

ISSN 1346-5597

NII Technical Report

Efficient Generation of Rooted Trees

Shin-ichi Nakano
Takeaki Uno

NII-2003-005E
July 2003

Efficient Generation of Rooted Trees

Shin-ichi Nakano∗ Takeaki Uno†

July 2, 2003

Abstract

In this paper we give an algorithm to generate all rooted trees with at most n
vertices. The algorithm generates each tree in constant time on average. Furthermore
the algorithm is simple, and clarifies a simple relation among the trees, that is a family
tree of trees, and outputs trees based on the relation.

1 Introduction

It is useful to have the complete list of graphs with a specified property. One can use such
a list to search for a counter-example to some conjecture, or to experimentally measure an
average performance of an algorithm over all possible input graphs.

Many algorithms to generate given class of graphs are already known [B80] [LN01, N02,
M98, W86]. Many nice textbooks have been published on the subject [G93, KS98, W89].

An algorithm to generate all rooted trees with n vertices is known[B80]. The algorithm
generates each tree without duplications in constant time on average. The main idea in [B80]
is to define the successor tree for each tree so that by repeatedly finding the successor tree
of a derived successor tree one can generate all trees. The computation to find the successor
tree is not so difficult but not so easy.

In this paper we give an algorithm to generate all rooted trees with “at most” n vertices.
Our algorithm also generates each tree without duplications in constant time on average.
Furthermore our algorithm is very simple and clarifies a simple relation among the trees,
that is a family tree of the trees (see Fig. 1), and outputs trees based on the relation.

The rest of the paper is organized as follows. Section 2 gives some definitions. Section 3
shows a tree structure among rooted trees. Section 4 presents our algorithm. Finally Section
5 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph with n vertices. An edge connecting vertices x and y is

denoted by (x, y). A tree is a connected graph without cycles. A rooted tree is a tree with
one vertex r chosen as its root . For each vertex v in a rooted tree, let UP (v) be the unique

∗Gunma University, Kiryu-Shi 376-8515, Japan, nakano@cs.gunma-u.ac.jp
†National Institute of Informatics, Tokyo 101-8430, Japan, uno@nii.jp

1

01 011 0111 01111 011111

012

0122

0123 01231

012311

012312

01232

012321

012322

012323

01233

012331
012332

012333

01234

012341

012342

012343

012344012345

01221

012211

012212
012221

01222201222

0121 01211
012111

01212
012121

Figure 1: The family tree T6 of rooted plane trees having at most six vertices.

2

path from v to the root r. If UP (v) has exactly k edges then we say that the depth of v is
k. The parent of v �= r is its neighbor on UP (v), and the ancestors of v �= r are the vertices
on UP (v) except v. The parent of the root r and the ancestors of r are not defined. We say
that if v is the parent of u then u is a child of v, and if v is an ancestor of u then u is a
descendant of v. A leaf is a vertex having no child.

A rooted plane tree is a rooted tree with a left-to-right ordering specified for the children
of each vertex. For a rooted plane tree T with root r0, let RP = (r0, r1, · · · , rk) be the path
such that ri is the rightmost child of ri−1 for each i, 1 ≤ i ≤ k, and rk is a leaf of T . We call
RP the rightmost path of T , and rk the rightmost leaf of T . We denote by T (v) the rooted
plane subtree consisting of vertex v and all descendants of v preserving the left-to-right
ordering for the children of each vertex.

3 The depth sequence of a rooted plane tree

Let T be a rooted plane tree with n vertices, and (v1, v2, · · · , vn) be the vertices of T in
preorder[A95]. Let dep(vi) be the depth of vi for i = 1, 2, · · · , n. Then the sequence L(T) =
(dep(v1), dep(v2), · · · , dep(vn)) is called the depth sequence of T . For example, see Fig. 2.
Note that those trees in Fig. 2 are isomorphic as rooted trees, but non-isomorphic as rooted
plane trees.

0

1 1 1

2
2 2 2 2

(a)

3 3 3

(0,1,2,3,3,2,2,1,2,3,1,2)

0

1 1 1

2 2
2 2 2

(c)

3 3 3

(0,1,2,2,3,3,2,1,2,3,1,2)

0

11 1

2
2 22 2

(b)

3 33

(0,1,2,3,1,2,3,3,2,2,1,2)

Figure 2: The depth sequences.

Let T1 and T2 be two rooted plane trees, and L(T1) = (a1, a2, · · · , ac) and L(T2) =
(b1, b2, · · · , bd) be the depth sequences of them. If ai = bi for each i = 1, 2, · · · , k−1 (possibly
k = 1) and either ak > bk or c > k − 1 = d, then we say that L(T1) is heavier than L(T2).

