For every x ∈ V , x ∈ TERM .

2. For every c ∈ C, c ∈ TERM .

3. If f ∈ Fn and t1, . . . , tn ∈ TERM , then f(t1, . . . , tn) ∈ TERM .

A term is said to be ground if it contains no variables. In the following
definition, formulas are constructed with strong negation (∼) and classical
negation (¬).

Definition 2.2 (Formulas) The set FORM of formulas is the smallest set
defined by the following rules.

1. If p ∈ Pn and t1, . . . , tn ∈ TERM , then p(t1, . . . , tn) ∈ FORM .

2. If A,B ∈ FORM , then ¬A, ∼A, A ∧ B, A ∨ B, A → B, ∀xA, ∃xA

∈ FORM .

Let A be a formula. It is said to be a closed formula if it contains no
free variables. The forms ¬¬A, ∼∼A, ∼¬A, and ¬∼A are called double
negation of A, i.e., any two negation symbols preceding A. In particular,
the form ∼¬A is said to be a constructive double negation of A and the form
¬∼A is said to be a weak double negation of A. Let C be a sequence of
classical negation ¬ and strong negation ∼. Then, (C)n expresses a chain
of length n of C. For example, (∼¬)2A and (¬∼)0A denote ¬∼¬∼A and A,
respectively.

3



2.2 Semantics

In Kripke models, the conventional semantics of intuitionistic logic with
Heyting negation and strong negation is defined by two satisfaction rela-
tions [1]. It gives us a means to define models, interpretations, and satisfac-
tion relations in classical first-order logic with strong negation.

Definition 2.3 (Model for L with strong negation) A model for a first-
order language L with strong negation (called an L-model) is a tuple M =
(U, IP , IN ), where U is a non-empty set and IP , IN are interpretation func-
tions such that

1. for c ∈ C, IP (c) ∈ U and IN(c) ∈ U ,

2. for f ∈ Fn, IP (f) : Un → U and IN(f) : Un → U ,

3. for p ∈ Pn, IP (p) ⊆ Un and IN (p) ⊆ Un,

4. IP (c) = IN (c),

5. IP (f) = IN(f),

6. IP (p) ∩ IN(p) = ∅.

Note that the interpretation functions IP and IN are defined as the same
mappings for function and constant symbols (in (4) and (5)), and each of
these interpretation functions for predicate symbols is exclusive to the other
(in (6)). A substitution θ is a mapping from variables x1, . . . , xn into terms
t1, . . . , tn with θ(xi) = xi, denoted by θ = {x1/t1, . . . , xn/tn}. We introduce
the set CU of new constants (denoted di) for elements di in U where every
new constant in CU is interpreted by itself. The interpretations of terms are
given in the following definition.

Definition 2.4 (Interpretations of terms) Let M = (U, IP , IN ) be an
L-model. The interpretations [[ ]]P and [[ ]]N of terms are defined by the
following rules.

1. [[c]]∗ = I∗(c) for c ∈ C
2. [[d]]∗ = d for d ∈ CU
3. [[f(t1, . . . , tn)]]∗ = I∗(f)([[t1]]∗, . . . , [[tn]]∗)

where ∗ ∈ {P,N}.

The satisfaction relation of an L-model M and closed formula A is de-
fined as follows.

4



Definition 2.5 (Satisfaction with strong negation) Let M = (U, IP ,

IN) be an L-model and A be a closed formula. The satisfaction relations
M |=P A and M |=N A are defined by the following rules.

1. M |=P p(t1, . . . , tn) iff ([[t1]]P , . . . , [[tn]]P ) ∈ IP (p)

2. M |=
P
¬A iff M |=

P
A

3. M |=
P
∼A iff M |=

N
A

4. M |=
P
A ∧B iff M |=

P
A and M |=

P
A

5. M |=
P
A ∨B iff M |=

P
A or M |=

P
A

6. M |=
P
A→ B iff M |=

P
A or M |=

P
A

7. M |=
P
∀xA iff for all d ∈ U , M |=

P
A{x/d}

8. M |=P∃xA iff for some d ∈ U , M |=P A{x/d}
9. M |=Np(t1, . . . , tn) iff ([[t1]]N , . . . , [[tn]]N ) ∈ IN (p)

10. M |=N¬A iff M |=P A

11. M |=N ∼A iff M |=PA

12. M |=NA ∧ B iff M |=NA or M |=NA

13. M |=
N
A ∨ B iff M |=

N
A and M |=

N
A

14. M |=
N
A→ B iff M |=

P
A and M |=

N
A

15. M |=
N
∀xA iff for some d ∈ U , M |=

N
A{x/d}

16. M |=
N
∃xA iff for all d ∈ U , M |=

N
A{x/d}

Let A be an (open) formula. M |=P A if M |=P ∀A where ∀A is the
universal closure of A. A is L-satisfiable if M |=

