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Abstract: Enumeration and generation algorithms are for outputting all the elements of
a given set just once for each. There have been numerous studies on developing algorithms for
various problems. One goal of this research is to derive exact constant time algorithms, i.e.,
where the computation time between any two consecutive outputs is constant. Although are
many amortized constant time algorithms, there are only few exact constant time algorithms
in the literature. In this paper, we give simple ways to improve these algorithms so that
they become exact constant time algorithms.
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1 Introduction

Enumeration and generation pose several problems in the area of discrete algorithms. The
problems are to output all the combinatorial objects, such as binary trees, permutations,
strings, spanning trees, and matchings, and all these objects included in a given graph,
strings, and set families. In other words, enumeration and generation are the problem of
outputting all the elements in the given set just once for each.
Algorithms for solving these problems are called enumeration algorithms. As almost all

enumeration algorithms in the literature are linear time for the number of outputs, basi-
cally, the speed of enumeration algorithms are measured by amortized computation time
per output. Thus, many studies have been done on deriving amortized constant time algo-
rithms whose amortized time complexities per output are constant. For example, constant
time enumeration algorithms have been proposed for permutations [13], strings with some
constraints [8, 9], binary trees [16], and spanning trees of a graph [5, 15].
In the other hand, delay and change are often considered as ways to measure the speed.

Delay is the maximum computation time between two consecutive outputs, and change is the
maximum size of symmetric difference between two consecutive outputs. An enumeration
algorithm is said to be polynomial delay if its delay is polynomial in the input size, and exact
constant time if its delay is constant. The amortized time complexity per output is often
called amortized delay. An enumeration algorithm is said to be constant change if the change
is constant. Usually, the number of outputs of an enumeration problem is exponential in
the input size. Thus, an amortized constant time algorithm can take exponential time to
output the next solution, while polynomial delay algorithms never do so. For solving several
problems, we sometimes stop execution of enumeration algorithms if we obtain sufficiently
many solutions. In these cases, polynomial delay algorithms have an advantage. Enumer-
ation algorithms are often used as subroutines of another main algorithm, and the outputs
are passed to the main algorithms for calculation. If the symmetric difference between two
consecutive outputs is small, then the result of the previous calculation can be reused for the
next calculation. It is an advantage to reduce the computation time of the main algorithm.
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Even if we have an amortized constant time enumeration algorithm for a particular prob-
lem, it is not easy to obtain an exact constant time enumeration algorithm for it. Consider
the problem of enumerating all n dimensional 0-1 vectors. These vectors can be considered
as n bit numbers ranging from 0 to 2n − 1, hence it is very easy to construct an amortized
constant time enumeration algorithm, which generates all n bit numbers in the increasing
order. However, the change and the delay are not O(1) but O(n). We have to spend O(n)
time to generate 100...0 following 011....1. Thus, the change is also O(n). An exact constant
time algorithm requires sophisticated techniques.
Almost all enumeration algorithms in the literature are based on back tracking, binary

partition, and reverse search. The recursive structures of these algorithms are basically
tree shaped, and called tree traversal. Even if a tree traversal algorithm outputs a solution
in each iteration, the delay and the change depend on the depth of the recursion tree.
Hence, the scheme in the literatures for constructing constant delay and constant change
algorithms use path traversal approaches: they traverse a path connecting all solutions to
be output. To construct this type of algorithms is not easy, hence path traversal algorithms
have been proposed for only primitive combinatorial objects, such as multi-set permutations,
combinations of n elements chosen from r elements, and parenthesis strings [10, 6, 12, 13].
Therefore, there are numerous amortized constant time enumeration algorithms but only a
few exact constant time enumeration algorithms in the literature. If we have a scheme for
reducing delay and change of tree traversal algorithms such as back tracking, we may easily
construct exact constant delay and constant change algorithms easily for various enumeration
problems.
In this paper, we propose two methods to reduce the delay and the change of enumeration

