
ISSN 1346-5597

NII Technical Report Feb 2003

Synthesizing Timed Circuits from High Level

Specification Languages

Tomohiro Yoneda and Chris Myers

NII-2003-003E
Feb 2003

Synthesizing Timed Circuits from High Level Specification Languages

Tomohiro Yoneda� Chris Myers�
National Institute of Informatics University of Utah

yoneda@nii.ac.jp myers@ee.utah.edu

Abstract

This work proposes an efficient methodology to synthe-
size timed circuits from high level specification languages.
In particular, this paper presents a systematic procedure for
translating channel-level models to time Petri net descrip-
tions. Care is taken in this translation to guarantee that
there are no state coding violations in the resulting nets
greatly simplifying the synthesis process. This paper also
presents a modular decomposition method to break up the
circuit to be synthesized such that an efficient partial or-
der based synthesis approach can be applied to rapidly pro-
duce a circuit implementation. This new synthesis technique
is demonstrated by its application to the line fetch module
from the TITAC2 instruction cache system.
Key Words: High level synthesis, timed circuits, partial
order reduction, time Petri nets, Balsa

1 Introduction

When synthesizing large and practical designs, the use
of high level specification languages is essential. For syn-
chronous circuit design, circuits are often derived from be-
havioral level specifications expressed in VHDL or Ver-
ilog. For asynchronous circuit design, it is particularly im-
portant to hide handshake level descriptions in order that
non-experts in asynchronous circuit design can easily de-
sign practical asynchronous circuits. The goal of this paper
is to develop an efficient methodology to synthesize asyn-
chronous circuits from high level specification languages.

There are two main approaches to the synthesis of asyn-
chronous circuits: logic synthesis [1, 2, 3] and syntax di-
rected translation [4, 5, 6, 7]. In the logic synthesis method,
a logic function for every output signal is derived from a
low level specification language such as an STG or burst-
mode state machine. These methods often require an enu-
meration of the state space which can be quite expensive

�This research is supported by JSPS Joint Research Projects.
�This research is supported by NSF Japan Program award INT-0087281

and SRC grant 2002-TJ-1024.

for large systems. In the syntax directed method, instead
of enumerating the state space, each construct of the spec-
ification language is directly modeled by a circuit. While
the logic synthesis method can potentially synthesize higher
performance and more optimized circuits than the syntax-
directed method, the state explosion problem makes it ex-
tremely difficult to apply this method to large specifica-
tions expressed in a high level language. Another problem
with the logic synthesis method is that it is typically quite
expensive to perform state assignment for large specifica-
tions (the so called complete state coding (CSC) problem
for speed-independent circuits). Automatic approaches to
address state assignment often take a lot of time and can
generate redundant and slow circuits. The assistance of de-
signers is often needed to obtain better circuits, but it is
tedious and requires deep knowledge of asynchronous cir-
cuit design. Therefore, most of synthesis methods that can
derive non-trivial circuits from high level specification lan-
guages are based on syntax directed translation. Tangram
[5, 6] and Balsa [7] are two well-known design methods for
this class. Although it is known that the circuits derived by
those methods can be inefficient, recent papers [8, 9] report
that their methods can synthesize faster circuits than Pet-
rify, a logic synthesis based tool. This is mainly due to
the inappropriate insertion of internal variables in order to
avoid CSC problems.

The goal of this paper is to extend the applicability of
logic synthesis methods to high level specifications by ap-
plying ideas to avoid the state explosion and CSC problems.
It is also very important to aggressively use timing infor-
mation whenever possible to produce efficient circuit im-
plementations [10, 3]. For example, the method described
in [9] uses relative timing constraints to optimize their de-
signs. The process to find the paths to be compared for the
relative timing method is, however, expensive to automate.
This work aims at using bounded delay information to ob-
tain optimal circuits with respect to this timing information
automatically.

This paper proposes the following approach.

1. Our method translates a high level specification lan-
guage to a (time) Petri net. This Petri net is guaranteed

to be CSC conflict free by inserting internal variables
based on the semantics of the language. This insertion
of CSC variables may not be optimal, but is supposed
to be as good as or better than syntax directed methods.

2. An improved modular synthesis method using partial
order reduction is applied to this Petri net. In the origi-
nal modular synthesis method [11, 12], the whole mod-
ule given by a user is the target for reduced state space
enumeration. Thus, only interleavings on the variables
internal to the environment of this module are avoided.
The method proposed in this paper automatically de-
composes the given module to obtain many subcircuits
that each contain only one output signal, and applies
the modular synthesis method to each subcircuit. Since
the number of interface signals in such subcircuits is
much smaller than that of the whole module, signifi-
cant improvement is obtained.

