

Press release: December 12, 2012

### Privacy Protection Techniques Using Differences in Human and Device Sensitivity - Protecting Photographed Subjects against Invasion of Privacy Caused by Unintentional Capture in Camera Images -

#### National Institute of Informatics Isao ECHIZEN iechizen@nii.ac.jp



### 1. Background

## 2. Proposed method

Add disturbance that prevents unintentional capture of facial images ~

- 3. Prototype privacy visor
- 4. Evaluation experiment
- 5. Summary
- 6. Demonstration





## Background

Spread of cell phones with digital camera and advances in SNSs and image search technology have created invasion of privacy problems.

### Increasing public self-disclosure through social network systems:

Image search engines, such as Google Images, can reveal when and where a photograph of a person was taken.



Invasion of privacy by unintentional capture of facial images
 has become a social problem.

# **NII** Face recognition and invasion of privacy

- Experiment using Facebook at Carnegie Mellon University (2011)
- 1 in 3 participants could be identified on basis of comparison with photograph on Facebook.
- Their personal interests and some identifying information could be determined.

### Use of facial-recognition technology in Europe (2012)

Facebook deactivated facial recognition function for European users in response to request from EU authorities anxious about privacy.

### Google Project Glass (2012)

- Apple iGlass (2012)
- -Augmented reality application comprising camera and head mounted display
- Name and affiliation can be detected in real
  - -> Identify person captured





### Face recognition leads to invasion of privacy.



### **Previous methods**

# • <u>Change coloring of face and hairstyle</u> to prevent detection of human face.

• Physically hide the face with a <u>Wearable Privacy Shell</u>.



Wearable Privacy Shells: http://www.toxel.com/tech/2011/08/20/wearable-privacy-shells/



How to camouflage yourself from facial recognition technology: http://venturebeat.com/2010/07/02/facial-recognition-camouflage/

### Hinder face-to-face communication



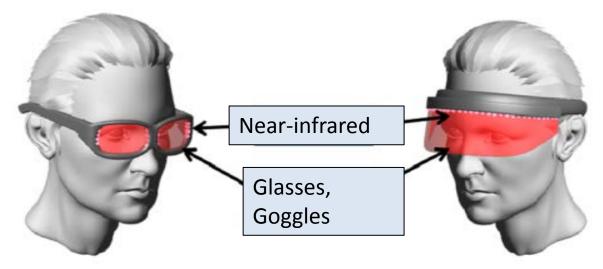
- 1. Background
- 2. Proposed method

∼Add disturbance that prevents unintentional capture of facial images ~

- 3. Prototype privacy visor
- 4. Evaluation experiment
- 5. Summary
- 6. Demonstration






### Purpose and means

### Purpose

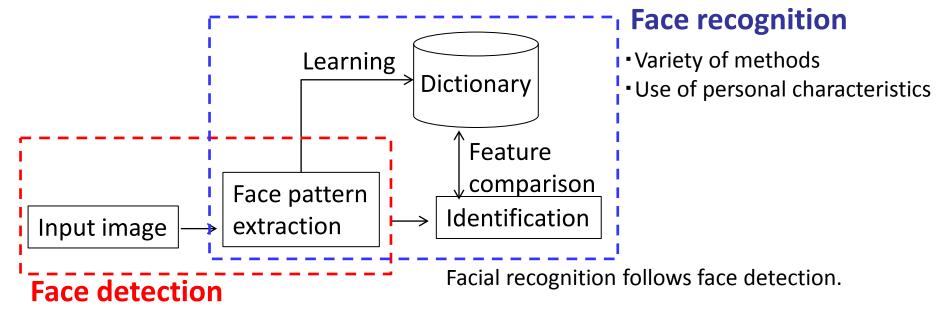
Establish a method that prevents identification of a person without causing physical discomfort.

### Means

Equip person with a unit transmitting near-infrared rays as a noise light source, which makes the face in captured images undetectable.



How should noise light source be arranged?