algorithms. These can be applied to tree traverse algorithms.
· Alternative Output Method
For a tree traversal enumeration algorithm, this method reduces its delay to the time com-
plexity to generate a recursive call, and reduces its change to the size of the update of the
current solution to generate a recursive call.
· Output Queue Method
For a tree traversal enumeration algorithm, this method reduces its delay to the amortized
delay with the use of preprocessing time and extra memory.
To apply these methods, enumeration algorithms have to satisfy several conditions, how-

ever, the conditions do not lose the generality so much. Roughly speaking, if an amortized
constant time enumeration algorithm does a constant number of operations for the current
solution when it generates a recursive call, we can obtain an exact constant time algorithm
by using these two methods. Applying these methods to amortized constant time algorithms,
we can construct many exact constant time algorithms which have not been proposed in the
literature. At the end of the paper, we will show some of those improved algorithms, which
are for enumerating floor plans, permutations with forbidden places, spanning trees, tri-
angulations, directed spanning trees, maximal independent vectors, and connected induced
subgraphs.

2 Alternative Output Method

This section explains alternative output method. For an enumeration algorithm, we call the
objects to be output solutions. For a tree traversal enumeration algorithm and an input,
we define the enumeration tree by the rooted tree representing the recursive structure of the
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Figure 1: Illustration of W. Internal iterations are indicated by circles, and leaves are drawn
by squares. Gray iterations are marked iterations.
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Figure 2: Consider computation time for ancestors of y, which are in the banana-shaped
configuration. T ∗(P ) is the maximum of this over all leaves. Iterations in the dotted polygon
are the descendants of x. Consider (the computation time of descendants of x) / ( the number
of output by descendants of x). T̄ (P ) is the maximum among this over all iterations.

execution. We define the parent, children, descendants, and ancestors of an iteration of the
enumeration tree in the usual way.
Suppose that an algorithm inputs problem P and enumerates all solutions. Let W be the

sequence of iterations sorted in the order that the algorithm executed (see Fig. 2). Note that
an iteration appears in W k times if it has k−1 children. The execution of the algorithm can
be considered as a trace of W. During this trace of W, if a solution is output at an iteration
of W, then we put a mark it there (see Figure 2). Note that an iteration may appear several
times but just one of these is marked. Let T (P ) be the maximum computation time for
passing through an iteration during a trace. In the other words, T (P ) is the maximum of
(1) computation time before the first recursive call,
(2) computation time from the end of a recursive call to the beginning of the next recursive
call, and
(3) computation time after the last recursive call
over all iterations. Let T̄ (P ) be the maximum of
( computation time of descendants of an iteration) / ( the number of outputs by the descen-
dants )
over all iterations. The worst computation time for all the ancestors of a leaf is denoted by
T ∗(P ) (see Figure 2). We call an algorithm internal output if each iteration of the algorithm
outputs a solution. For an internal output algorithm inputting problem P, let C(P ) be the
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Figure 3: Three consecutive iterations are classified into 3 cases

maximum difference between the outputs of an iteration and its child.
Suppose that an internal output algorithm can be described as follows.

Internal Output Algorithm (P : problem)
(1) Find a solution x of P
(2) Output x
(3) Generate recursive calls for subproblems P1, ..., Pk

Then, the algorithm modified by alternative output method is described as follows.

Modified Internal Output Algorithm (P : problem)
(1) Find a solution x of P
(2) If the depth of the iteration is odd then output x
(3) Generate recursive calls for subproblems P1, ..., Pk

(4) If the depth of the iteration is even then output x

Theorem 1 For an internal output algorithm, the delay and the change of the modified
algorithm are T (P ) and C(P ), respectively.

Proof : Let v1, v2 and v3 be arbitrary three consecutive iterations of W. We will prove that
at least one of them is always marked.
If one of them is a leaf, then the vertex is marked. Thus, let us consider where none of

them is a leaf. Based on this assumption, we only have three cases (see Fig. 2).