Given a rooted tree T , we can observe that T corresponds to many non-isomorphic rooted
plane trees, since we can choose many left-to-right orderings for the children of each vertex.
Let Th be the rooted plane tree corresponding to T having the heaviest depth sequence
L(Th). Then we say Th is the left-heavy embedding of T , and L(Th) is the left-heavy depth
sequence of T . For example the rooted plane tree in Fig. 2(a) is the left-heavy embedding of
a rooted tree, however Fig. 2(b) and (c) are not, since the one in Fig. 2(a) is heavier than
them.

Thus we have assigned a unique distinct rooted plane tree, which is the left-heavy em-
bedding, for each rooted tree. Let Sn be the set of all left-heavy embeddings having at most
n and at least two vertices. If we generate all rooted plane trees in Sn, then it also means
the generation of all rooted trees having at most n and at least two vertices. So we are going
to generate all rooted plane trees in Sn.

We have the following two lemmas.

3

Lemma 1 A rooted plane tree T is in Sn if and only if for every pair of consecutive child ver-
tices v1 and v2, which appear in this order in the left-to-right ordering, L(T (v1)) ≥ L(T (v2))
holds.

Proof : By contradiction.

Lemma 2 Let T be a rooted plane tree in Sn having two or more vertices. Then the rooted
plane tree derived from T by removing the rightmost leaf is also in Sn.

Proof : Removing the rightmost leaf never changes the condition of L(T (v1)) ≥ L(T (v2))
in Lemma 1. Thus each derived tree is also in Sn.

Assume that T is a rooted plane tree in Sn having three or more vertices. We denote
by P (T) the rooted plane tree derived from T by removing the rightmost leaf. We say that
P (T) is the parent tree of T and T is a child tree of P (T). By the lemma above P (T) is
also in Sn. Given a rooted plane tree T in Sn, by repeatedly removing the rightmost leaf,
we can have the unique sequence T, P (T), P (P (T)), · · · of rooted plane trees in Sn, which
eventually ends with K2. By merging these sequences we can construct the family tree Tn of
Sn such that the vertices of Tn correspond to the trees in Sn, and each edge corresponds to
each relation between some T and P (T). For instance T6 is shown in Fig. 1.

4 Algorithm

In this section we give an algorithm to construct Tn.
If we can generate all child trees of a given tree in Sn, then in a recursive manner we can

generate Tn, and which means we can generate all rooted trees having at most n vertices.
Let T be a rooted plane tree with the rightmost path (r0, r1, · · · , ra). Let T + i be a

rooted plane tree derived from T by adding a new vertex v as the rightmost child of ri. We
can observe that each child tree of T ∈ Sn is in {T + 0, T + 1, · · · , T + a}, however not all
trees in {T +0, T +1, · · · , T +a} are child trees of T , so we need to check whether each T + i
is a child tree of T or not.

We need some notation here. If a vertex ri−1 on the rightmost path has two or more
child vertices, then we denote by si the child vertex of ri−1 preceding ri. Thus si is the 2nd
last child vertex of ri−1.

We now have the following lemma.

Lemma 3 Let T be a rooted plane tree in Sn with the rightmost path (r0, r1, · · · , ra). Then
T + k is a child tree of T if and only if for each i, i = 1, 2, · · · , k, either ri−1 has only one
child vertex ri in T , or L(T (si)) ≥ L(T (ri)) holds in T + k, where ri is the rightmost child
vertex of ri−1 and si is the child vertex of ri−1 preceding ri.

Proof : Since T ∈ Sn the condition L(T (v1)) ≥ L(T (v2)) in Lemma 1 is hold in T at every
consecutive child vertices v1 and v2, and the condition remains as it was in T + k except for
(v1, v2) = (s1, r1), (s2, r2), · · · , (sk, rk). The claim checks all of these possible changes.

If we generate each possible child tree T + k of T and check whether it is actually a child
tree or not based on the lemma above, then we need much running time. However we can
save the running time as follows. We still need some definitions here.

Let T be a plane tree in Sn. We say that T is active at depth i if (i) the rightmost path
contains a vertex ri having depth i, (ii) ri has two or more child vertices, (iii) L(T (ri+1))

4

is a prefix of L(T (si+1)), where ri+1 is the rightmost child vertex of ri and si+1 is the child
vertex of ri preceding ri+1. Intuitively, if T is active at depth i, then we are copying subtree
T (ri+1) from T (si+1).

