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Abstract

Consider applying the Conjugate Residual (CR) method, which is a
Krylov subspace type iterative solver, to systems of linear equations Ax = b
or least squares problems min

x∈Rn
‖b − Ax‖2, where A is singular and nonsym-

metric.
We will show that when R(A)⊥ = ker A, the CR method can be decom-

posed into the R(A) and ker A components, and the necessary and sufficient
condition for the CR method to converge to the least squares solution with-
out breaking down for arbitrary b and initial approximate solution x0, is
that the symmetric part M(A) of A is semi-definite and rank M(A) = rankA.
Furthermore, when x0 ∈ R(A), the approximate solution converges to the
pseudo inverse solution.

Next, we will also derive the necessary and sufficient condition for the CR
method to converge to the least squares solution without breaking down for
arbitrary initial approximate solutions, for the case when R(A)⊕ker A = Rn

and b ∈ R(A).
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1 Introduction

Consider the system of simultaneous linear equations

Ax = b, (1.1)

where A ∈ Rn×n, x, b ∈ Rn, which arises, for instance, in the discrete
approximation of partial differential equations.

When A is nonsymmetric, there are Krylov subspace type iterative solvers
for (1.1) based on biorthogonality, such as the Bi-CG[4] and Bi-CGSTAB[8]
methods. There are also methods based on minimizing the residual r =
b −Ax, such as the Conjugate Residual (CR) method[3], Generalized Con-
jugate Residual (GCR) method[3] and Generalized Minimum Residual (GM-
RES) method[7]. When the coefficient matrix A is regular, the behaviour of
these methods is well understood[3, 6, 7].

On the other hand, in the discrete approximation of partial differen-
tial equations, the coefficient matrix of the resulting system of linear equa-
tions may be singular, depending on the boundary condition, for instance,
when Neumann boundary conditions are imposed on the whole boundary.
The computation of stationary probability vectors of stochastic matrices in
the analysis of queuing networks also gives rise to singular systems[5]. For
such singular systems, the system (1.1) may not always have a solution,
so it is generally more appropriate to consider the least squares problem
min
x∈Rn

‖b − Ax‖2.

When the system is singular, methods based on biorthogonality may
diverge, and one has to modify the system in order to guarantee conver-
gence. On the other hand, for methods based on minimizing the residual,
by principle, the residual is expected to decrease monotonically without such
modifications[1].

There are studies on the behaviour of methods based on residual min-
imization for singular systems, such as [2] for the GMRES method, [9] for
the Orthomin(k) method, and [1] for the CR method. In this paper, we will
modify and extend the analysis of the CR method for singular systems done
in [1].

The following notations will be used.
V ⊥: Orthogonal complement of subspace V of Rn.
V ⊕ W : The direct sum of subspace V and subspace W .

For X ∈ Rn×n,
R(X): the range space of X, i.e. the subspace spanned by the
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column vectors of X,
kerX: the kernel of X, i.e. the subspace of vectors v ∈ Rn such

that Xv = 0,

M(X) :=
X + XT

2
: the symmetric part of X,

λmin(X): the eigenvalue of X with minimum absolute value,
λ+

min(X): the nonzero eigenvalue of X with minimum absolute
value,

λmax(X): the eigenvalue of X with maximum absolute value.

2 The CR method and its convergence for regular

systems

For the system of linear equations

Ax = b, (2.1)

where A is a real and regular (but not necessarily symmetric) n×n matrix,
b ∈ Rn is the right hand side, and x ∈ Rn is the solution, the CR method[3]
is given as follows.

The CR method

Choose x0.
r0 = b − Ax0

p0 = r0

For i = 0, 1, . . . until the residual (r) converges, do

αi =
(ri, Api)

(Api, Api)

xi+1 = xi + αi pi

ri+1 = ri − αiApi

βi = −(Ari+1, Api)
(Api, Api)

pi+1 = ri+1 + βi pi .
(2.2)

First, note the following.
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Lemma 2.1 If the symmetric part M(A) of a matrix A is definite, then the
matrix A is regular. �

Theorem 2.2 [3, 6] If the symmetric part M(A) of A is definite, either
of the following holds.

1. There exists l ≥ 0, such that pi �= 0 (0 ≤ i < l) and rl = 0. Further,
for 0 ≤ i < l,

‖ri+1‖2
2

‖ri‖2
2 ≤ 1 − {λmin(M(A))}2

λmax(ATA)
(2.3)

holds.