P
A for some L-model M ,

and it is L-unsatisfiable otherwise. A is L-valid if M |=
P
A for all L-models

M .
In the next section, we will consider that the abovementioned definitions

do not adequately describe the meaning of strong negation and classical
negation in knowledge representation. The important point is that state-
ment (10) in Definition 2.5 yields a disagreement with our intuitive inter-
pretation, since it makes ∼¬A and A equivalent. We address the issue by
considering the meaning of simple, constructive and weak double negations
∼∼A, ¬¬A, ∼¬A, and ¬∼A (composed by strong negation and classical
negation). Subsequently, we will define an alternative semantics reflecting
on the interpretation of constructive double negation.

5



happy not happy

not unhappy unhappy

Figure 1: A relationship among happy, not happy, and unhappy

un not happy not happy

happy

not un not happy

unhappy

un not un not happy

Figure 2: Combinations of the negative particle not and the negative prefix
un

3 Constructive double negation

The purpose of this section is to establish the semantics of first-order logic
with constructive double negation, and its corresponding axioms and rules
for strong negation and classical negation.

3.1 Negation in knowledge representation

There exists a difference between strong negation and classical negation.
Semantically, classical negation can be regarded as the complement of as-
sertions, whereas strong negation is more specific and partial than classical
negation. The use of strong negation in knowledge representation and logic
programming was motivated by the adequacy for expressing explicit nega-
tive assertions. The partial negation is informally specified by the fact that
it holds in a more narrow or specific scope than classical negation. We have
defined an interpretation of strong negation in Section 2; however, this is
only a classical variant of Akama’s model theory, i.e., it is not based on the
philosophical observation of negation.

We will reanalyze whether the semantics presented in Section 2.2 corre-
sponds to a partial or specific negation in explicit negative assertions. As
an example, let us consider the sentence “John is happy.” In order to suc-
cinctly represent it, we employ the simple expression happy. Moreover, two
types of negation of the sentence are: “John is not happy” and “John is
unhappy.” These are also simply expressed by not happy and unhappy (as
if not and un are logical connectives). In Figure 1, we visually describe
the scope as a width for which each of the sentences holds. In semantics,
happy and not happy are mutually complementary and exclusive, and in
contrast, happy and unhappy are exclusive to each other but not comple-

6



A ¬A

∼¬A

∼A∼¬∼A∼¬∼¬∼A

∼¬∼¬A
∼¬∼¬∼¬A

A ¬A

¬∼A

¬∼¬∼A

¬∼¬A
¬∼¬∼¬A

Figure 3: Strong negation and classical negation based on (Akama, 1988)

mentary. That is, there exists an assertion exclusive to both assertions happy

and unhappy, such as, “John is neither happy nor unhappy.” Additionally,
unhappy and not unhappy are mutually complementary and exclusive.

Furthermore, we take into account the complicated combinations 1 of
not and un as in Figure 2. Similar to the relationship between happy and
unhappy, if we attach un to the expression not happy, then not happy
and un not happy are mutually exclusive but un not happy is partial to
not not happy (i.e., un not happy and not happy are not complementary). By
attaching not to un not happy, un not happy and not un not happy are mutu-
ally complementary and exclusive. Iteratively, putting un to not un not happy
leads to the fact that not un not happy and un not un not happy are mutu-
ally exclusive but un not un not happy is partial to not not un not happy.
These operations can be infinitely iterated. Such properties in negative com-
binations are consistent with the meaning of negation in knowledge represen-
tation since it does not lose the partiality, complementarity and exclusivity
of un and not.

The following definition regards the negative particle not as a classical

1Some combinations (e.g. un not happy) do not exist in natural languages. In our
approach, we analyze logic, capturing the roles as negative connectives of not and un, and
the generality of logic allows complex combinations of connectives. For example, temporal
logic treats temporal connectives, some combinations of which do not correspond to any
natural language sentences, e.g., FFPPA where F (future) and P (past) are temporal
connectives.

7



A ¬A

A ∼A
∼∼A ∼∼∼A
∼∼∼∼A ∼∼∼∼∼A

¬¬A ¬¬¬A
¬¬¬¬A ¬¬¬¬¬A

Figure 4: The meaning of double negation ¬¬, ∼∼

negation and the negative prefix un as a strong negation.