(Case 1) v1 is the parent of v2, and v2 is the parent of v3

(Case 2) v3 is the parent of v2, and v2 is the parent of v1

(Case 3) v2 is the parent of both v2 and v3

In Case 1, moving from v1 to v2 (resp., from v2 to v3) corresponds to the recursive call of v2

by v1 (resp., of v3 by v2 ). Thus, v2 and v3 correspond to the execution from the beginning of
iterations to the first recursive calls. Since the depth of either v2 or v3 is odd, one of them is
marked. Similarly, in Case 2, at least one of v1 and v2 is marked. In Case 3, v1 corresponds
to the execution after the last recursive call, and v3 corresponds to the execution before the
first recursive call. Hence, v3 is marked if the depth of v1 and v3 is odd, and v1 is marked
otherwise.

From the theorem, if an internal output algorithm satisfies that each iteration takes con-
stant time for generating a recursive call, and the difference between outputs of an iteration
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Figure 4: Illustration of output queue method. Algorithm inserts solutions into queue, and
when the queue is full, output starts. A solution is output every 2 steps and when the
solutions overflow the queue.

and its child is constant, then C(P ) and T (P ) are constant, and the algorithm modified by
alternative output method is exact constant time and constant change.
An enumeration algorithm has to be internal output to apply alternative output method.

This is not a hard condition, since many algorithms in the literature are internal output, or
can be easily modified to be internal output. If an iteration may output several solutions,
then partition the iteration such that each of these outputs just one solution. If only the
leaves of the enumeration tree output no solution, then we can merge each leaf and its parent
into one iteration. Many reverse search algorithms, such as those for enumerating triangu-
lations, matchings, matroid bases, connected induced subgraphs, vertices of polytopes, floor
plans, and directed spanning trees in a directed graph [1, 3, 7, 14], are internal output.
Usually binary partition and back tracking algorithms are not internal output; however, if
they can be described as follows, they will be internal output.

Binary Partition ( P : problem, X: solution of P )
1. If P has no solution not equal to X then return
2. Find a solution X ′ �= X of P, and output X ′

3. Divide P into P1 and P2 such that X is a solution of P1 and X ′ is a solution of P2

4. Call Binary Partition ( P1, X )
5. Call Binary Partition ( P2, X

′ )

For example, enumeration algorithms for bipartite matchings, spanning trees, and maximal
independent vectors satisfy the assumption [3, 15]. Moreover, fundarmental enumeration
algorithms for trees, paths, connected subgraphs, matchings, permutations, and strings are
internal output.
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Figure 5: Iterations inside the outer polygon are S, and iterations inside the inner polygon
are R

3 Output Queue Method

This section explains “output queue method.” For a given enumeration algorithm, the
method is described as follows.

Output Queue Method (P : problem )
(1) Allocate a queue Q of length �2T ∗(P )/T̄ (P )�+ 1 for storing output solutions.
(2) During execution of the enumeration algorithm, insert output solutions to
the end of Q instead of outputting it directly.
If Q is full, then extract the top of Q and output it.

(3) After Q is full, extract and output the top of Q at every T̄ (P ) time.
(4) After the termination of the enumeration algorithm, output all the solutions in Q from
the top.

This method does not increase the time complexity of the enumeration algorithm. The
space complexity increases as much as the size of Q.

Theorem 2 For an enumeration algorithm and a problem P , the delay of the algorithm
modified by output queue method is T̄ (P ) with the use of O(T ∗(P ) + T̄ (P )) preprocessing
time and O(CT ∗(P )/T̄ (P )) extra memory space where C is the space required for storing a
solution.

Proof : We first state the following lemma.

Lemma 1 During the execution of an algorithm modified by output queue method, at least
(t′ − t − 2T ∗(P ))/T̄ (P ) solutions are inserted into Q from time t to time t′.

Proof : Let x be the iteration executed at time t, and y be the iteration executed at time t′.
Let S be the set of iterations executed from t to t′, and R be the set of iterations included in
the path connecting x and y in the enumeration tree. The computation time taken by the
iterations of R is at most 2T ∗(P ). The iterations of S \ R are composed of several groups
each of which is the set of all descendants of a child of an iteration in R (see Figure 3). Since
the computation time for iterations of S \R is at least t′− t−2T ∗(P ), the number of output
iterations of S \ R is at least (t′ − t − 2T ∗(P ))/T̄ (P ).
From this lemma, we derive the following lemmas.
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Lemma 2 The computation time from the beginning of the algorithm to the time when Q
is first full is O(T ∗(P ) + T̄ (P )).