## **NII** Face detection and face recognition

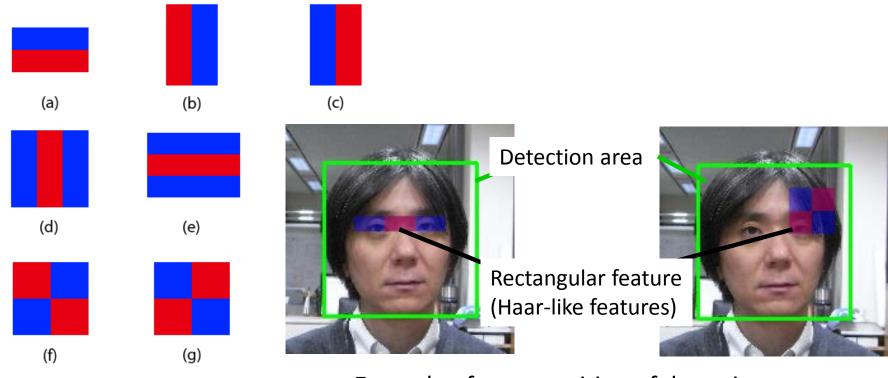
### Face detection

Detection of faces in input image

### Face recognition

Recognition of face of specific person from among detected faces



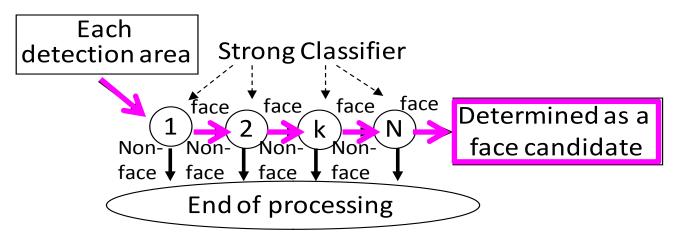

Typical technique is Viola-Jones method.

### Focusing on Viola-Jones method results in detection failure.



### Viola-Jones method

- Feature extraction using Haar-like features
- Multi-scale detection algorithm
- Constructs strong classifier with many weak classifiers (boosting)
- Achieves high-accuracy and high-speed detection




Examples of Haar-like features

Example of superposition of detection domain and rectangular feature

## Principle of Viola-Jones method

- A weak classifier compares sum of luminance in Haar-like feature with a threshold value to distinguish the feature.
- A series of strong classifiers consisting of two of more weak classifiers composes multiple stages arranged in order.
- By supervised learning, rectangular features effective for face detection are chosen.
- Composition of weak classifiers and connection order of strong classifiers are determined in advance.



#### **Face determination**

For each detection region, determine "face, non-face"; in the case of "non-face", the process ends.
In the case of "face" on the N th strong classifiers,

Processing in the area concerned ends.

## Arrangement of noise light source

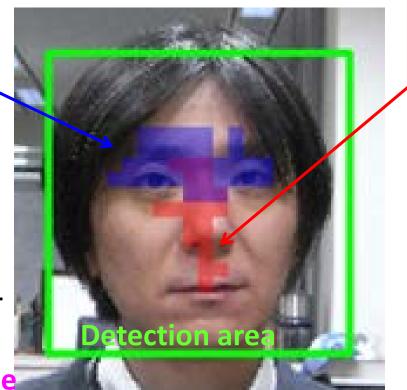
### Analysis of effective arrangement for preventing feature extraction

of Haar-like features.

Blue area: dark features → make bright so that features are obscured

Red area: bright features → made dark so that features are obscured

### Specification of arrangement


- -Use Haar-like features of boosted classifiers.
- -Calculate sum over detection area.
  - +1: value in red area
  - -1: value in blue area

### Analysis result

- Red area: Nose
- Blue area: Around eyes and around nose.

### Best arrangement of light source noise

Around eyes and around nose.