¬happy =def not happy

∼happy =def unhappy

By illustrating the scope of the meaning of each negative expression, Fig-
ure 3 informally shows the combinations of strong negation and classical
negation based on the semantics of Section 2. Consequently, the interpre-
tation and satisfaction are partially inconsistent with the idea for not and
un. In the case of attaching constructive double negation ∼¬ to the formula
A any number of times, the formulas (∼¬)nA become equivalent to A. For
example, it results in the following axiom.

∼¬happy ↔ happy (?)

In addition, if the form ∼¬ is added to ∼A any number of times, then the
formulas (∼¬)n∼A is equivalent to ∼A. As shown in Figures 1 and 2, we
desire the specification wherein ∼¬happy and happy (i.e., un not happy

and happy) are not equivalent. This semantic disagreement motivates us
to propose an alternative semantics for the constructive double negation
(∼¬)nA. Namely, statement (10) in Definition 2.5 has to be improved using
the specification.

Moreover, the formula A belongs to the scope of the formulas (¬∼)nA
of weak double negation ¬∼ (as in Figure 3). This case is consistent with
the interpretation of not and un. For example, we have the following:

happy → ¬∼happy,

which means that happy implies not unhappy. Therefore, we need to pre-
serve the validity of A → ¬∼A in our semantics. In addition to this, the
simple double negations ¬¬, ∼∼ of the same negations must be true, as

8



A

¬A∼¬A

(∼¬)2A

(∼¬)3A

∼A

∼¬∼A

¬(∼¬)2A

¬∼¬A

¬∼A

(¬∼)2A ∼(¬∼)2A

Figure 5: The suitable meaning of strong negation and classical negation

described in Figure 4, i.e., the formulas ¬¬A, ∼∼A are equivalent to A. For
example, the following axioms hold.

¬¬happy ↔ happy

∼∼happy ↔ happy

Suitable meaning of the constructive double negation ∼¬ using the de-
scription of negation in figures remains to be specified. Let us intuitively
fix the properties of classical negation ¬A and strong negation ∼A. The
following describes the classical negation ¬A to be true in the entire scope
for which the positive formula A does not hold, i.e., ¬A and A are mutually
complementary.

A ¬A

As shown below, the strong negation ∼A is true in part of the scope com-
plementary to the positive formula A.

A ∼A

In other words, it is partial to the classical negation ¬A. In the meaning of
these figures, ∼A→ ¬A holds but ¬A→ ∼A does not hold.

Based on the description of negation, the interaction of strong negation
and classical negation infinitely constructs the scopes for which constructive
and weak double negations (∼¬)nA, ∼(¬∼)nA, (¬∼)nA, and ¬(∼¬)nA hold

9



A ¬A

∼¬A

(∼¬)2A

(∼¬)3A

∼A

∼¬∼A

∼(¬∼)2A

Figure 6: The suitable meaning of constructive double negation

(as in Figure 5). The arrows in Figure 5 explain the constructing processes
wherein a formula A leads to the strong negation ∼A, and then its com-
plement is the classical negation ¬∼A of ∼A, and so on. In addition, the
classical negation ¬A derives its strong negation ∼¬A, and then its com-
plement ¬∼¬A can be obtained. As a result, the scopes of (∼¬)nA and
∼(¬∼)nA decrease by a good extent, as in Figure 6, where the constructive
double negation ∼¬A is exclusive to ¬A and partial to ¬¬A.

The properties of the weak and simple double negations ¬∼, ¬¬, and ∼∼
in the semantics of Section 2 are preserved in the descriptive specification of
negation, which is employed to define the semantics of first-order logic with
constructive double negation.

3.2 Semantics for constructive double negation

We define models for first-order logic with strong negation, classical nega-
tion, and constructive double negation.

Definition 3.1 (Model for L with constructive double negation) A
model M+ for language L with constructive double negation (called an L+-
model) is a tuple (U, {I(∼¬)i | i ∈ ω}, {I∼(¬∼)i | i ∈ ω}) where U is a
non-empty set and I(∼¬)i , I∼(¬∼)i are interpretation functions such that

