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Abstract

In this paper, a fluid in a vessel is considered and large amplitude standing waves
(LASW) of the fluid are simulated directly using the boundary element method
(BEM).

In the simulation, two problems come out. The first problem is that the energy of
the LASW increases gradually when using double nodes at corners in the BEM. The
second problem is that projection-like profiles appear near the point where the free
surface meets the vessel wall when regridding is not used at each time step. These
projection-like profiles are not physical and indicate numerical error, and cause the
simulation to break down.

We found that the use of discontinuous elements solves the first problem, and the
use of the “half shift method” solves the second problem.

In addition, a method called RIG for highly accurate simulation using regridding
is proposed and verified.
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1 Introduction

The study of large amplitude standing waves (LASW) is required in various
areas. For example, melted iron containers are carried on rails in ironworks.
The containers may oscillate and melted iron may spill out of the containers.
Besides, for launching a rocket successfully, it is important to analyze how a
liquid fuel moves inside the tank due to the rocket’s oscillation and how in
turn that effects the rocket’s movement. Moreover, it is important to study the
motion of liquid in ships, when the ships oscillate due to ocean waves. If the
liquid in the ships starts to resonate, the ship’s oscillation increases rapidly
and in the worst case, the ship will overturn.

[11] can be cited for the direct simulation of LASW using BEM. They assume
periodic waves as in the formulation of [6]. They map the free surface to a
closed curve in the complex plane using the assumption of periodicity. Then,
they apply BEM to the closed curve in the complex plane.

Most papers which simulate the dynamics of liquids in a vessel using BEM
have an interest in handling sloshing analysis, and few papers simulate LASW
in a vessel using BEM. Moreover, those papers which address LASW assume
periodicity in most cases, and in some cases, a vortex-sheet method is used
instead of BEM [13]. On the other hand, in our paper, we are concerned with
the direct application of BEM to a boundary of a fluid in a vessel in order
to simulate LASW, and do not use periodicity. In principle, the results of
our paper can be applied to general waves (transient waves, stationary waves,
transient traveling waves) and waves of finite depth. The direct application of
BEM to the boundary causes a corner problem, and the corner points become
the peak of LASW. In this respect, our simulation is more difficult than [6][11].

The overview of this paper is as follows. In section 2, the settings of our simu-
lation are explained. In section 3, the basic formulation is given. In section 4,
simulation results on the comparison of using double nodes and using discon-
tinuous elements, the simulation result using the half_shift method, and the
simulation result with the vertical excitation are presented. In section 5, the
RIG algorithm for the highly accurate simulation is explained and verified.
The simulation result with the vertical excitation using RIG is also shown. In
section 6, the large amplitude cosine wave is simulated in order to show that
our method can also simulate transient standing waves.

sunao@sat.t.u-tokyo.ac.jp (Sunao MURASHIGE), hayami@nii.ac.jp (Ken
HAYAMI).
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Fig. 1. Schematic illustration of the simulation.

2 Settings

A perfect fluid contained in a rectangular vessel in two dimensional space is
considered (Fig. 1). We take the z-axis in the horizontal direction and the y-
axis in the vertical direction. The fluid at surface in contact with air is called
the free surface. The center of the vessel is x = 0[m], the width of the vessel is
L = 2x[m], the distance between the bottom of the vessel and the still water

L
surface (y = 0[m]) is h > 5 Time is denoted by ¢[s], the displacement of the

free surface from the still water surface is n = n(z,t)[m]. The bottom of the
vessel is at y = —h[m)], and the height of the vessel is +0o[m]. The gravitational
acceleration is ¢ = 9.8[m/s?]. The initial wave profile of our simulation is as
shown in Fig. 1.

3 The numerical simulation method
3.1 The basic formulation

We consider an incompressible irrotational flow. The velocity potential ¢ can
be defined. The velocity potential satisfies the Laplace’s equation,

A¢ = 0. (1)



The velocity of fluid particles (u,v)T satisfies the following equations,
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(u,v)T is also given by the following equations,
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where Di is the material derivative.