3. The proposed method synthesizes timed circuits using
the given bounded delay assumption. Since it explores
the timed state space, optimal circuits with respect
to the given timing assumptions are automatically de-
rived without additional verification needed as in the
case of relative timing assumptions.

In order to demonstrate the proposed method, the line
fetch module of TITAC2’s [13] instruction cache system
is described using the Balsa language, and a whole cir-
cuit including the data path is synthesized by the proposed
method. The obtained circuit is compared with that ob-
tained by the Balsa system using a Verilog simulation.
Petrify failed to synthesize this circuit from the untimed
version of the same Petri net due to BDD nodetable over-
flow after 35 hours of CPU time by a workstation with a
2.8GHz Pentium 4 and 4 gigabytes of memory. The transla-
tion from the Balsa language to our intermediate language
is currently done by hand. The rest of the synthesis to ob-
tain a Verilog gate level net-list is, however, automated (but
naively). The proposed method is easily applied to other
high level specification languages by modifying the transla-
tion algorithm to the intermediate language.

There are many related works [14, 15, 16, 17, 18, 19].
For example, [16] derives an STG from a handshake cir-
cuit description, while our approach uses a high-level de-
scription directly. Furthermore, their STG may suffer CSC
problems. [17, 18] propose limited clustering and peep-
hole optimization. They can avoid run-time problems by
handling only small clusters, and still obtain performance
improvement. Our method can handle larger clusters with
reasonable run-time by the modular synthesis and automatic
decomposition algorithm. None of these works handles tim-
ing information to optimize the circuit. [19] shows a proto-
col search technique to derive an optimal timed circuit from

high level specification. It may suffer run-time problem
for large systems, but his technique and our decomposition
technique could potentially compliment each other.

The rest of this paper is organized as follows. Section 2
presents the basic constructs of a high specification lan-
guage. Section 3 describes the synthesis method. Section 4
reviews the partial order synthesis approach. Section 5 pro-
poses our modular decomposition technique. Finally, Sec-
tion 6 presents experimental results, and Section 7 gives our
conclusions.

2 High level specification languages

The specification languages considered in this work are
supposed to have the following basic sentences for control.

� Handshake Read and Write for ports.

� Sequential sentence � � ������ � � � ���.

� Parallel sentence � � �������� � � � ����.

� Loop sentence � � ���� � ���.

� While sentence � � ����� ���� 	��� � ���.

� If sentence � � �
 ���� 	��� � ���� � ���.

Our approach is not restricted to some specific specifica-
tion language, but it can be applied to any high level speci-
fication languages that are based on the above control sen-
tences. This paper, however, uses the Balsa language for
demonstration. To this end, the following sentence is also
considered.

� Select sentence � � �����	 � 	��� � � 	 	���
 ���.

This operation first waits for the request signal from data
port � or 	. Thus, it is a kind of a passive read operation.
It can, however, execute a sentence or a block of sentences
before issuing the acknowledgement for the data port. Since
the data is kept on the port before the acknowledgement, the
sentences executed by the Select sentence can use that data
without latching it. This simplifies the circuit and reduces
the delay for latching, if the sender process can stall without
loss of performance.

As an example, this paper considers the line fetch mod-
ule from the TITAC2 instruction cache system [13]. The
TITAC2 instruction cache memory contains 256 line (or
block) frames, and each line frame contains 8 words. Thus,
the size of the cache memory is 8KB (256 line frames � 8
words � 32 bits). The lines are direct mapped and fetched
in the early restart manner with critical word first [20]. So,
when a word with address ��� is read and it is not in the
cache memory, the line containing the word is fetched in the

#define PC_OFFSET ((PC as array 0..31 of bit)[2..4] as 3 bits)
#define PC_LINE_ADR ((PC as array 0..31 of bit)[5..12] as 8 bits)
#define PC_LINE_FRAME_ADR ((PC as array 0..31 of bit)[5..31] as 27 bits)
#define CNT_LINE_ADR ((CNT as array 0..31 of bit)[5..12] as 8 bits)
#define CNT_TAG ((CNT as array 0..31 of bit)[13..31] as 19 bits)
#define CNT_LINE_FRAME_ADR ((CNT as array 0..31 of bit)[5..31] as 27 bits)

procedure lineFetch (
input PC : 32 bits;
sync lineFetchComplete;
output inst_out : 32 bits;
output TagWrite : tagmCtrlType; -- record addr:8 bits; wr_data:19 bits end
output existWriteAddr : 3 bits;
sync existReset;
output mmem_rd_addr : mmemRdAddrType; -- record off:3 bits; addr:27 bits end
input mmem_rd_data : 32 bits;
output cmem_wr_ctrl : cmemCtrlType; -- record off:3 bits; addr:8 bits; wr_data:32 bits end
output cbuf_wr_ctrl : cbufCtrlType -- record addr:3 bits; wr_data:32 bits end