1. for c ∈ C, I(∼¬)i(c) ∈ U and I∼(¬∼)i(c) ∈ U ,

2. for f ∈ Fn, I(∼¬)i(f) : Un → U and I∼(¬∼)i(f) : Un → U ,

3. for p ∈ Pn, I(∼¬)i(p) ⊆ Un and I∼(¬∼)i(p) ⊆ Un,

4. I(∼¬)i(c) = I∼(¬∼)j(c),

5. I(∼¬)i(f) = I∼(¬∼)j(f),

6. I(p) ∩ I∼(p) = ∅,

10



Table 1: Satisfaction for the double negations ¬∼ and ∼¬
0 1 2 · · · n

M |= A M |= ∼¬A M |= (∼¬)2A · · · M |= (∼¬)nA
� � �

M |=∼¬A M |=∼¬∼¬A · · · M |=∼¬(∼¬)n−1A
� �

M |=
(∼¬)2

A · · · M |=
(∼¬)2

(∼¬)n−2A

� �
· · · · · · · · ·

�
M |=

(∼¬)n
A

M |= ∼A M |= ∼¬∼A M |= ∼(¬∼)2A · · · M |= ∼(¬∼)nA
� � � �

M |=∼A M |=∼¬∼A M |=∼(¬∼)2A · · · M |=∼(¬∼)nA
� � �

M |=∼¬∼A M |=∼¬∼¬∼A · · · M |=∼¬∼(¬∼)n−1A

� �
· · · · · · · · ·

�
M |=∼(¬∼)n

A

7. I∼(¬∼)i(p) ∩ I∼(¬∼)i+1(p) = ∅,

8. I(∼¬)i+1(p) ∩ I(∼¬)i(p) = ∅,
where i, j ∈ ω.

The interpretation functions I (∼¬)i and I∼(¬∼)i for all i ∈ ω interpret
the constructive double negations (∼¬)iA, ∼(¬∼)iA of any formula A. Con-
stant and function symbols are identically defined in the interpretation func-
tions (in (4) and (5)), but predicate symbols are exclusive in the pairs of
〈I(p), I∼(p)〉, 〈I∼(¬∼)i(p), I∼(¬∼)i+1(p)〉, and 〈I(∼¬)i+1(p), I(∼¬)i(p)〉 (in (6)-
(8)). Given an L+-model M+ = (U, {I(∼¬)i | i ∈ ω}, {I∼(¬∼)i | i ∈ ω}), the
interpretations [[ ]](∼¬)i and [[ ]](¬∼)i of terms are defined as those provided in
Definition 2.4. Using the interpretation, we define the satisfaction relation
of an L+-model and closed formula A as follows.

Definition 3.2 (Satisfaction with constructive double negation) Let
M+ = (U, {I(∼¬)i | i ∈ ω}, {I∼(¬∼)i | i ∈ ω}) be an L+-model and A be a
closed formula. The satisfaction relations M + |=

(∼¬)i
A and M+ |=∼(∼¬)i

A

are defined by the following rules.

1. M+ |=
(∼¬)i

p(t1, . . . , tn) iff ([[t1]](∼¬)i , . . . , [[tn]](∼¬)i) ∈ I(∼¬)i(p)

11



2. M+ |=
(∼¬)i
¬A iff M+ |=

(∼¬)i
A (i = 0)

3. M+ |=
(∼¬)i
¬A iff M+ |=∼(¬∼)i−1A (i > 0)

4. M+ |=
(∼¬)i
∼A iff M+ |=∼(¬∼)i

A

5. M+ |=
(∼¬)i

A ∧ B iff M+ |=
(∼¬)i

A and M+ |=
(∼¬)i

A

6. M+ |=
(∼¬)i

A ∨ B iff M+ |=
(∼¬)i

A or M+ |=
(∼¬)i

A

7. M+ |=
(∼¬)i

A→ B iff M+ |=
(∼¬)i

A or M+ |=
(∼¬)i

A

8. M+ |=
(∼¬)i
∀xA iff for all d ∈ U , M+ |=

(∼¬)i
A{x/d}

9. M+ |=
(∼¬)i
∃xA iff for some d ∈ U , M + |=

(∼¬)i
A{x/d}

10. M+ |=∼(¬∼)i
p(t1, . . . , tn) iff ([[t1]]∼(¬∼)i , . . . , [[tn]]∼(¬∼)i) ∈ I∼(¬∼)i(p)

11. M+ |=∼(¬∼)i
¬A iff M+ |=

(∼¬)i+1A

12. M+ |=∼(¬∼)i
∼A iff M+ |=

(∼¬)i
A

13. M+ |=∼(¬∼)i
A ∧ B iff M+ |=∼(¬∼)i

A or M+ |=∼(¬∼)i
A

14. M+ |=∼(¬∼)i
A ∨ B iff M+ |=∼(¬∼)i

A and M+ |=∼(¬∼)i
A

15. M+ |=∼(¬∼)i
A→ B iff M+ |=

(∼¬)i+1A and M+ |=∼(¬∼)i
A

16. M+ |=∼(¬∼)i
∀xA iff for some d ∈ U , M + |=∼(¬∼)i

A{x/d}

17. M+ |=∼(¬∼)i
∃xA iff for all d ∈ U , M+ |=∼(¬∼)i

A{x/d}

Satisfaction and validity on |= (or |=(∼¬)0) are defined in the same way
as |=P . As shown in Table 1, the satisfaction of formulas of the forms
(∼¬)iA and ∼(¬∼)iA is defined by the infinite satisfaction relations |=