Positions of fluid particles on the free surface (x,y)T satisfy the following
equations,

Dz 0¢
Dy _ 9¢
Dt oy (7)

From Bernoulli’s equation, the velocity potential satisfies the following equa-
tion at the free surface,
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Using the above evolution equations (6), (7) and (8), the time evolution of the

free surface is simulated. 9’ 0 can be calculated using BEM as the velocity
x

potential ¢ satisfies the Laplace’s equation. In this paper, the time evolution
scheme based on the following Taylor expansion [8] was used.
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yA% and ¢!TA! are expanded similarly. The second-order Lagrangian deriva-
tive is expressed as

D2z O¢y ou  Ou
_ 1
Dt2  Ox +“ax+”ay’ (10)

0
where ¢, = a—f ¢; is also computed using BEM, since ¢, satisfies the Laplace’s
D
equation: A¢; = 0, and the boundary values that ¢, = D—f — (u2 +1)2) on
0
the free surface and ﬁ = 0 on the bottom and the wall of the vessel can be

n
obtained. Higher order derivatives of ¢ with respect to ¢ are computed using
BEM similarly.

3.2 BEM

In this part, we briefly explain the BEM [3] formulation.

Let I'f be the free surface, I'y, be the boundary where the fluid contacts with
the vessel. I' ="y UT',, is a closed curve. Let €2 be the domain inside I'.

The boundary integral equation (BIE)

6 0p* 0¢
— r=[20smdr 11
27r¢+/¢8nd 3n¢d’ (11)
r r
holds, where 6 is the angle subtending €2 at the point on the boundary I', and
¢* is the fundamental solution.

0
Then, I' and ¢, a—¢ on I' are discretized using linear elements (I" = U;I';). The
n
boundary integral equation (BIE) for node £ is,

§¢k+;!¢a dF_;F[%qﬁdF. (12)

n

The BIE is then approximated by collocation. The integrations over each
element are done analytically. When n nodes are placed on I, n equations are

obtained. When values of either ¢ or n are known at each node, unknown
n

. 0 :
values of either ¢ or a—¢ at each node are solved from the system of n equations
n

because there are n unknown values.



3.2.1 The corner problem

. . . 0 .
At the intersection points between I'y and I, 8_¢ has two different values.
n

Such points are called corner nodes. At corner nodes, — is discontinuous and

on

0
the linear interpolation of —¢ causes inaccuracy. Thus, special care must be

on

taken for the discontinuity of —.

on

There are two basic methods for this in BEM. The first method is to use
double nodes [5] and the second method is to use discontinuous elements [2].

The use of double nodes is as follows. The corner node where I'y and I,

0
meet is split into two nodes k, k', and the values of ¢ and a—d) at the two nodes
n

0
are treated as independent quantities ¢, @y, a—¢ and anl Because two of
n n
0 0 0 0
Ok, Orr, —¢ and —¢ are known values and two of ¢, ¢p, —¢ and —¢
on . on b on ) on ¥
are unknown values, another two equations,
¢k) = d)k’a (13)
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are introduced, where I'; and I'y, are the two elements of I adjacent to node
k.

The use of discontinuous elements is as follows. The nodes for ¢ and % which

meet at the corner are shifted inside the two elements adjacent to the cgrner. )
and — are represented by linear functions along the whole elements in terms
of their nodal values and both of them are in principle discontinuous at the
corner. In the present paper, when n, is a node of ¢ and % at the corner and

n
ny is a node next to n,, n, is shifted to the point dividing the interval m,my
by the ratio 1:3.



4 Simulation results
4.1 Use of double nodes vs. discontinuous elements

For the initial wave profile, the large amplitude stationary standing waves ob-
tained by Dr. M. Okamura[9] was used. The crest acceleration of 7 normalized

1D
by g (A. = ——%) is 0.85. 63 nodes were placed on I'y, and regridding was
g

used at every time step.

The regridding procedure is as follows. Let the z,y coordinates and the ve-
locity potential ¢ at node i at time ¢ be zf, yf ¢t (i = 1,2,...,f), respec-
tively, where f is the number of nodes on the free surface. Using the time
evolution scheme, zit&f ¢yl gtFa4 (; = 1,2 ... f) are obtained. Then,
ghTAL v AL (j = 1,2,..., f) are interpolated using spline interpolation[10].
The y coordinate (y.) of the interpolated curve at z! (i = 1,2,...,f) are
obtained. Then, /T2 yt*& (i = 1,2,..., f) are substituted by !, y! (i =
1,2,..., f), respectively, and ¢!*2! (i =1,2,..., f) are substituted by

0

| o\" .
¢§+ZE<At§+Ay8_y> ¢f (1=1,2,....,f), (15)
k=1"

respectively, where Ay = y! — yf. The point of the regridding is that the
coordinates on the free surface remain the same.