) is
local variable addr_counter, add_tmp : 3 bits

variable count, count_tmp : 3 bits
variable mbuf : 32 bits
variable CNT : 32 bits

begin
loop

select PC then
sync existReset ||
addr_counter := (PC_OFFSET + 1 as 3 bits) ||
count := (7 as 3 bits) ||
begin
mmem_rd_addr <- (mmemRdAddrType {PC_OFFSET, PC_LINE_FRAME_ADR}) ||
select mmem_rd_data then mbuf := mmem_rd_data end;
inst_out <- mbuf ||
cmem_wr_ctrl <- (cmemCtrlType {PC_OFFSET, PC_LINE_ADR, mbuf})||
cbuf_wr_ctrl <- (cbufCtrlType {PC_OFFSET, mbuf});
existWriteAddr <- PC_OFFSET

end ||
CNT := PC

end;
while count > 0 then

add_tmp := (addr_counter + 1 as 3 bits) ||
count_tmp := (count - 1 as 3 bits) ||
begin
mmem_rd_addr <- (mmemRdAddrType {addr_counter, CNT_LINE_FRAME_ADR}) ||
select mmem_rd_data then mbuf := mmem_rd_data end;
cmem_wr_ctrl <- (cmemCtrlType {addr_counter, CNT_LINE_ADR, mbuf}) ||
cbuf_wr_ctrl <- (cbufCtrlType {addr_counter, mbuf});
existWriteAddr <- addr_counter

end;
addr_counter := add_tmp ||
count := count_tmp

end ||
TagWrite <- (tagmCtrlType {CNT_LINE_ADR, CNT_TAG});
sync lineFetchComplete

end
end

Figure 1. Balsa description for the line fetch module.

��� ���

MUX

DFFs

����

������

��
��

���

	
� (a)

��� ���

MUX
����

������

��

���

(b)

�������

���port

Figure 2. Variable and port implementation.

order ������ �������� � � � � �������� ������� � � � � �����
��, where � ��� mod � and � � � �. Furthermore,
the access for the other words within the same line are possi-
ble as soon as the words are fetched, while all the accesses
for the words not in the line are suspended until the line
fetch is completed even if the access is on a hit.

The Balsa description for the line fetch module is
shown in Figure 1. The line fetch module starts the line
fetch when the instruction address, which is on a miss,
is given in port “PC”. When the first word specified by
port “mmem rd addr” is read from Main Memory through
“mmem rd data” port, the word is sent to an instruction
decoder unit through port “inst out” as well as it is writ-
ten into Cache Memory through “cmem wr ctrl” port and
Cache buffer register through “cbuf wr ctrl”. The line fetch
module also sets the corresponding bit in the Exist Register
though port “existWriteAddr”, which indicates the available
word in the line currently being fetched. It is used such that
when the other words within this line are read, they are se-
lected from Cache buffer register or the read operation is
suspended according to the corresponding bits in the Exist
Register. The line fetch module continues to fetch the re-
maining 7 words in the same line and updates the Cache
Memory and Exist Register as well. Also, the tag infor-
mation to update Tag Memory is sent to the tag memory
module through port “TagWrite”. Finally, the “lineFetch-
Compute” signal is issued.

���

���

��

���

���

��

��

���

���

��

��

��

Figure 3. Petri net for a loop sentence.

3 Synthesis of circuits

This work uses the bundled data method for data path cir-
cuits and four-phase handshaking protocol for control sig-
nals. This section describes the synthesis procedure for the
data path and control circuits.

3.1 Data path circuits

Variables such as “add counter” have multiple sources.
Thus, for each variable, our method generates the circuit
structure shown in Figure 2(a). Each input of the multi-
plexer is connected to the corresponding source latch or in-
put port either directly or through some combinational cir-
cuit, such as an incrementer, for data manipulation. The
delays �� and �� are supposed to include both the delay
of such a combinational circuit and the delay of the mul-
tiplexer. If either there is no combinational circuit, or the
source latch or the input port becomes stable much earlier
than the arrival of ���� (����), then �� (��) does not need to
include the delay of the combinational circuit. Furthermore,
if only one source writes this variable, the multiplexer can
be removed, and its delay can be omitted from ��. Simi-
lar structures are generated for active output ports as shown
in Figure 2(b). In addition, a comparator is generated for
each condition in a conditional statement. These data path
circuits are generated by statically analyzing the Balsa de-
scription.