Proof : Let t′ be the time when the algorithm has output �2T ∗(P )/T̄ (P )� + 1 solutions.
From lemma 2,

(t′ − 0− 2T ∗(P ))/T̄ (P ) ≤ �2T ∗(P )/T̄ (P )�+ 1,

hence we have t′ ≤ 4T ∗(P ) + 2T̄ (P ).

Lemma 3 After once Q is full, Q will never be empty.

Proof : For any time t′ during which the algorithm is executed, let t < t′ be the time that
Q was last full. From lemma 2, at least (t′ − t− 2T ∗(P ))/T̄ (P ) solutions are output from t
through t′, hence Q has at least

�2T ∗(P )/T̄ (P )�+ 1− (t′ − t)/T̄ (P ) + (t′ − t − 2T ∗(P ))/T̄ (P ) ≥ 1

solutions.

From Lemma 2, the algorithm modified by output queue method takes O(T ∗(P ) + T̄ (P ))
time to output the first solution, and from Lemma 3, it outputs the following solutions in
O(T̄ (P )) per one solution. The space required for Q is O(CT ∗(P )/T̄ (P )). Therefore, the
theorem holds.

For any enumeration algorithm, T̄ (P ) is not greater than twice the delay. Moreover, it
is usually in the order of amortized delay. This is because general amortized analysis of
enumeration algorithms are done by passing the computation time of an iteration to its
descendants. Hence, output queue method reduces the delay to the amortized delay for
quite many enumeration algorithms.

4 Applications to Existing Enumeration Algorithms

In this section, we discuss several results obtained by applying our two methods to the
enumeration algorithms in the literature.

4.1 Floor Plans

Problem: Enumerate all possible rectangular floor plans composed of at most n rectangular
rooms.

An algorithm is proposed for this problem in [7]. The delay and change of the algorithm
are O(n). The algorithm is based on family tree method, which outputs a solution at each
iteration, thus the algorithm is internal output. Any iteration takes O(1) time to generate a
recursive call, and pre/post-processing, hence T (P ) =O(1) and C(P ) =O(1). Thus, applying
alternative output method to the algorithm, we obtain the following corollary.

Corollary 1 There exists an exact constant time and constant change algorithm for enu-
merating all possible rectangular floor plans composed of at most n rectanglar rooms.
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4.2 Permutations with Forbidden Places

Problem: For given sets of forbidden places for all indices, enumerate all permutations π any
whose index is not placed at its constant size forbidden places.

This problem is an extension of the problem for which the existence of exact constant delay
and constant change algorithm was open in [12]. A problem of enumerating permutations
can be considered as a problem of enumerating perfect matchings of a bipartite graph. To
solve the problem, an internal output algorithm is proposed in [3]. In an iteration, the
algorithm locates an alternating cycle to find a solution and to generate two subproblems,
and this takes O(|E|) time. However, if the size of forbidden places is bounded by a constant
for any index, we can always find an alternating cycle with constant length, hence the time
complexity of an iteration is reduced to a constant order. Thus, we have T (P ) =O(1) and
C(P ) =O(1). We apply alternative output method to the algorithm and obtain the following
corollary.

Corollary 2 There exists an exact constant time and constant change algorithm for enu-
merating all permutations any whose index is not placed at its constant size forbidden places.

4.3 Spanning Trees

Problem: For a given undirected graph G = (V,E), enumerate all spanning trees included
in G.

For this problem, an algorithm based on binary partition is proposed [15]. Each iteration
of the algorithm outputs a solution, and the difference between the output solutions of an
iteration and its child is at most two edges, hence we have C(P ) =O(1). Although an iteration
takes O(|E|) time, the amortized delay is a constant. It is proved by amortized analysis with
passing computation time of each iteration to its descendants. Thus, T̄ (P ) =O(1) The depth
of recursion is O(|E|), hence the delay and the change is O(|E|) and O(|V |) respectively,
and T ∗(P ) =O(|E|2). We apply alternative output method and output queue method to the
algorithm, and obtain the following corollary.