The time evolution of LASW is simulated. Fig. 2 shows the evolution of the to-
tal energy. Two cases are shown. Namely, the case using double nodes and the
case using discontinuous elements for corners where the free surface meets the
vessel wall. It is observed that LASW simulation using discontinuous elements
is more stable than using double nodes.

Fig. 3 shows the magnified profile at the right end of the free surface. n =
n(x,t) is the displacement of the free surface from the still water surface.
Three cases are shown. Namely, the case using double nodes, the case using
discontinuous elements, and the case using the method of [6] (250 nodes were
placed on I'f in this case). Note that when using the method of [6], there is no
corner problem since it assumes periodicity. The effect of the corner nodes can
be observed by comparing the three cases. It is observed that there is a little
declination between the profile using double nodes and using the method of
[6], whereas, the profile using discontinuous elements matches well with that
using the method of [6].

As a result, we recommend that discontinuous elements should be used when
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Fig. 2. Evolution of the total energy of the standing wavesl Two cases are shown.
Namely, the case using double nodes and regridding (double node, regrid) and the
case using discontinuous elements and regridding (discontinuous, regrid).
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Fig. 3. Wave profiles for three cases: using double nodes and regridding (double
node, regrid), using discontinuous elements and regridding (discontinuous, regrid)
and using the method of [6] and without using regridding with 250 nodes on the
free surface (L-H, C, noregrid, 250points).

simulating LASW with BEM.

4.2 The half shift method

Next, we consider the use of methods which can simulate LASW without
using regridding. The reason considering this is that when the amplitude of
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Fig. 5. Magnification of Fig. 4.

the standing waves become large, the accuracy of spline interpolation used in
regridding may deteriorate, so that, if we want to simulate the limit amplitude
standing waves, the simulation without using regridding may be required.

When the initial wave profile was set as Fig. 1, that is, when the center dis-
placement of the free surface from the still water surface at ¢ = 0: 1(0,0) is
at the highest and n(m,0),n(—m,0) are at the lowest, and LASW is simulated
without using regridding, projection-like profiles appear at the end of the free
surface as shown in Fig. 4 and 5. These projection-like profiles are not physical
and indicate numerical error, and that causes the simulation to break down.

Then, we consider two initial wave profiles. For the first profile, (0,0) is at
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Fig. 7. Evolution of the wave profile. The initial amplitude of the free surface is set
to no_shift of Fig. 6.

the highest and n(m,0),n(—m,0) are at the lowest (no_shift), for the second,
n(0,0) is at the lowest and n(m,0), n(—m,0) are at the highest (half_shift) (see
Fig. 6). In both cases, 63 nodes were placed on the free surface.

When the initial wave profile is set to no_shift of Fig. 6, the evolution of the
free surface is as shown in Fig. 7. This simulation fails before half the period
of oscillation, and nodes are found to concentrate towards the end of the free
surface.

When the initial wave profile is set to half_shift of Fig. 6, the evolution of the
free surface is as shown in Fig. 8. Different from the simulation of no_shift,
this simulation does not fail, and the nodes do not concentrate towards the

10
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Fig. 8. Evolution of the wave profile. The initial amplitude of the free surface is set
to half_shift of Fig. 6.

end of the free surface.

Therefore, shifting the initial wave profile by half the wave length prevents the
concentration of nodes at the end of the free surface. This, in turn, enables us
to avoid the formation of projection-like profiles, and renders the simulation
without regridding feasible.