- 1. Background
- 2. Proposed method

∼Add disturbance that prevents unintentional capture of facial images ~

- 3. Prototype privacy visor
- 4. Evaluation experiment
- 5. Summary
- 6. Demonstration



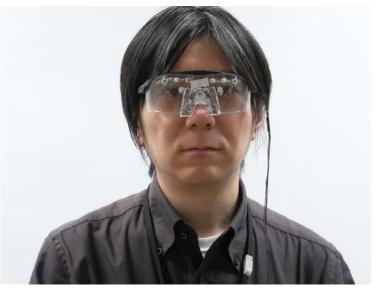


### **Privacy visor**

Eleven near-infrared LEDs were implemented in commercial goggles on basis of arrangement of noise light source.

- Around eyes: 8 LEDs
  - 6 placed on both sides of eyelids
  - 2 placed on both sides of pupils
- Around nose: 3 LEDs
  - 2 placed on both sides of nose
  - 1 placed between eyebrows.

#### Specifications of a privacy visor


| Goggles<br>Power<br>supply | IR LEDs         | Number: 11, Peak wavelength: 870 nm,<br>Radiation intensity: 600 mW/sr, Radiation<br>angle: ±15°, Rated current: 1 A, Rated<br>power consumption: 2.1 W |
|----------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Goggles         | Material frame: Plastic<br>Lens: Polycarbonate,                                                                                                         |
| IR LEDs                    | Power<br>supply | Li-Ion battery chargers (3.7V x 3)<br>2000mA/h                                                                                                          |

**Overview of privacy visor** 

Prevents face detection with almost no facial discomfort.



### Effect of wearing privacy visor





Without noise





With noise



- 1. Background
- 2. Proposed method

∼Add disturbance that prevents unintentional capture of facial images ~

- 3. Prototype privacy visor
- 4. Evaluation experiment
- 5. Summary
- 6. Demonstration





## **Evaluation experiment**

### Method

- Evaluators: 10
- Distance: 1 22 m
- Angle:  $0^\circ$ ,  $10^\circ$ ,  $20^\circ$
- Using OpenCV face
- detector (strong classifier N=20)
- Distribution of number of people detection

### Detect face using Open CV algorithm

- Detection areas that pass all strong classifiers are candidate face.
- Detection area M (size variable) is determined as shown below.

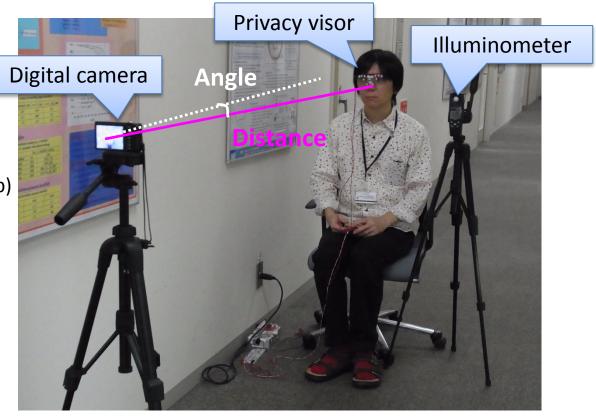


M≥2: Face detected M<2: Face not detected

M ≥ 2: Determined that there is a face  $\rightarrow$  Face is detected. M < 2: Determined that there is no face  $\rightarrow$  Face is not detected.

#### Capture conditions

| (i)   | Non-mounted privacy visor           |
|-------|-------------------------------------|
| (ii)  | Mounted privacy visor without noise |
| (iii) | Mounted privacy visor with noise    |