(¬∼)i
,

|=∼(¬∼)i
with i ∈ ω. In contrast, the two satisfaction relations |=, |=∼ define

the satisfaction of formulas of the forms ¬¬A and ∼∼A since we have that
M+ |= ¬¬A ⇔ M+ |= A and M+ |= ∼∼A ⇔ M+ |= A.

Lemma 3.1 Let A be a closed formula and let M(A) = {M+ | M+ |= A}
and co-M(A) = {M+ |M+ |= A}. The following statements hold.

1. M(A) ∩M(∼A) = ∅
2. co-M(∼(¬∼)iA) ∩M(∼(¬∼)i+1A) = ∅
3. M((∼¬)i+1A) ∩ co-M((∼¬)iA) = ∅

12



Proof. This lemma is shown by induction on the structure of a closed
formula A. If A is an atomic formula, then by (6)-(8) in Definition 3.1, the
three statements are true. In the following, we will show the statements for
the cases A = ¬F and A = ∼F .

(A = ¬F ). (1) M+ |= ¬F if and only if M+ |= F . By the induction
hypothesis, if M + |= F , then M+ |= ∼¬F (by statement (3)). Hence, we
have M+ |= ∼¬F . (2) Let M+ |= ∼(¬∼)i¬F . By the induction hypothesis,
if M+ |= (∼¬)i+1F , then M+ |= (∼¬)i+2F (by statement (3)). (3) M + |=
(∼¬)i+1¬F iff M+ |=(∼¬)i+1 ¬F iff M+ |=∼(¬∼)i F . By the induction
hypothesis, if M + |= ∼(¬∼)iF (i = 0), then M + |= F (by statement (1)).
So M+ |= (∼¬)i¬F (i = 0). If M+ |= ∼(¬∼)iF (i > 0), then M + |=
∼(¬∼)i−1F (by statement (2)). Moreover, M + |=∼(¬∼)i−1 F iff M+ |=(∼¬)i

¬F . Hence, M+ |= (∼¬)i¬F (i > 0).
(A = ∼F ). (1) Let M+ |= ∼F . By the induction hypothesis, if M + |=

∼F , then M+ |= F (by statement (1)). Then, M + |=∼ ∼F . So M+ |= ∼∼F
is derived. (2) M + |= ∼(¬∼)i∼F iff M+ |=∼(¬∼)i ∼F iff M+ |=(∼¬)i F iff
M+ |= (∼¬)iF . By the induction hypothesis, if M + |= (∼¬)iF , then M+ |=
(∼¬)i+1F (by statement (3)). So M + |=(∼¬)i+1 F iff M+ |=∼(¬∼)i+1 ∼F .
Then we have M+ |= ∼(¬∼)i+1∼F . (3) Let M+ |= (∼¬)i+1∼F . By the
induction hypothesis, if M + |= ∼(¬∼)i+1F , then M+ |= ∼(¬∼)iF (by
statement (2)). It follows that M + |= (∼¬)i∼F .

Similarly, we can prove the statements for the other cases F 1∧F2, F1∨F2,
F1 → F2, ∀xF and ∃xF .

3.3 Axioms and rules

Axioms and rules for first-order logic with classical negation, strong negation
and constructive double negation are arranged as below.

1. all tautologies in classical propositional logic

2. � ∀xA(x)→ A(t)

3. � A(t)→ ∃xA(x)

4. if � A and � A→ B, then � B

5. if � A, then � ∀xA(x)

6. � ∼A→ (A→ B)

7. � (∼¬)i∼(A→ B)↔ (∼¬)i(A ∧ ∼B)

8. � (∼¬)i∼(A ∧ B)↔ (∼¬)i(∼A ∨ ∼B)

9. � (∼¬)i∼(A ∨ B)↔ (∼¬)i(∼A ∧ ∼B)

13



10. � ∼(¬∼)i¬(A→ B)↔ ∼(¬∼)i(A ∧ ¬B)

11. � ∼(¬∼)i¬(A ∧ B)↔ ∼(¬∼)i(¬A ∨ ¬B)

12. � ∼(¬∼)i¬(A ∨ B)↔ ∼(¬∼)i(¬A ∧ ¬B)

13. � (∼¬)i(A↔∼∼A)

14. � ∼(¬∼)i(A↔ ¬¬A)

15. � ∼∀xA(x)↔ ∃x∼A(x)

16. � ∼∃xA(x)↔ ∀x∼A(x)

17. � A→ ¬∼A

18. � ∼¬A→ A

Axioms and rules (1)-(5) are valid in classical first-order logic, and axioms
(6)-(18) are additionally introduced with respect to strong negation and
constructive double negation.