0r

1r1x

2x

3x
4x

5x

2r

3r

4r

Figure 3: A path is active at depth 0.

If T ∈ Sn is a path (r0, r1, · · · , ra) then T is active at none of depth. For convenience,
we imaginarily construct a rooted tree consisting of a path (x1, x2, · · · , xn−1) and consider
x1 as the first child vertex of the root r0 of T , then we regard that T is active at depth 0.
See Fig. 3. On the other hand, if T ∈ Sn is not a path, let i be the depth of the last vertex
in L(T) having two or more child vertices, then T is active at depth i. Thus every T ∈ Sn

is active at some depth.
We say that the copy-depth of T is cd if T is active at depth cd but not active at any

depth in {0, 1, · · · , cd − 1}.
Now we are going to generate all child trees of a rooted plane tree T in Sn. We have the

following three cases.
Case 1: T has n vertices.

Then T is a leaf in Tn, so T has no child tree.

Otherwise, we assume the copy-depth of T is cd, and the rightmost path of T is (r0, r1, · · · , ra).

Case 2: If L(T (scd+1)) = L(T (rcd+1)) (Intuitively the copy is completed.)
The child trees of T are T + 0, T + 1, · · · , T + cd.
Since T is left-heavy and the copy-depth of T is cd, for i = 1, 2, · · · , cd, we have (if si

exists) L(T (si)) > L(T (ri)) and L(T (ri)) is not a prefix of L(T (si)) in T . So even if we
possibly append one depth to L(T (ri)) we still have L(T (si)) > L(T (ri)) for i = 1, 2, · · · , cd.
Thus by Lemma 3, T + 0, T + 1, · · · , T + cd are child trees of T . However, for each T + i,
i = cd + 1, cd+ 2, · · · , a, we have L(T (scd+1)) < L(T (rcd+1)), so it is not left-heavy.

The copy-depth of T + cd is cd, and the copy-depth of T + i is i for i = 0, 1, · · · , cd − 1.
Case 3: If L(T (scd+1)) �= L(T (rcd+1)) (Intuitively the copy is not completed yet.)

Let L(T (scd+1)) = (dep(u1), dep(u2), · · · , dep(ub)), L(T (rcd+1)) = (dep(v1), dep(v2), · · · , dep(vc)),
and dep(uc+1) = d. (Intuitively we are copying T (rcd+1) from T (scd+1) and uc+1 is the next
vertex to be copied.)

The child trees of T are T + 0, T + 1, · · · , T + (d − 1).
Note that for each of T + d, T + (d+ 1), · · · , T + a, we have L(T (scd+1)) < L(T (rcd+1)),

so it is not left-heavy.
The copy-depth of T + (d − 1) is cd. The copy-depth of T + i is i for i = 0, 1, · · · , cd.

5

We need some explanation for the copy-depth of T + i for i = cd + 1, cd + 2, · · · , d − 2.
We can observe that the copy-depth of T + i is never less than cd, and T + i is active at i.
So the copy-depth of T + i is somewhere between i and cd.

cdr
cd+1

1

r

x

depth i

depth j

depth cd

x2x2y
1y

y

cd+1s

Figure 4: Illustration for Case 3.

Assume for the contradiction that the copy-depth of T + i is j < i. Let dep(x) be the
last occurrence of depth j in L(T + i). By the assumption above x has two or more child
vertices. Let x1 be the rightmost child vertex of x and x2 be the child vertex of x preceding
x1. See Fig. 4. Let y be the vertex in T (scd+1) corresponding to x in T (rcd+1), and y1 and y2

are vertices in T (scd+1) corresponding to x1 and x2 in T (rcd+1). (Note that we are copying
T (rcd+1) from T (scd+1).) Now since T ∈ Sn, we have L(T (y2)) ≥ L(T (y1)). By the choice of
i, L(T (y1)) > L(T (x1)) holds, and L(T (x1)) is not a prefix of L(T (y1)). Since the copy-depth
of T is cd, L(T (y2)) = L(T (x2)). Then L(T (x2)) = L(T (y2)) ≥ L(T (y1)) > L(T (x1)) holds,
and L(T (x1)) is not a prefix of L(T (y1)). Thus L(T (x1)) is not a prefix of L(T (x2)), and the
copy-depth of T + i is not j, a contradiction.

Thus the copy-depth of T + i is i for i = cd + 1, cd+ 2, · · · , d − 2.
Based on the case analysis above we have the following algorithm.