3.2 Control circuits

Our method generates a control circuit using the follow-
ing three steps:

Step I. Petri net generation

Step II. State graph construction

Step III. Logic minimization

��� � ����

����

����

���

����

����

����

����

����

����

�����

�����

�����

���

����

����

����

�����

����

����

����

�����

����

����

����

�����

���

���

���

(a)

����

�����

����

��
����

����

�������

�����

(b)

�������
�����

����

����

Figure 4. Petri net for a sequential sentence.

This subsection discusses the first step of the algorithm. The
efficient approach for the second step is described in the
next section, and the third step is achieved using ATACS [3].

The actual execution of each sentence of the specifica-
tion language consists of a working phase and a resetting
phase. Thus, for a sentence � , two subnets ��� and ���

are usually generated to represent each phase. Each subnet
starts its execution when a token is put in its unique start
place, and when its execution completes, a token is placed
into its unique end place. Let ��� and ��� denote the
start place and the end place of ���. Similarly, ��� and
��� are those for ���. For each sentence, the subnets are
generated as follows.

(a) Loop sentence � � ���� � ��� :
Since a Loop sentence never terminates, ��� is

����

����

����

����

����

����

����

����

����

��

���

����

���

���

����

����

����

����

����

����

����

����

����

��

���

����

���

���

Figure 5. Petri net for a parallel sentence.

empty, and ��� is never reached. The subnet ���

is shown in Figure 3. �� represents a dummy (or se-
quencing) transition.

(b) Sequential sentence � � ������ � � � ��� :
The subnets ��� and ��� for � � 	 are shown in
Figure 4 (a). As shown in the figure, internal state vari-
ables (����, ����, � � �) are necessary to solve the
CSC conflict. These subnets aim at maximal concur-
rency, i.e., the working phases and the resetting phases
are maximally overlapped. The idea of this approach is
the same as that of [16], which introduces, however, no
CSC variables. This approach has higher concurrency
than that of the concurrent sequencer in [18]. In Balsa
circuits, those two phases are completely serialized.
Note that ��� is executed only after the execution
of ���, which is guaranteed by the outer sentence
containing � . Thus, �����, �����, and �����
occur after �����, which avoids the CSC conflict,
although the resetting phases (���� and so on) may
be executed earlier. On the other hand, if the same
variables or ports are accessed in, for example, �� and
��, then the resetting phase of �� must complete be-
fore the working phase of ��, but this is not guaran-
teed by this subnets. Thus, it is necessary to identify
such cases by static analysis of the specification, and to
add a causality from ���� to ���� as shown in Fig-
ure 4(b). A new CSC variable (������) is necessary
here. In some cases, such causality can be satisfied by
timing. In those cases, these additional places and tran-
sitions are redundant. In particular, a redundant CSC
variable degrades the performance of the circuit. Thus,

���

���

���

��

���

���

���

���

���

��

��

���

���

��

����� �����

���	�

���	�

��� for variable write
��� ���

��

����

��

��

Figure 6. Petri net for a while sentence.

when timing information is given (see Section 6), re-
placing those CSC transitions by dummy transitions is
tried as an optimization.

(c) Parallel sentence � � �������� � � � ���� :
The subnets ��� and ��� for � � 	 are shown in
Figure 5. If a parallel sentence is used inside a se-
quential sentence, the CSC transitions of Figure 5 are
redundant, and they can be replaced by dummy tran-
sitions. Note that from these subnets, a C-element
of � inputs is derived. Specifying
���������������
avoids such the C-element with large fan-ins, because
the CSC state variable decomposes the C element.

(d) While sentence � � ����� ���� 	��� � ��� :
The subnets ��� and ��� are shown in Figure 6.
The part for handling the ���� input (inside the dashed
box in the figure) is a little tricky. The state space
exploration considering actual data values costs too
much. Thus, instead, our subnet considers a nondeter-
ministic behavior of the ���� input when the variable
to be checked is written. That is, since the cond signal
comes from some combinational circuit such as a com-
parator, and the comparator refers to some variable, the
cond signal can change whenever this variable is writ-
ten. Thus, when the ack signal of this variable goes
high, the place from ���� in the dashed box of the fig-
ure gets a token. Then, if the dummy transition inside
the dashed box fires, the ���� input does not change,
and otherwise, the ���� input changes. This allows
the synthesized circuit to accept any possible change
of the ���� input. If the comparator refers to more
than one variable, then for each variable, a place from
its ack signal and a dummy transition are generated in

���

��

���

���

��

���

���

���	�

�� ��

���

��� ���

��� ���

��	�

��	� ���	�

��� �
���

�
���

���

Figure 7. Petri net for a select sentence.

the dashed box.

(e) Select sentence � � �����	 � 	��� � � 	 	���
 ���:
The subnets ��� and ��� are shown in Figure 7.
Since the request and acknowledge signals for � and
	 work as context signals, no CSC variables are nec-
essary. If more than one select sentence exists for the
same input signals � and 	, then the places and the tran-
sitions in the dashed boxes should be shared.