2. For all i ≥ 0, pi �= 0, ri �= 0 and (2.3) hold. �

Lemma 2.3 M(A) :=
A + AT

2
is not definite =⇒ ∃v �= 0 ; (v, Av) = 0.

�

From Theorem 2.2 and Lemma 2.3, we obtain the following theorem.

Theorem 2.4 [1] If A is regular, C1–C3 are equivalent.

(C1) For arbitrary x0, the CR method converges without breakdown.

(C2) For arbitrary x0, the CR method does not break down.

(C3) The symmetric part M(A) of A is definite. �

Here, ‘breakdown’ refers to the situation where the denominator (Api, Api)
of αi in the CR method becomes 0 and it becomes impossible to continue
the computation.

3 The convergence of the CR method for singular

systems

3.1 Decomposition of the CR method

Next, modifying the arguments in [1], we will consider the convergence of
the CR method for the least squares problem

min
x∈Rn

‖b − Ax‖2 , (3.1)
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where A is an n × n matrix which is not necessarily regular and b ∈ Rn.
In the following, let rankA = dim R(A) = r > 0, and

q1, · · · ,qr: the orthonormal basis of R(A),
qr+1, · · · ,qn: the orthonormal basis of R(A)⊥,
Q1 := [q1, · · · ,qr] : n × r matrix,
Q2 := [qr+1, · · · ,qn] : n × (n − r) matrix,
Q := [Q1, Q2] : n × n orthogonal matrix.

Hence, QTQ = QQT = In (In : identity matrix of order n).

(3.2)

Then, the orthogonal transformation of A gives

QTAQ =

[
Q1

TAQ1 Q1
TAQ2

0 0

]
=

[
A11 A12

0 0

]
,

and the following hold.

Theorem 3.1 A11 = Q1
TAQ1 : regular ⇐⇒ R(A)⊥ ⊕ kerA = Rn. �

Theorem 3.2 A12 = Q1
TAQ2 = 0 ⇐⇒ R(A)⊥ = ker A . �

Corollary 3.3 R(A)⊥ = ker A =⇒ A11: regular . �

Lemma 3.4 R(A)⊥ = ker AT . �

Lemma 3.5 The following (1), (2), (3), (4) are equivalent.
(1)R(A)⊥ = kerA ,
(2)A12 = 0 ,
(3) ker AT = ker A ,
(4)R(AT) = R(A) . �

Hence, if and only if R(A)⊥ = kerA holds,

Ã = QTAQ =

[
A11 0
0 0

]
(3.3)

holds. Then, A11 = Q1
TAQ1 is regular.
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Using (3.2), the vectors x,p, b, r (the subscripts are abbreviated) used
in the CR method (2.2) can be decomposed in to the R(A) component and
the R(A)⊥ = kerA component as

x̃ = QTx =

[
Q1

Tx

Q2
Tx

]
=

[
x1

x2

]
, p̃ = QTp =

[
Q1

Tp

Q2
Tp

]
=

[
p1

p2

]
,

(3.4)

b̃ = QTb =

[
Q1

Tb

Q2
Tb

]
=

[
b1

b2

]
, r̃ = QTr =

[
Q1

Tr

Q2
Tr

]
=

[
r1

r2

]
.

(3.5)
Then, under the condition: R(A)⊥ = ker A, the CR method can be de-

composed into the R(A) component and the ker A component as follows.

The decomposed CR method

Choosex0

R(A) component ker A component

b1 = Q1
Tb b2 = Q2

Tb

x1
0 = Q1

Tx0 x2
0 = Q2

Tx0

r1
0 = b1 − A11x

1
0 r2

0 = b2

p1
0 = r1

0 p2
0 = b2

For i = 0, 1, . . . until the R(A) component (r1) of the residual converges, do

αi = (r1
i , A11p

1
i )

(A11p
1
i , A11p

1
i )

x1
i+1 = x1

i + αip
1
i x2

i+1 = x2
i + αip

2
i

r1
i+1 = r1

i − αiA11p
1
i r2

i+1 = b2

βi = −(A11r
1
i+1, A11p

1
i )

(A11p
1
i , A11p

1
i )

p1
i+1 = r1

i+1 + βip
1
i p2

i+1 = b2 + βip
2
i .