4 Completeness

Let T be a set of closed formulas in a language L (called a theory in L). T

is inconsistent if T � A and T � ¬A, and it is consistent otherwise. T is
complete if T is consistent and T � A or T � ¬A for any closed formula A.
T contains witnesses if for every existential formula ∃xA[x] in T , we have
∃xA[x]→ A[c] ∈ T .

Proposition 4.1 Axioms (1)-(3),(6)-(18) for first-order logic with construc-
tive double negation are valid.

Proof. The validity of axioms (6), (17) can be shown by statement (1) in
Lemma 3.1. Axiom (18) is valid by statement (3) in Lemma 3.1. Also it can
be proved for axioms (1)-(3), (7)-(16).

Theorem 4.1 (Soundness) Let T be a consistent theory and A be a closed
formula. If T � A, then T |= A.

Proof. By Proposition 4.1, this is shown by induction on the length n of a
derivation of A from T .

Theorem 4.2 Let T be a theory and A be a formula. If T � A, then there
exists a finite subset T ′ of T such that T ′ � A.

Corollary 4.1 For every i ∈ ω, let Ti be a theory which is consistent. If
for i < j, Ti ⊆ Tj , then the theory T =

⋃
n∈ω

Tn is consistent.

14



Theorem 4.3 (Deduction theorem) Let A be a closed formula. If T ∪
{A} � B, then T � A→ B.

Proofs of Theorem 4.2, Corollary 4.1 and Theorem 4.3 can be found
in [3].

Corollary 4.2 Let A be a closed formula. T � A if and only if T ∪ {¬A}
is inconsistent.

Proof. By Theorem 4.3, we can show this.

In order to prove the completeness of our logical system, we will show
the model existence theorem for a complete theory T .

Theorem 4.4 (Model existence theorem) If T is a complete theory that
contains witnesses, then T has an L+-model.

Proof. We construct a canonical model M +
C = (TERM0, {I(∼¬)i | i ∈ ω},

{I∼(¬∼)i | i ∈ ω}) for L with constructive double negation as follows:

1. TERM0 is the set of ground terms in L.

2. I(∼¬)i(c) = I∼(¬∼)i(c) = c

3. I(∼¬)i(f)(t1, . . . , tn) = I∼(¬∼)i(f)(t1, . . . , tn) = f(t1, . . . , tn)

4. (t1, . . . , tn) ∈ I(∼¬)i(p) iff p(t1, . . . , tn) ∈ ∆(∼¬)i(T )

5. (t1, . . . , tn) ∈ I∼(¬∼)i(p) iff p(t1, . . . , tn) ∈ ∆∼(¬∼)i(T )

where t1, . . . , tn ∈ TERM0, ∆(∼¬)i(T ) = {A | T � (∼¬)iA} and ∆∼(¬∼)i(T ) =
{A | T � ∼(¬∼)iA}.

Let A be a closed formula in T . We will show the following claim:

(i)A ∈ ∆(∼¬)i(T ) iff M+
C |=(∼¬)i A

(ii)A ∈ ∆∼(¬∼)i(T ) iff M+
C |=∼(¬∼)i A

(A = F1∧F2). (i) Let F1∧F2 ∈ ∆(∼¬)i(T ). We have T � (∼¬)i(F1∧F2).
By the tautology A ∧ B → A and axioms (7)-(12), T � (∼¬)iF1 and T �
(∼¬)iF2. By the induction hypothesis, M +

C |=(∼¬)i F1 and M+
C |=(∼¬)i F2.

Hence, M+
C |=(∼¬)i F1 ∧ F2. The other direction can be proved by the

tautology A→ (B → (A ∧ B)) and Axioms (7)-(12).
(ii) Suppose we have F1 ∧F2 ∈ ∆∼(¬∼)i(T ). Then, T � ∼(¬∼)i(F1 ∧F2)

if and only if T � ∼(¬∼)iF1 ∨ ∼(¬∼)iF2. If T � ∼(¬∼)iF1, then T �
¬∼(¬∼)iF1 (because T is complete). Then, the tautology (A∨B)→ (¬A→
B) derives T � ∼(¬∼)iF2. By the induction hypothesis, M +

C |=∼(¬∼)i F2.
Therefore, M+

C |=∼(¬∼)i F1 ∧ F2. The other direction is easier.