Corollary 3 There exists an exact constant time algorithm for enumerating all the spanning
trees of a given undirected graph with O(|E|2) preprocessing time and O(|E|2) memory.

4.4 Triangulations of Points in Plane

Problem: For given n points in the plane, enumerate all triangulation of the points.

An internal output algorithm is proposed in [11] for this problem. It takes O(log log n)
time to generate a recursive call and to pre/post process on an iteration, and the difference
between outputs of an iteration and its child is constant. The depth of the recursion is
O(n), hence the delay and the change are O(n). We apply alternative output method to the
algorithm, and obtain the following corollary.

Corollary 4 There exists a constant change and O(log log n) delay algorithm for enumer-
ating all triangulations of given n points.
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4.5 Directed Spanning Trees

Problem: For a given directed graph G = (V,E) and a vertex r, enumerate all the directed
spanning trees of G rooted at r.

For the problem, a reverse search algorithm is proposed [15]. Each iteration of the algo-
rithm outputs a solution, and the difference between output solutions of an iteration and
its child is at most two edges. The time complexity of an iteration is O(|E|M(|V |)), where
M(|V |) is the computation time to maintain the minimum spanning tree in a graph with
|V | vertices. Recently, it is proved that M(|V |) is polylogarithmic in |V | [4]. By passing
the computation time of an iteration to its descendant, the amortized delay is bounded by
O(M(|V |)), thus T̄ (P ) =O(M(|V |)). Since the depth of the recursion is O(|E|), the delay,
the change and T ∗(P ) are O(|E|M(|V |)), O(|V |), and O(|E|2M(|V |)), respectively. Hence,
we can apply alternative output method and the output queue method to the algorithm,
and obtain the following corollary.

Corollary 5 There exists a constant change and O(M(|V |)) delay algorithm for enumer-
ating all the directed spanning trees of a graph with O(|E|2M(|V |)) preprocessing time and
O(|E|2) memory.

4.6 Maximal Independent Vectors

Problem: For given n dimensional m vectors, enumerate all the maximal sets of independent
vectors.

This problem can be solved by a reverse search algorithm [15]. Since the algorithm outputs
a solution in each iteration, it is an internal output algorithm. As the time complexity of
an iteration is O(nm2) and the depth of recursion is O(m), T (P ) =O(n2m). The size of
difference between outputs of an iteration and its child is constant. The amortized delay is
bounded by O(n) by passing the computation time taken by each iteration to its descendants.
We apply alternative output method and output queue method to the algorithm, and obtain
the following corollary.

Corollary 6 There exists a constant change and O(n) delay algorithm for enumerating all
the maximal sets of independent vectors for given n dimensional m vectors.

4.7 Connected Induced Subgraphs

Problem: For a given graph, enumerate all vertex subsets of the graph which induce con-
nected subgraphs.

This problem can be solved by a reverse search algorithm [1]. As the algorithm outputs a
solution in each iteration, it is an internal output algorithm. The size of difference between
outputs of an iteration and its child is constant. We apply alternative output method to the
algorithm and obtain the following corollary.

Corollary 7 There exists a constant change algorithm for enumerating all vertex subsets of
a given graph which induces connected subgraphs.
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5 Concluding and Remarks

We proposed two methods for reducing the change and the delay of enumeration algorithms.
The first, “alternative output method” reduces the delay to the time complexity to generate
a recursive call and reduces the change to the maximum difference between outputs of an
iteration and its child, if any iteration outputs a solution. For an algorithm whose amortized
time complexity per output is T̄ (P ) for any descendants of iteration, the second method
“output queue method” reduces the delay to T̄ (P ) with the use of O(T̄ (P )+T ∗(P )) memory,
where T ∗(P ) is the worst case computation time taken by all ancestors of a leaf.
Using these methods, constant change and exact constant delay algorithms can be con-

structed for the problems of enumerating the following combinatorial objects: permutations
with forbidden places, floor plans, spanning trees of a graph, directed spanning trees of a
directed graph, triangulations of given points in plane, maximal independent vectors, and
connected induced subgraphs of a graph. These methods will enable many enumeration
algorithms to be improved in the future.
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