4.8 Simulation of excited standing waves

1D
In this part, we excite the LASW with A, = ——% = 0.85 in the vertical
g

direction and make the LASW’s amplitude larger and larger. The initial wave
profile was set to the half _shift given in Fig. 6, and discontinuous elements were
used. The oscillating amplitude was d = 0.01[m]. Since the depth of the vessel
h is sufficiently large, the angular frequency w of the free surface obtained
from linear analysis is /g[1/s]. According to Mathieu’s theory [1][7][13], when
the angular frequency of the forced vertical oscillation is set to twice of w, the
amplitude of the standing waves becomes larger and larger. The oscillation is
represented as follows:

g(t) = g + d(2w)?sin(2wt) [m/s?]. (16)
Fig. 9 shows the evolution of A, of the acceleration of 7(0,¢) normalized by g,
using regridding. Two cases are shown. Namely, the case when 127 nodes and

251 nodes were placed on the free surface, respectively. The results for both
cases are clearly different and there are some disturbances.

11
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Fig. 9. Evolution of the amplitude of the crest acceleration normalized by the grav-
itational acceleration (A.). The case with 127 nodes and 251 nodes on the free
surface are shown, respectively. In each case, regridding was used.
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Fig. 10. Evolution of the amplitude of the crest acceleration normalized by gravita-
tional acceleration (A.). The case with 127 nodes and 251 nodes on the free surface
are shown, respectively. In each case, regridding was not used.

Fig. 10 shows the evolution of A. without using regridding. Two cases are
shown. Namely, the case when 127 nodes and 251 nodes were placed on the free
surface, respectively. The results for both cases are close, and the disturbances
seen in Fig. 9 have diminished.

As a result, in order to simulate the limit LASW, we recommend that re-

gridding should not be used. Spline interpolation in the regridding procedure
might be causing the disturbances.

12



5 The RIG method

If we want to simulate not only standing waves but more general waves like
transient waves, regridding may be required. But regridding with simple spline
interpolation gives rise to numerical error.

In this part, we propose a method called “RIG” in order to make the wave
simulation more accurate. The idea is based on [9][12]. The basic idea is as
follows. First, the velocity potential is expanded using the basic functions
which satisfy the Laplace’s equation. Then, these coefficients are corrected to
satisfy Bernoulli’s equation rigorously.

5.1 The RIG algorithm

The position of the node 7 on the free surface is (z;,y;)", and the velocity
potential of the node ¢ is ¢;. The number of nodes on the free surface is f.
The following algorithm gives the time evolution from ¢ to ¢ + At.

Assume that at time ¢, z;,y;, ¢; (1 = 1,2,..., f) satisfy Bernoulli’s equation
(8) rigorously.

(1) Using a time evolution scheme such as in 3.1, compute x;,y;, ¢; (i =
1,2,...,f) at t + At.

(2) Regrid the free surface so that x; remains the same for each node i (i =
1,2,..., f). Update y; and ¢; (i = 1,2,..., f) using interpolation.

(3) Using the expansion of the velocity potential [4][12]:

B Fmax L cosh k(y + h)
oo y)= 2 cosh(kh)

k=0

cos(kx), (17)

where k.. 1S the truncation number of the summation and

Ar (k= 0,1,...,kmax—1) are the coefficients of the expansion, deter-
mine A, (k=0,1,..., knax_1) from x;,y;, ¢;, (i =1,2,..., f) using the
least square method. The appropriate value for k.., requires trial and

f+1

error. Here, we set it to . The expansion (17) is derived from the

Laplace’s equation: A¢ = 0 and the bottom and wall boundary condi-
0

tions: — = 0.
on

(4) Execute the convergence computation with respect to y; (i = 1,2,..., f)
using the Newton method and Bernoulli’s equation as follows.

13



fori=1to f
while y; converges do
it 5(82+ ) +gy
Dty + PoPuy — PyPus + 9

Yi < Yi

In order to calculate ¢, the time derivative of Ay (k =0,1,..., kmax_1)
are required. To calculate the time derivative of A;, we must store the
Ak (k=0,1,..., knax_1) of the previous time steps, and approximate as
follows,

dA, N 1114§c — 18A';€*At 4 9A1]t;2At _ QAzigAt

18

dt 6AL (18)

(5) When y; (i = 1,2,..., f) converge, compute ¢; (i = 1,2,..., f) using Eq.
(17).