(3.6)
The R(A) component of the above algorithm can be regarded as the CR

method applied to the system of linear equations A11x
1 = b1. Hence, from

Theorem 2.2, we obtain the following lemma.

Lemma 3.6 If the symmetric part M(A11) of A11 = Q1
TAQ1 is definite,

either of the following holds.
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1. There exists l ≥ 0, such that p1
i �= 0 (0 ≤ i < l), r1

l = 0. Further, for
0 ≤ i < l,

‖r1
i+1‖2

2

‖r1
i ‖2

2 ≤ 1 − {λmin(M(A11))}2

λmax(AT
11A11)

(3.7)

holds.

2. For all i ≥ 0, p1
i �= 0, r1

i �= 0 and (3.7) hold. �

3.2 Convergence theorem for the case R(A)⊥ = ker A

Next, we extend Lemma 3.6 to obtain the convergence theorem for the CR
method for singular systems, similarly to [1], but with modifications. First
note the following.

Lemma 3.7 If R(A)⊥ = kerA, then v1 := Q1
Tv = 0 ⇐⇒ Av = 0 . �

Lemma 3.8 If R(A)⊥ = kerA, and M(A11) is regular,
then λmin(M(A11)) = λ+

min(M(A)) . �

Lemma 3.9 If R(A)⊥ = kerA, then
M(A11) : definite ⇐⇒ ‘M(A) : semi-definite, rank M(A) = rankA ’. �

Lemma 3.10 If R(A)⊥ = ker A, then λmax(A11
TA11) = λmax(ATA) . �

From Lemmas 3.6, 3.7, 3.8 and 3.10, we obtain the following theorem.

Theorem 3.11 If R(A)⊥ = ker A, and the symmetric part M(A11) of
A11 := Q1

TAQ1 is definite, either of the following holds.

1. There exists l ≥ 0 such that, Api �= 0 (0 ≤ i < l) and Arl = 0. This
means that the least squares solution has been obtained. Further, for
0 ≤ i < l,

‖ri+1‖2
2 − min

x∈Rn
‖b − Ax‖2

2

‖ri‖2
2 − min

x∈Rn
‖b − Ax‖2

2 ≤ 1 − {λ+
min(M(A))}2

λmax(ATA)
(3.8)

holds.

2. For all i ≥ 0, Api �= 0, Ari �= 0 and (3.8) hold. �
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Further, from Lemma 2.3 and Theorem 3.11, we obtain the following
theorem.

Theorem 3.12 If R(A)⊥ = ker A, C1–C4 are equivalent.

(C1) For arbitrary x0 , the CR method does not break down,
and the R(A) component of the residual converges to 0.

(C2) For arbitrary x0 , the CR method does not break down.

(C3) The symmetric part M(A11) of A11 := Q1
TAQ1 is definite.

(C4) M(A) is semi-definite and rank M(A) = rankA. �

As to where the approximate solution of the CR method converges, the
following theorem holds.

Theorem 3.13 If R(A)⊥ = ker A and the R(A) component of the resid-
ual converges to 0 (least squares solution), the R(A) component x1

i of the
approximate solution xi converges to A11

−1b1.
Moreover, if b ∈ R(A), the kerA component x2

i of xi is always equal to
x2

0. Then, the approximate solution xi converges to
Q1A11

−1QT
1 b + Q2Q

T
2 x0.

Further, if the ker A component of x0: x2
0 = 0 (i.e. x0 ∈ R(A)), xi

converges to the least squares solution with minimum norm (pseudo inverse
solution) Q1A

−1
11 QT

1 b.
(Here, A11 := QT

1 AQ1, b1 := QT
1 b, x2

0 := QT
2 x0, where x0 is the initial

approximate solution.) �

As an example, consider the ordinary differential equation

d2u

dx2
+ β

du

dx
= f(x) ( 0 < x < 1 ) (3.9)

with periodic boundary condition: u(0) = u(1). The singular system of
linear equations obtained by discretizing this problem using an equi-distant
central finite difference scheme satisfies R(A)⊥ = kerA and the condition
(C4) in the above theorem. Further, if the source term f is appropriately
chosen, b ∈ R(A) will also be satisfied.
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3.3 Convergence theorem for the case R(A)⊥ �= ker A

Next, as an extension of [1], we consider the case when R(A)⊥ �= ker A. In
this case, from Theorem 3.2, A12 = 0 does not hold even when the orthogonal
transformation QTAQ is used. Thus, the CR method cannot be decomposed
into the R(A) and R(A)⊥ components even if the transformation QTAQ is
used.