The rest of the sentences are handled similarly, and the dis-
cussion for them is omitted in this paper.

4 Partial order reduction for timed circuit
synthesis

In order to perform the above second step (state graph
construction) efficiently, [11] proposes an approach that
takes advantage of hierarchy in a specification by applying
partial order reductions to modular synthesis. The idea is to
consider a single interleaving of the signals that are invisi-
ble to the target subcircuit. This section reviews this idea.
Note that in order to simplify the explanation, the following
uses a little different notation than [11].

Let us consider a set � � ��� ��� � � � � ��� � � � � ��� of
modules which is a closed system, where � is the environ-
ment of the whole circuit and �� is a specification of the �-th
subcircuit with �� and �� as the input signal set and output
signal set. Our goal is to synthesize a subcircuit �� that
implements �� for each �. Here, suppose that �� includes
internal signals for CSC variables that are introduced in the

previous section. Let visible signals denote those signals
that are in �� and ��.

Let � be a set of all traces of � , and �
�
	 ��
 � denote

that the state transition from � to �� by firing � occurs in � .
������
� � ��� represents a set of visible signal transitions of
��, i.e.,

������
� � ��� � �
�� ��� � �
 �� ����

�
�
	 ��
 � ��

The subcircuit �� can be synthesized from a state graph that
contains only visible transitions for ��, i.e.,

���
� � ��� � ��� 	 �� �
�� ���
 ������
� � ����
� � ����
�� ���� �

� � ����
��� �����

where ����
�� ��� is a state projected to the visible signals
of ��. The traditional approach to constructing ���
� � ���
is very expensive, because the possible interleavings of all
transitions are considered. In the partial order reduction ap-
proach, instead of � , a smaller set �� of traces that are suf-
ficient for synthesizing �� is considered. Such �� can be
obtained by modifying the Stubborn set method [21] such
that in addition to the conflicting transitions, all the transi-
tions for the visible signals of �� are also interleaved. Since
the other concurrent invisible transitions are not interleaved,
the state space searched for �� is usually much smaller
than that of � . Then, for such ��, it can be proven that
���
� � ��� � ���
��� ��� holds. Hence, �� can be synthe-
sized from ���
��� ���, which sometimes reduces the cost of
the synthesis dramatically. The works described in [11, 12]
show that a one to two orders of magnitude reduction in
synthesis time is possible when compared to the traditional
approach.

This approach, however, still needs a lot of computa-
tional cost, if �� has many visible signals. In the case of our
example shown in Section 2, the specification has no hier-
archy, and so it has more than 15 input control signals and
40 output control signals (including the control signals for
latches and multiplexers as well as the CSC variables). The
next section proposes a new idea to automatically decom-
pose visible signals and obtain many small circuits, each of
which contains only one output signal.

5 Modular decomposition

Since this decomposition is for applying the partial or-
der reduction method described in the previous section, its
main goal is to reduce the size of the visible signal set for
each subcircuit. Suppose that a specification for the subcir-
cuit with an output �� is denoted by ��, then �� � ����.
As for the input signals of ��, note that all other visible sig-
nals of the original circuit are the candidates. Unlike the
usual circuit decomposition, including redundant signals in

�� does not imply that a redundant subcircuit is obtained. It
just causes extra cost for the state graph construction, but it
is guaranteed that the correct subcircuit is obtained, because
the interleavings of invisible signals are just redundant for
���
��� ���, e.g., the extreme case is the traditional total or-
der approach. On the other hand, if some signal is missing
in ��, then two possible cases can occur according to the
type of the missing input signal. When each transition on
an output signal is implemented using a single cube, each
input signal for the subcircuit can be classified as being ei-
ther a trigger or context signal [22]. The trigger signals are
those that change when the target output signal should be
excited. But, the inverse is not always true, i.e., the trigger
signal may also change at other times. The context signals,
which are stable in the excitation region of the target out-
put signal (i.e., the set of states in which this transition is
enabled), are used to solve this ambiguity and to determine
the exact condition for the output excitation. If some trig-
ger signal is missing in ��, then some state transitions are
not considered for the circuit behavior, and it results in a
wrong subcircuit. If some context signal is missing, then
either a CSC conflict occurs or a correct but redundant sub-
circuit is derived. The latter case can occur when, due to
the missing context signal, either a single cube implemen-
tation is no longer possible or non-optimal context signals
are used. Although the behavior of the derived subcircuit
is correct, it is desired to prevent this case, but it is now an
open problem.