15



(A = ∼F1). (i) ∼F1 ∈ ∆(∼¬)i(T ) iff T � ∼(¬∼)iF1 iff F1 ∈ ∆∼(¬∼)i

iff M+
C |=∼(¬∼)i F1 (by the induction hypothesis) iff M +

C |=(∼¬)i ∼F1. (ii)
∼F1 ∈ ∆∼(¬∼)i(T ) iff T � (∼¬)i∼∼F1 iff F1 ∈ ∆(∼¬)i (by Axiom (13)) iff
M+

C |=(∼¬)i F1 (by the induction hypothesis) iff M +
C |=∼(¬∼)i ∼F1.

(A = ¬F1). (i) we treat the cases i = 0 and i > 0. Let i = 0. ¬F1 ∈ ∆(T )
iff T � ¬F1 iff T � F1 (by the fact that T is complete) iff M +

C |= F1 (by
the induction hypothesis) iff M +

C |= ¬F1. Let i > 0. ¬F1 ∈ ∆(∼¬)i(T ) iff
T � (∼¬)i¬F1 iff T � ∼(¬∼)i−1F1 (by Axiom (14)) iff M+

C |=∼(¬∼)i−1 F1

(by the induction hypothesis) iff M +
C |=(∼¬)i ¬F1. (ii) ¬F1 ∈ ∆∼(¬∼)i(T )

iff T � (∼¬)i+1F1 iff M+
C |=(∼¬)i+1 F1 (by the induction hypothesis) iff

M+
C |=∼(¬∼)i ¬F1.
(A = ∀xF1[x]). (i) Let ∀xF1 ∈ ∆(∼¬)i(T ). So T � (∼¬)i∀xF1. By

Axioms (1),(2),(15),(16), we have T � (∼¬)iF1[t] for any t ∈ TERM0. By
the induction hypothesis, for any t ∈ TERM0, M+

C |=(∼¬)i F1[t]. Then,
M+

C |=(∼¬)i ∀xF1.
In the other direction, suppose ∀xF1 ∈ ∆(∼¬)i(T ). Since T is complete,

T � ¬(∼¬)i∀xF1. By Axioms (1), (15), (16), T � ∃x¬(∼¬)iF1. Because T
contains witnesses, T � ¬(∼¬)iF1[c] is obtained. Then, T � (∼¬)iF1[c]. By
the induction hypothesis, M +

C |=(∼¬)i F1[c]. Hence, M+
C |=(∼¬)i ∀xF1.

(ii) Let ∀xF1 ∈ ∆∼(¬∼)i(T ). We have T � ∼(¬∼)i∀xF1. Axioms (1),
(15), (16) and witnesses of T derive T � ∼(¬∼)iF1[c]. By the induction
hypothesis, M+

C |=∼(∼¬)i F1[c]. Hence, M+
C |=∼(¬∼)i ∀xF1[x]. Also, the

other direction can be proved.
Similar to these, the statements in the other cases F 1 ∨ F2, F1 → F2

and ∃xF1 can be derived. Then, we obtain the conclusion that T � F iff
M+

C |= F .
Moreover, to prove that the canonical model is an L+-model for L with

constructive double negation, the sets I(p)∩I∼(p), I∼(¬∼)i(p)∩I∼(¬∼)i+1(p)
and I(∼¬)i+1(p) ∩ I(∼¬)i(p) must be empty (by Definition 3.1).

Let �t ∈ I(p). Then, T � p(�t) and, by Axiom (17), T � p(�t) → ¬∼p(�t).
So, since T � ¬∼p(�t), we have M+

C |= ¬∼p(�t). Hence, M+
C |=∼ p(�t).

Let �t ∈ I∼(¬∼)i(p). By definition, T � ∼(¬∼)ip(�t). Because T is com-
plete, T � ¬∼(¬∼)ip(�t). By Axiom (17), T � (¬∼)i+1p(�t) → (¬∼)i+2p(�t).
So we have T � (¬∼)i+2p(�t). Then, M +

C |= ∼(¬∼)i+1p(�t). Thus, M +
C |=∼(¬∼)i+1

p(�t).
Let �t ∈ I(∼¬)i+1(p). By definition, T � (∼¬)i+1p(�t). By Axiom (18),

T � (∼¬)i+1p(�t) → (∼¬)ip(�t). Then, T � (∼¬)ip(�t). So, we have M+
C |=

(∼¬)ip(�t). Therefore, M +
C |=(∼¬)i p(�t).