Hence, for the general case when R(A)⊥ = kerA does not necessarily
hold, besides Q = [Q1, Q2], let

u1, · · · ,ur : orthonormal basis of (ker A)⊥,
ur+1, · · · ,un : orthonormal basis of kerA,
U1 := [u1, · · · ,ur] : n × r matrix,
U2 := [ur+1, · · · ,un] : n × (n − r) matrix,
U := [U1, U2] : n × n orthogonal matrix.

(Note that dim(ker A)⊥ = dimR(A) = r, from the dimension theorem.)
Then, we have

Lemma 3.14

Ã′ := QTAU =

[
Q1

TAU1 0
0 0

]
. �

Lemma 3.15 A′
11 := Q1

TAU1 is a r × r regular matrix. �

Thus, let the vectors b and r used in the CR method (2.2) be decomposed
into the R(A) and R(A)⊥ components as in (3.5). On the other hand, let x
and p be decomposed into the (ker A)⊥ and ker A components as

x̃ = UTx =

[
U1

Tx

U2
Tx

]
=

[
x1

x2

]
, p̃ = UTp =

[
U1

Tp

U2
Tp

]
=

[
p1

p2

]
.

(3.10)
Then, the CR method can be partially decomposed as follows.
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Partially decomposed CR method
(For the general case including R(A)⊥ �= ker A.)

Choose x0.

b1 = Q1
Tb b2 = Q2

Tb

x1
0 = U1

Tx0 x2
0 = U2

Tx0

r1
0 = b1 − A′

11x
1
0 r2

0 = b2

p1
0 = U1

T(Q1r
1
0 + Q2b

2) p2
0 = U2

T(Q1r
1
0 + Q2b

2)

For i = 0, 1, . . . until the R(A) component (r1) of the residual converges, do

αi = (r1
i , A′

11p
1
i )

(A′
11p

1
i , A′

11p
1
i )

x1
i+1 = x1

i + αip
1
i x2

i+1 = x2
i + αip

2
i

r1
i+1 = r1

i − αiA
′
11p

1
i r2

i+1 = b2

βi = −(A′
11U1

T(Q1r
1
i+1 + Q2b

2), A′
11p

1
i )

(A′
11p

1
i , A′

11p
1
i )

p1
i+1 = U1

T(Q1r
1
i+1 + Q2b

2) + βip
1
i p2

i+1 = U2
T(Q1r

1
i+1 + Q2b

2) + βip
2
i

(3.11)

In the left side of the above algorithm, there are terms involving b2 in the
computation of βi and p1

i+1, which makes the algorithm complex and not
completely decomposed. However, if we consider the case when b ∈ R(A),
then we have b2 = Q2

Tb = 0, and the algorithm becomes more decomposed
and simple.

Now note the following Lemma.

Lemma 3.16 U1
TQ1 : regular ⇐⇒ R(A)⊥ ⊕ ker A = Rn . �

Further, in order to analyze the convergence of the decomposed al-
gorithm, let us concentrate on the left side of the above algorithm, and
for simplicity redefine A := A′

11 = Q1
TAU1, B := U1

TQ1 ∈ Rr×r and
x := x1, p := p1, r := r1 ∈ Rr. Then, we have the following.

Lemma 3.17
(1) (Api, Api−1) = 0 (i ≥ 1),
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(2) (Api, Api) ≤ (ABri, ABri) (i ≥ 0),
(3) (ri, Api−1) = 0 (i ≥ 1),
(4) (ri, Api) = (ri, ABri) (i ≥ 0). �

Lemma 3.18

‖ri+1‖2
2

‖ri‖2
2 ≤ 1 −

{
(ri, Cri)
(ri, ri)

}2 (ri, ri)
(Cri, Cri)

,

where C := AB. �

Lemma 3.19

‖ri+1‖2
2

‖ri‖2
2 ≤ 1 − λmin(M)2

λmax(CTC)
,

where M :=
C + CT

2
. �

From the above, we obtain the following convergence theorem of the CR
method for the case R(A) ⊕ ker A = Rn, b ∈ R(A). (Note that,
M(C): definite =⇒ C : regular =⇒ B : regular ⇐⇒ R(A) ⊕ ker A = Rn.)