(6) The free surface should also satisfy the material derivative of Bernoulli’s
equation,

Gut + 201000 + 2010y + 200y udy + buu(Bs — ) + gy, = 0. (19)

2
ks approximated by

In order to compute Eq. (19),

de?
dPAp 245 — DA H4A7 — A %0
dez "~ (At)2 ' (20)

The left hand side of Eq. (19) is written as DPDT(x;,y;, {Ax}) for
brevity. This is a function of z;, y; and {Ax} = {Ao, A1, Ao, ..., Ak, }-
Then, {Ax} are determined using Newton’s method, so that, for each
node ¢t = 1,2, ..., knax, DPDT is sufficiently close to 0. To do so, the
Jacobian matrix J = (J;;) (¢,7 = 1,2, ..., kmax) is required, where

O(DPDT (z;,y;, {Ar}))
0A; '

Jij = (21)
Since it is complicating to compute the Jacobian matrix analytically, .J;;
is approximated by

 DPDT(xi,y;, {Ax} + ) — DPDT (wi, yi, {Ax})

B )
J £

(22)

where {Ak} +€e= {AU, ceey Aj,Q, Aj,1 + €, Aj, ceey Akmax—l} and € = 1075,
Then, execute Newton’s method as follows.

14



until DPDT converges to 0 at every node ¢
Ao Ao DPDT (w1, y1, {Ax})

Al Al DPDT(x%yZa{Ak})

Apoi—1 Akt DPDT (x,..., Ykwoor {A%})

When the free surface is symmetric with respect to the y-axis and
| fH1
2

kmax = , the above Newton’s method can be executed.

(7) If the convergence is sufficient in the steps (4) and (6), go to the step (8),
otherwise go to step (4).
(8) t 1t + At

5.2 Verification of the RIG method

Here, we compare results using RIG with results obtained without RIG. The
initial wave profile is given by n(z,0) = 0.1cosz with At fixed. The time
evolution scheme based on Taylor expansion was used.

Fig. 11 shows the fluctuation of the total volume. Four cases are shown.
Namely, the case when using RIG with At = 0.01[s] (RIG, dt=0.01), when
using RIG with At = 0.001[s| (RIG, dt=0.001), when not using RIG with
At = 0.01[s] (noRIG, dt=0.01), and when not using RIG with At = 0.001]s]
(noRIG, dt=0.001). 19 nodes were placed on the free surface and 9 nodes on
the left and the right wall of the vessel, respectively, and 19 nodes on the
bottom line of the vessel. The depth of the vessel is h = 7[m]. It is observed
in this figure that when using RIG, the fluctuation of volume is smaller than
when RIG was not used.

Similarly, Fig. 12 shows the fluctuation of energy. It is observed that when us-
ing RIG, the fluctuation is lager than when RIG was not used. However, when
using RIG, the fluctuation has neither an increasing trend nor a decreasing
trend.

5.8 Simulation of excited standing waves using RIG

Next, using the RIG method, we will simulate the behavior of standing waves
when they are excited in the vertical direction so that the amplitude of the

15
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Fig. 11. Evolution of the fluctuation of the volume when the initial amplitude of the
free surface is given by n(z,0) = 0.1cos z. Four cases are shown: using RIG with
At = 0.01[s] (RIG, dt=0.01), using RIG with At = 0.001[s] (RIG, dt=0.001), not us-
ing RIG with At = 0.01[s] (noRIG, dt=0.01), and not using RIG with At = 0.001[s]
(noRIG, dt=0.001). 19 nodes were placed on the free surface.
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Fig. 12. Evolution of the fluctuation of energy when the initial amplitude of the
free surface is given by n(z,0) = 0.1cos z. Four cases are shown: using RIG with
At = 0.01[s] (RIG, dt=0.01), using RIG with At = 0.001[s] (RIG, dt=0.001), not us-
ing RIG with At = 0.01[s] (noRIG, dt=0.01), and not using RIG with At = 0.001[s]
(noRIG, dt=0.001). 19 nodes were placed on the free surface.

waves become larger and larger.
The initial wave profile is set to n(z,0) = 0.1cosz. The waves are excited

intermittently with a period of four seconds. Thus, the commencement of
each excitation ty is 45 (j = 0,1,2,...). For a example, we excite during

16



0<t< K, 4<t<4+ K, 8<t<8+K,...and we do not excite during
K<t<4,44+4K<t<88+K<t<12,...