Lemma 4.1 Let T be a consistent theory in L. Then, there exists a com-
plete theory that contains witnesses.

16



Proof. Let F0, F1, . . . be an enumeration of the closed formulas in L∗ where
L∗ = L∪{c0, c1, . . . }, and let Cons(Fi) denote the set of constants occurring
in Fi. The following procedure generates a theory Tn:

1. T0 = T and L0 = L.

2. Tn+1 = Tn ∪ {¬Fn} and Ln+1 = Ln ∪Cons(Fn) if Tn ∪ {Fn} is incon-
sistent.

3. Tn+1 = Tn∪{Fn} and Ln+1 = Ln∪Cons(Fn) if Tn∪{Fn} is consistent
and Fn is not of the form ∃xG[x].

4. Tn+1 = Tn∪{Fn, G[c]} with c ∈ L∗−Ln and Ln+1 = Ln∪Cons(Fn)∪
{c} if Tn ∪ {Fn} is consistent and Fn is of the form ∃xG[x].

If Tn ∪ {Fn} is inconsistent, then Tn � ¬Fn in Ln+1 (by Corollary 4.2).
Since Tn is consistent and Tn � F in Ln+1, Tn+1 = Tn∪{¬Fn} is consistent.
In the case Tn+1 = Tn ∪ {∃xG[x], G[c]}, suppose Tn+1 is inconsistent. By
Corollary 4.2, we have Tn ∪ {∃xG[x]} � ¬G[c] in Ln+1. In [3], if T � ¬F [c]
in L∪ {c}, then T � ¬∃xF [x] in L. Hence, Tn ∪ {∃xG[x]} � ¬∃xG[x] in Ln.
This is contradictory. So Tn+1 is consistent.

We can construct the following sets:

T ∗ =
⋃

n∈ω

Tn and L∗ =
⋃

n∈ω

Ln

Suppose that the theory T ∗ is inconsistent. We have T ∗ � F and T ∗ �
¬F . By Corollary 4.1, there exists a theory Ti that is inconsistent. This is
contradictory. Hence, T ∗ is consistent.

To prove that T ∗ is complete, let A be a closed formula in the language
L∗. Then, there exists Fn = A such that either Fn ∈ Tn+1 or ¬Fn ∈ Tn+1

in the construction of Tn.
Next we will show T ∗ contains witnesses. Let ∃xG[x] be a closed formula

in the language L∗. Then, there exists Fn = ∃xG[x], and by the construction
of Tn, either ¬Fn ∈ Tn+1 or Fn, G[c] ∈ Tn+1. Thus, we have Tn � ∃xG[x]→
G[c], and therefore Tn � ¬(∃xG[x] → G[c]) in Ln. By Corollary 4.2, Tn ∪
{∃xG[x]→ G[c]} is consistent. Hence, ∃xG[x]→ G[c] ∈ T ∗.

Theorem 4.5 Every consistent theory has an L+-model.

Proof. By Lemma 4.1 and Theorem 4.4, this can be proved.

Theorem 4.6 (Completeness) Let T be a consistent theory and A be a
closed formula. If T |= A, then T � A.

Proof. Assume we have T � A. Then, by Corollary 4.2, T ∪ {¬A} is
consistent. By Theorem 4.5, T ∪ {¬A} has an L+-model. Therefore, we
obtain T |= A.

17



References

[1] S. Akama. Constructive predicate logic with strong negation and model
theory. Notre Dame Journal of Formal Logic, 29(1):18–27, 1988.

[2] Keith L. Clark. Negation as failure. In H. Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, 1978.

[3] R. Cori and D. Lascar. Mathematical Logic, English edition, Translated
by D. H. Pelletier. Oxford University Press, 2000.

[4] D. M. Gabbay and H. Wansing, editors. What is Negation? Applied
Logic Series vol 13. Kluwer Academic Pub., 1999.

[5] K. Kaneiwa and S. Tojo. An order-sorted resolution with implicitly
negative sorts. In Proceedings of the 2001 Int. Conf. on Logic Program-
ming, pages 300–314. Springer, 2001. LNCS 2237.

[6] J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.

[7] D. Nelson. Constructible falsity. The Journal of Symbolic Logic,
14(1):16–26, 1949.

[8] Richmond H. Thomason. A semantical study of constructible falsity.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
15:247–257, 1969.

[9] G. Wagner. Logic programming with strong negation and inexact pred-
icates. Journal of Logic Computation, 1(6):835–859, 1991.

[10] G. Wagner. Vivid Logic:Knowledge-Based Reasoning with Two Kinds
of Negation. Springer, 1994.

18