From the above discussion, the algorithm proposed here
guarantees that all trigger signals are included in �� and tries
to include enough context signals such that no CSC conflicts
occur. For a given Petri net � obtained in Subsection 3.2
and a target output ���, our algorithm performs the follow-
ing steps.

Step 1: From two transitions ����� and ����� of � rep-
resenting the change of signal ���, � is traversed
upwards until either non-dummy transitions (which
correspond to visible signals of the original circuit)
or already traversed nodes (places or transitions) are
reached, The traversal is forked when the arcs of �
merges at places or at transitions. The reached visible
signals include the trigger signals, and they are put into
��.

Step 2: Construct a state graph using �� and �� obtained in
the previous step, and check if a CSC conflict occurs
or not. If not, derive a subcircuit through the logic
minimization step. Otherwise, go to the next step.

Step 3: From each trigger signal that is newly obtained in
Step 1 or previous iteration of Step 3, � is traversed
upwards in the same way as Step 1. This step intends
to find trigger signals of each newly found trigger sig-
nal �, because they may be able to be used as context

Table 1. Delay information.
Operations Min & Max
Output signals [1,4]
Main memory access [100,110] ([1,10])
Tag/Cache memory access [15,20] ([1,10])
Exist/Cache-buffer register access [2,10] ([1,10])
Other environments [1,10]
Next Instruction Addr. [50,350]
(Bounds in parentheses are for reset phase)

signals that partition the states where � is enabled, and
may solve the CSC conflict found in Step 2. Thus,
those trigger signals are put into ��. If �� is modified,
then go to Step 2. Otherwise, go to Step 4.

Step 4: All signals except for �� are put into ��, and derive
a subcircuit through the logic minimization step.

It is clear that Step 1 finds all trigger signals. Step 4 is
used to guarantee termination of the algorithm. Step 2 and
Step 3 are heuristics to find a smaller set of context signals.
In the example of Figure 1, out of 40 output signals, 32
output signals do not run Step 3, and the remaining 8 output
signals run Step 3 once. No output signals need to run Step
3 more than once or Step 4. From these results, one may
consider that our CSC variables introduced in Section 3 are
mostly redundant, because the CSC variables are usually
added as context signals for a target output, but the above
results imply that the most outputs are built purely of trigger
signals. This is, however, not true. It is because our CSC
variable added as a context signal for an output � can be
used as a trigger signal for another output 	. For example,
���� in Figure 4 is a context signal for sentence ��, but it
can be used as a trigger signal for sentence ��.

This decomposition reduces the cost of the state graph
construction dramatically as shown in the next section.

6 Experimental results

This section demonstrates the proposed idea with the ex-
ample shown in Figure 1. The experiments here have been
done on a 2.8 GHz Pentium 4 workstation with 4 gigabytes
of memory.

From the Balsa description, two intermediate language
descriptions for a data path circuit and a control circuit are
obtained. This step is currently done by hand. Then, Perl
scripts generate a Verilog gate-level description for the for-
mer and the Petri net for the latter as described in Section 3.

This Petri net was first given to Petrify. It, how-
ever, failed to synthesize the control circuit due to BDD
nodetable overflow after 35 hours of CPU time. Second,
in order to synthesize a timed circuit, the delay information

Table 2. Performance of proposed method.
Output signals Step II. Step III.
��	 0.5s / 1.5MB –

2.4s / 5.3MB 0.02s
� ��
���	 0.2s / 0.4MB 0.01s
	� !���� 0.2s / 0.4MB 0.01s
���� 0.2s / 0.4MB –

0.2s / 0.4MB 0.01s
���� 5.2s / 9.3MB –

11.1s / 16.0MB 0.25s

Table 3. Delays for simulation.
Operations Delays (ns)
Gates (AND, OR, C) 0.3
Latches 0.7
Muxs 0.45
Inc/Dec 1.5
Main memory access 30.0 (1.0)
Tag/Cache memory access 4.5 (1.0)
Other environments 2.0 (1.0)
Delay elements (��� ��) 2.1
Delay elements (��) 0.9
(Delays in parentheses are for reset phase)

as shown in Table 1 is assumed, and the above Petri net has
been modified into the time Petri net that reflects those de-
lays. This is mainly done by adding the delays in Table 1 to
transitions that represent the corresponding signals. The de-
lay information for output signals, Tag/Cache memory ac-
cess, and Exist/Cache-buffer register access is based on the
delays of 0.25"m standard cell library, which are shown in
Table 3. Note that the values are scaled up by 4 because our
tool accepts only integer bounds currently. For example,
since an output signal is derived by a gate tree with depth
less than or equal to 3, its bound [0.25,1.0] (� ��� ��#�)
covers both a single gate delay 0.3 ns and a triple gate delay
0.9 ns. The lower bound 12.5 (= 50/4) of “Next Instruction
Addr” is determined from the cycle time (17 ns) of NOP op-
eration of TITAC2. The other bounds are set conservatively.
The partial order reduction algorithm in [11] was then ap-
plied to this time Petri net which also failed due to memory
overflow.