## **Evaluation environment**

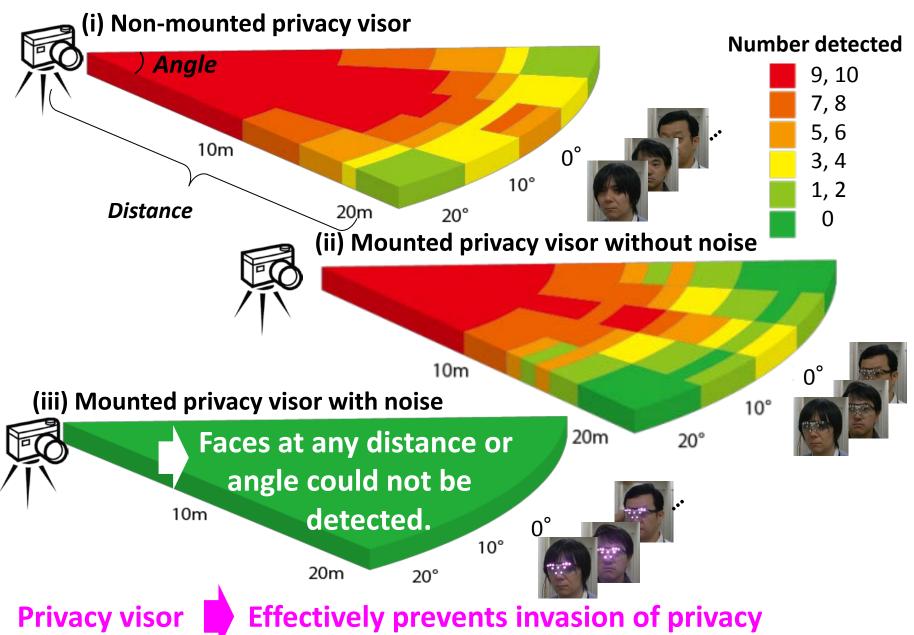
#### **Digital camera**

Manufacturer/Model: Ricoh R10 Number of pixels: 3264 x 2448 (8M) Focus: Spot AF Photometry: multi-aperture Iris: f/3.3 (automatic setup) Exposure time: 1/10 s (automatic setup)

#### **Capture environment**

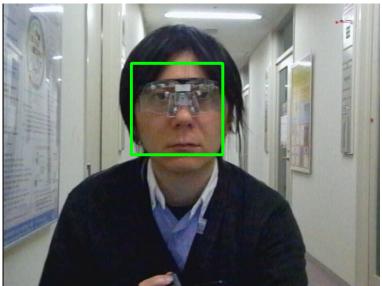
Distance: 1-22 m (1-m accuracy)Angle:  $0^{\circ}/10^{\circ}/20^{\circ}$ Lighting: Fluorescent light (67.5 Lux)