Theorem 3.20 Let A′
11 = Q1

TAU1, B := U1
TQ1, C := A′

11B,

M(C) :=
C + CT

2
. Then, if M(C) is definite and b ∈ R(A), either of the

following holds for the partially decomposed CR method (3.11).

1. There exists l ≥ 0 such that, p1
i �= 0 (0 ≤ i < l) and r1

l = 0 . Further,
for 0 ≤ i < l,

‖r1
i+1‖2

2

‖r1
i ‖2

2 ≤ 1 − {λmin(M(C))}2

λmax(CTC)
(3.12)

holds.

2. For all i ≥ 0, p1
i �= 0, r1

i �= 0 and (3.12) hold. �

Finally, we obtain the following convergence theorem for singular sys-
tems.

Theorem 3.21 If R(A) ⊕ ker A = Rn and b ∈ R(A) hold, C1–C3 are
equivalent.
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(C1) For arbitrary x0 , the CR method does not break down,
and the R(A) component of the residual converges to 0.

(C2) For arbitrary x0 , the CR method does not break down.

(C3) M(C) is definite,

where M(C) :=
C + CT

2
, C := A′

11B, A′
11 = Q1

TAU1, B := U1
TQ1.

�

[Remark] When R(A)⊥ = ker A, we can take U1 = Q1. Then, B =
UT

1 Q1 = QT
1 Q1 = Ir, where Ir is the r × r identity matrix. Moreover,

A′
11 = UT

1 AQ1 = QT
1 AQ1 = A11, C = A′

11B = A11, M(C) = M(A11).

Note that if R(A) ⊕ ker A = Rn and b ∈ R(A) hold, and the R(A)
component of the residual converges to 0 in the CR method, according to
the partially decomposed CR method ( 3.11 ) and Theorems 3.20, 3.21, the
(ker A)⊥ component x1

i of the approximate solution converges to A′
11

−1b1.
As an example, consider the ordinary differential equation (3.9) with

Neumann boundary conditions at both ends:
du

dx

∣∣∣∣
x=0

=
du

dx

∣∣∣∣
x=1

= 0. Un-

like the case for the periodic boundary condition, the singular system of
equations obtained by equi-spaced central finite difference discretization of
the problem does not satisfy the condition R(A)⊥ = ker A. However, the
system does satisfy the condition R(A)⊕ ker A = Rn in the above theorem,
and when the source term f is appropriately chosen, the condition b ∈ R(A)
can also be satisfied. It is not easy to check whether the condition (C3) is
satisfied in the general case, but for instance when the number of finite
difference nodes is 3, it can be shown that M(C) is negative-definite.

3.4 Summary of the convergence theorems

Finally, a summary of the theorems obtained on the convergence of the
conjugate residual method for singular systems is given.

First, the inclusion relationship of the set of n × n real matrices A is
given by

Rn×n ⊃ {A ∈ Rn×n|R(A) ⊕ ker(A) = Rn} ⊃ {A ∈ Rn×n|R(A)⊥ = ker A},
and the following hold.

R(A)⊕ker(A) = Rn ⇐⇒ B := UT
1 Q1 : regular ⇐⇒ A11 := QT

1 AQ1 : regular.
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R(A)⊥ = kerA ⇐⇒ A12 = 0.

Next, since M(C) : definite =⇒ C : regular =⇒ B : regular, we have
M(C) : definite =⇒ R(A) ⊕ ker(A) = Rn. Hence,

{A ∈ Rn×n|M(C) : definite} ⊂ {A ∈ Rn×n|R(A) ⊕ ker(A) = Rn}.

Regarding convergence, if R(A)⊥ = kerA, the symmetric part M(A) of
A is semi-definite, and rank M(A) = rankA, then, the CR method does not
break down for arbitrary right hand side b and initial approximate solution
x0, the R(A) component of the residual converges to 0, and the least squares
solution is obtained. Further, if b ∈ R(A), the R(A)⊥ = kerA component
of the approximate solution remains the same. Moreover, if x0 ∈ R(A),
the approximate solution converges to the least squares solution with the
minimum norm (pseudo inverse solution).

If R(A) ⊕ ker A = Rn, M(C) : definite and b ∈ R(A), the CR method
does not break down for arbitrary initial approximate solution x0, and the
R(A) component of the residual converges to 0, giving the least squares
solution.
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