Procedure find-all-children(T , cd)
{ T is the current tree, and cd is the copy-depth of T .}
begin

1 Output T
2 if T has n vertices {Case 1}
3 then return
4 else if L(T (scd+1)) = L(T (rcd+1))
5 then {Case 2}
6 begin
7 for i = 0 to cd
8 find-all-children(T + i, i)
9 end
10 else { L(T (scd+1)) > L(T (rcd+1)) } {Case 3}
11 begin
12 { Let d be the depth of the next vertex to be copied.}
13 for i = 0 to d − 2
14 find-all-children(T + i, i)
15 find-all-children(T + (d − 1), cd)

6

16 end
end
Algorithm find-all-trees(n)
begin
Output K1

{K1 is the only tree having exactly one vertices. }
find-all-children(K2, 0)

end

An execution of the algorithm is shown in Fig. 5.

Theorem 1 The algorithm uses O(n) space and runs in O(f(n)) time, where f(n) is the
number of nonisomorphic rooted trees having at most n vertices.

Proof : Since we traverse the family tree Tn and output each tree in Sn at every vertex of
Tn, we can generate all rooted trees having at most n vertex.

We maintain the last two occurrences of each depth value of the current depth sequence
in two arrays of length n. We record the update of the two arrays in a stack, and restore
the arrays if return occur. Thus we can find si and ri in constant time for each i.

We also maintain the current copy-depth cd and the vertex next to be copied, so that
with the help of the two arrays we can find rcd+1 and scd+1 in constant time and we can
check the condition in Line 4 in constant time. Also with the help of the two arrays we can
compute the value d in Case 3 in constant time.

Other parts of the algorithm need only constant time for each edge of Tn. Thus the
algorithm runs in O(f(n)) time. Note that the algorithm does not output entire trees but
the difference from the previous tree.

For each recursive call we need a constant amount of space, and the depth of recursive
call is bounded by n. Thus the algorithm uses O(n) space.

5 Conclusion

In this paper we have given an algorithm to generate all rooted trees having at most n
vertices. The algorithm is simple, generates each tree in constant time on average, and
clarifies a simple relation among the trees, that is a family tree of the trees.

Can we generate efficiently all (rooted) trees with n vertices and with diameter d?

References

[A95] A. V. Aho and J. D. Ullman, Foundations of Computer Science, Computer Science
Press, New York, (1995). l

[B80] T. Beyer and S. M. Hedetniemi, Constant time generation of rooted trees, SIAM J.
Comput., 9, (1980), pp.706-712.

[G93] L. A. Goldberg, Efficient algorithms for listing combinatorial structures, Cambridge
University Press, New York, (1993).

7

01 011 0111 01111 011111

012

0122

0123 01231

012311

012312

01232

012321

012322

012323

01233

012331
012332

012333

01234

012341

012342

012343

012344012345

01221

012211

012212
012221

01222201222

0121 01211
012111

01212
012121

case 3
T+0

case 2
T+0

case 2
T+0

case 2
T+0

case 3
T+1

case 3
T+0

case 3
T+2

case 3
T+0

case 3
T+0

case 3
T+1

case 2
T+0
case 2
T+1

case 3
T+0
case 3
T+1

case 3
T+0

case 3
T+1

case 3
T+2

case 3
T+1

case 3
T+2

case 3
T+3

case 3
T+0

case 2
T+0
case 2
T+1

case 2
T+2

case 3
T+1

case 3
T+2

case 3
T+3

case 3
T+4

case 3
T+1

case 2
T+0

case 2
T+1

case 3
T+0

case 3
T+1

case 2
T+0

case 2
T+0

Figure 5: An execution of the algorithm.

8

[KS98] D. L. Kreher and D. R. Stinson, Combinatorial algorithms, CRC Press, Boca Raton,
(1998).

[LN01] Z. Li and S. Nakano, Efficient generation of plane triangulations without repetitions,
Proc. ICALP2001, LNCS 2076, (2001), pp.433–443.

[M98] B. D. McKay, Isomorph-free exhaustive generation, J. of Algorithms, 26, (1998),
pp.306-324.

[N02] S. Nakano, Efficient Generation of Plane Trees, Information Processing Letters, 84,
(2002), pp.167–172.

[R78] R. C. Read, How to Avoid Isomorphism Search When Cataloguing Combinatorial
Configurations, Annals of Discrete Mathematics, 2, (1978), pp.107–120.

[W89] H. S. Wilf, Combinatorial Algorithms : An Update, SIAM, (1989).

[W86] R. A. Wright, B. Richmond, A. Odlyzko and B. D. McKay, Constant time generation
of free trees, SIAM J. Comput., 15, (1986), pp.540-548.

9