Finally, the above time Petri net is applied to the pro-
posed method. In this case, Step II. and III. shown in
Subsection 3.2 should be performed for each output signal,
while the same time Petri net is used commonly. Table 2
shows the CPU times and the amount of memory used for
each step for several output signals. Multiple rows shows
the iteration of steps 1 and 3 of Section 5. From these re-
sults, it can be seen that significant reduction in both CPU
times and amount of memory used is achieved. This is ac-

Table 4. Performance comparison.
Events Balsa (ns) Proposed (ns)
inst. addr. (PC) 	 inst. out 44 36
inst. addr. (PC) 	 line fetch complete 598 422
cycle time for main memory read 75 52

complished by using smaller sets of visible signals. For
example, for an output ��	, the number of input signals
needed to solve the CSC conflict is 8, while the number of
all signals for the whole line fetch circuit is 57. Although
the state graph construction must be done for many times,
the total CPU time for all output signals is much smaller
since the state space increases exponentially in the number
of the visible signals. This example takes total 24 seconds
for synthesis. Another advantage is that the used memory is
released after each execution run. Thus, only the maximum
amount of memory used for handling each output is neces-
sary, which is much smaller than that for all output signals.

In order to compare the performance of the circuit ob-
tained by the proposed method with that by the Balsa sys-
tem, both circuits are simulated in a gate level Verilog
simulator. Since the Balsa system derives circuits using
standard C-elements, our method also derives standard C-
implementations. As for delays of components, the values
shown in Table 3 are used.

Table 4 shows several response times for both circuits.
The performance improvement is mainly obtained from the
protocol improvement for the sequential sentences and the
optimized circuit by logic minimization. In [18], it is re-
ported that their resynthesis and peephole optimization im-
proved the performance of balsa circuits by 26 % – 55 %.
Our improvement ranges from 18 % to 31 %. Note, how-
ever, that our example includes several main memory ac-
cess, which takes pretty long time, and thus, the improve-
ment of the control circuit does not directly affect the total
cycle times. As for the size of the control circuits, the gate
(AND, OR, C) count of the balsa circuit is 171, while ours
is 64. According to [17], the above optimization causes the
area-overhead that ranges from 18 % to 27 %. Thus, it im-
plies that their circuit is about three times larger than ours.

In order to see the improvement obtained by using tim-
ing information, the same synthesis steps are executed by
using a modified delay information where all lower bounds
in Table 1 are set to 1, and the upper bound for output sig-
nals is set to 10. In this case, 6 gates (16 literals) are added,
which are 6 % (gates) and 13 % (literals) of the total. On the
other hand, from the gate level simulation, the performance
degradation of this redundant circuit is very small (0.5 %),
probably because those additional gates are not in critical
paths.

7 Conclusion

This paper presents a method for translating high level
specifications to Petri net representations that have been
optimized for performance and the avoidance of CSC vi-
olations. These nets also include timing information that
can be utilized to further improve the performance of the
circuit implementations. Finally, an automatic technique
is described to decompose the circuit into individual mod-
ules to improve synthesis runtime. This technique can then
make use of an efficient modular synthesis procedure based
on partial order analysis. The synthesis method described
in this paper is shown to be substantially more efficient
than traditional logic synthesis approaches. It is also shown
to produce circuits superior to those derived by syntax-
directed translation method.

The advantages of the proposed method over the op-
timization techniques of syntax-directed methods are that
timing information can be used to optimize circuits and
that a protocol search technique shown in [19] combined
with our single output synthesis technique can help to fur-
ther optimize circuits. On the other hand, a disadvantage
is that although the proposed method significantly speeds
up the synthesis, its scalability to larger circuits is still un-
clear. Many case studies are necessary. Another drawback
of the single output synthesis technique is that it may pro-
duce redundant circuits (e.g., with non-single cube imple-
mentation). The quality of the circuits and the speedup of
the synthesis are a trade-off.

Future work includes automating the translation steps
from some high level specification language to the datapath
and control intermediate representations. This will allow us
to apply our method to more case studies (including other
subsystems of TITAC2) to further evaluate the utility of this
approach.

Acknowledgments

We would like to thank Masashi Imai (Univ. of Tokyo)
for helping delay setting for Verilog simulation.

References

[1] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev. Petrify: a tool for

manipulating concurrent specifications and synthesis
of asynchronous controllers. IEICE Transactions on
Information and Systems, E80-D(3):315–325, March
1997.