The gravitational acceleration, which is a function of time ¢(¢), is given by

+ d(2w)? LK 6in(2wT) (0 < T < K),
g (K <T <4),

where g = 9.8]m/s?], |d| = 0.01[m]. The sign of d is determined so as not to
decrease the energy of the wave. w is the angular frequency of the free surface,

T : :
and K = — X 2[s]. T =t — tg is the time from the most recent commence-
w

T(T — K)?

ment of excitation. is introduced for the smooth shifting from

the excitation period to the non-excitation period and vice versa.

63 nodes were placed on the free surface and the time evolution scheme based
on Taylor expansion was used. At was fixed at 0.01[s]. RIG was used.

Fig. 13 shows the evolution of 7(0,¢). It is observed that the simulation fails
before max{n} > 0.3 [m]. In the RIG algorithm, higher order approximations:

dA, . 137AL 300412 4300A4L 2Af 2004l B4 47541 T8 194! 75A 924
e ™~ 60A¢ ’ (24)

d2A, . 4BAL—154A17 M 42144572 156 AL 61411 104,52
ez ™ 12(At)? ’

(25)

were used instead of Eqgs. (18), (20) in order to obtain better results.

The reason why the simulation fails might be due to the inaccuracy of the
approximation of time derivatives of the velocity potential ¢y, ¢y, etc.

6 Simulation of large amplitude cosine wave

Using the simulation method of this paper, transient standing waves can be
simulated. For example, the large amplitude cosine wave is simulated in this
section. The initial wave profile is given by n(x,0) = —0.5 cos z. No excitation
is applied. Discontinuous elements were used at the wall-free surface interface
in BEM. The time evolution scheme based on Taylor expansion was used. RIG
was not used. 59 nodes were placed on the free surface, and regridding was
not used.

17



0.6 RIG —— b

eta(0,t)

O 4

-0.1 F o

0 20pi  40pi  60pi  80pi  100pi 120pi 140pi
tinme
Fig. 13. Evolution of n(0,¢) for the case when the initial amplitude of the free

surface is set to n(z,0) = 0.1cosz and RIG is used. The rectangular vessel is
excited intermittently in the vertical direction.

Fig. 14 shows the wave profile at ¢ =0, 0.0659, 0.352, 0.414, 0.486, 0.589 [s],
from top to bottom, and then left to right, respectively. Fig. 15 shows the
wave profile at ¢ =0.786, 1.07, 1.38, 1.65, 1.92, 2.10 [s], from top to bottom,
and then left to right, respectively. The last figure of Fig. 15 shows that the
free surface has a very sharp profile. Therefore, we cannot simulate beyond
this point. In this case, regridding along the free surface may be necessary.

7 Conclusions

In this paper, large amplitude standing waves (LASW) in a vessel were simu-
lated directly using the boundary element method (BEM). In the simulation,
two problems occurred. The first problem was that when double nodes were
used at corner nodes where the free surface meets the walls of the vessel, the
total energy tended to increase gradually. The second problem was that when
not using regridding, projection-like profiles appeared at the end of the free
surface which caused the simulation to break down.

The following methods were proposed to overcome these problems. By using
discontinuous boundary elements at the corner nodes, the gradual increase of
the energy was avoided. By setting the initial wave profile so that the lowest
point was at the middle and the highest point at the ends of the free surface,
the nodes on the free surface did not concentrate at the ends of the free
surface, whereas when the initial wave profile has the lowest point at the ends
of the free surface and the highest point at the middle of the free surface, the
nodes on the free surface concentrated at the ends of the free surface causing

18
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Fig. 14. Time evolution of the free surface from top to bottom, and then left to
right. The initial amplitude of the free surface is given by n(x,0) = —0.5 cos .

projection-like profiles and the simulation to break down.

Hence, the treatment of corner nodes where the free surface meets the vessel
is very significant for the stable simulation of LASW.

Simulating without regridding is important when simulating limit amplitude
standing waves. However, for situations where regridding is required, we pro-
posed the simulation method RIG, for simulating the free surface with high
accuracy. However, RIG still has some problems when simulating LASW. In
order to investigate this problem of RIG, validated computation using interval
arithmetic may be required.
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Fig. 15. Time evolution of the free surface from top to bottom, and then left to
right. The initial amplitude of the free surface is given by n(x,0) = —0.5 cos .

Finally, the large amplitude cosine wave was simulated without regridding.
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