[2] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha,
B. Lin, and L. Plana. Minimalist: An environment
for the synthesis, verification and testability of burst-
mode asynchronous machines. Technical Report TR
CUCS-020-99, Columbia University, NY, July 1999.

[3] Chris J. Myers, Wendy Belluomini, Kip Killpack, Eric
Mercer, Eric Peskin, and Hao Zheng. Timed circuits:
A new paradigm for high-speed design. In Proc. of
Asia and South Pacific Design Automation Confer-
ence, pages 335–340, February 2001.

[4] Steven M. Burns and Alain J. Martin. Syntax-directed
translation of concurrent programs into self-timed cir-
cuits. In J. Allen and F. Leighton, editors, Advanced
Research in VLSI, pages 35–50. MIT Press, 1988.

[5] Kees van Berkel, Joep Kessels, Marly Roncken,
Ronald Saeijs, and Frits Schalij. The VLSI-
programming language Tangram and its translation
into handshake circuits. In Proc. European Confer-
ence on Design Automation (EDAC), pages 384–389,
1991.

[6] Joep Kessels and Ad Peeters. The Tangram frame-
work: Asynchronous circuits for low power. In Proc.
of Asia and South Pacific Design Automation Confer-
ence, pages 255–260, February 2001.

[7] Doug Edwards and Andrew Bardsley. Balsa: An asyn-
chronous hardware synthesis language. The Computer
Journal, 45(1):12–18, 2002.

[8] Euiseok Kim, Jeong-Gun Lee, and Dong-Ik Lee. Au-
tomatic process-oriented control circuit generation for
asynchronous high-level synthesis. In Proc. Inter-
national Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 104–113. IEEE
Computer Society Press, April 2000.

[9] A. Bystrov and A. Yakovlev. Asynchronous cir-
cuit synthesis by direct mapping: Interfacing to en-
vironment. In Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Sys-
tems, pages 127–136, April 2002.

[10] K. S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. J.
Myers, K. Y. Yun, R. Koi, C. Dike, and M. Roncken.
An asynchronous instruction length decoder. IEEE
Journal of Solid-State Circuits, 36(2):217–228, Febru-
ary 2001.

[11] T. Yoneda, E. G. Mercer, and C. J. Myers. Modular
synthesis of timed circuits using partial order reduc-
tion. Proc. of The 10th Workshop on Synthesis And

System Integration of Mixed Technologies, pages 127–
134, 2001.

[12] E. Mercer, C. Myers, T. Yoneda, and H. Zheng. Mod-
ular synthesis of timed circuits using partial orders on
lpns. In Theory and Practice of Timed Systems (TPTS
2002), April 2002.

[13] Akihiro Takamura, Masashi Kuwako, Masashi Imai,
Taro Fujii, Motokazu Ozawa, Izumi Fukasaku,
Yoichiro Ueno, and Takashi Nanya. TITAC-2:
An asynchronous 32-bit microprocessor based on
scalable-delay-insensitive model. In Proc. Interna-
tional Conf. Computer Design (ICCD), pages 288–
294, October 1997.

[14] P. Kudva, G. Gopalakrishnan, and V. Akella. High
level synthesis of asynchronous circuit targeting state
machine controllers. In Asia-Pacific Conference on
Hardware Description Languages (APCHDL), pages
605–610, 1995.

[15] Prabhakar Kudva, Ganesh Gopalakrishnan, and Hans
Jacobson. A technique for synthesizing distributed
burst-mode circuits. In Proc. ACM/IEEE Design Au-
tomation Conference, 1996.

[16] Tilman Kolks, Steven Vercauteren, and Bill Lin. Con-
trol resynthesis for control-dominated asynchronous
designs. In Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Sys-
tems, March 1996.

[17] Tiberiu Chelcea, Andrew Bardsley, Doug Edwards,
and Steven M. Nowick. A burst-mode oriented back-
end for the Balsa synthesis system. In Proc. Design,
Automation and Test in Europe (DATE), pages 330–
337, March 2002.

[18] Tiberiu Chelcea and Steven M. Nowick. Resyn-
thesis and peephole transformations for the opti-
mization of large-scale asynchronous systems. In
Proc. ACM/IEEE Design Automation Conference,
June 2002.

[19] Eric Robert Peskin. Protocol Selection, Implementa-
tion, and Analysis for Asynchronous Circuits. Ph.D.
dissertation, The University of Utah, August 2002.

[20] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach, Second Edition. Morgan
Kaufmann Publishers, 1996.

[21] A. Valmari. A stubborn attack on state explosion.
Proc. of Workshop on Computer Aided Verification,
1990.

[22] Chris Myers. Asynchronous Circuit Design. John Wi-
ley & Sons, 2001.