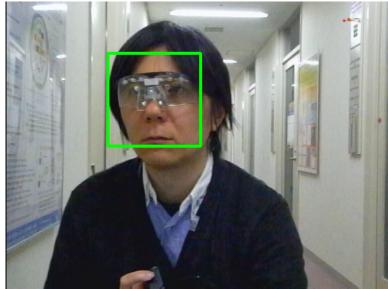



### Images of ten evaluators captured at different angles and distances.



### Image capture at 19 m





## Evaluation result (Number of people detected)



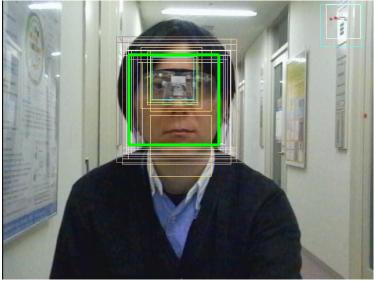
## NII

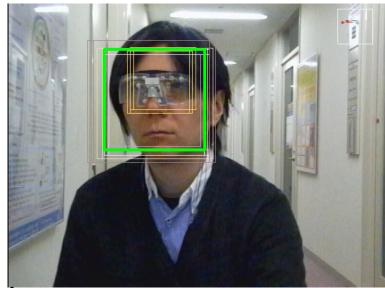
### **Detection results**



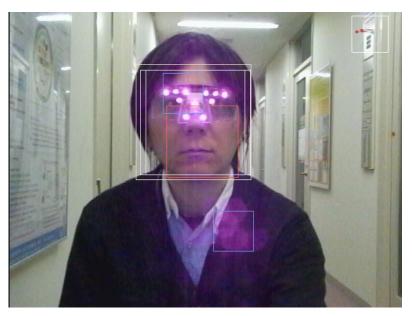


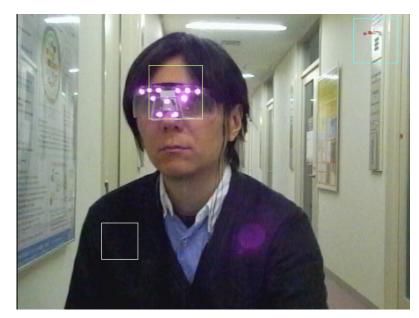
Without noise




With noise


### NII


### Detection results (detailed mode)





Without noise







- 1. Background
- 2. Proposed method

∼Add disturbance that prevents unintentional capture of facial images ~

- 3. Prototype privacy visor
- 4. Evaluation experiment
- 5. Summary
- 6. Demonstration





## Summary

 Spread of cell phones with digital camera, advances in SNSs and image search technology → Invasion of privacy

#### Previous methods

Change coloring of face and hairstyle; wear "privacy shell" → The problem which hinder face-to-face communication in physical space

### · Requirements

Prevent face detection without causing facial discomfort.

### Analyzed typical face detection method (Viola-Jones method)

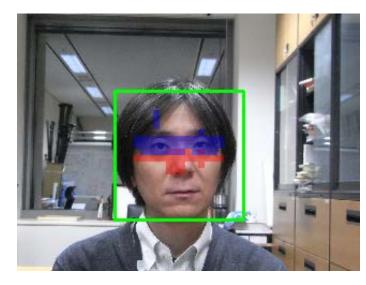
Best arrangement of light source noise  $\rightarrow$  Around eyes and around nose.

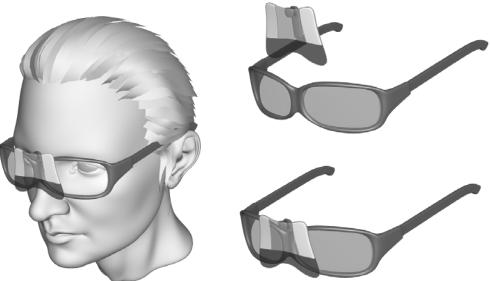
### Prototype (privacy visor)

On basis of noise light source arrangement, 11 near-infrared LEDs were implemented in commercial goggles.

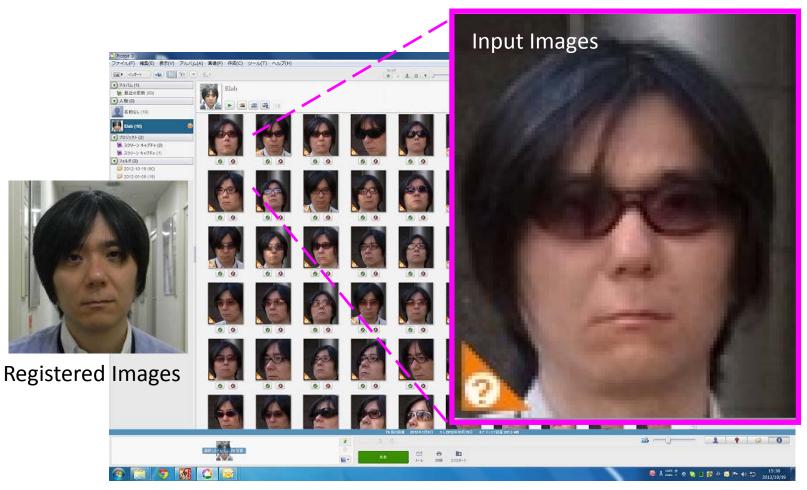
### Evaluation experiment

Attached privacy visor (with noise): Face not detected (1–22m, ±20°) **Privacy visor effectively prevents invasion of privacy.** 


### Reference: Privacy visor without power supply


#### Low luminance area

High-intensity component consisting of materials that reflect specific wavelength or full wavelength of incident radiation in fixed direction (example: optical filter)


#### High luminance area

- Low-intensity component consisting of materials that absorb specific wavelength or full wavelength of incident radiation (example: optical filter)
- Component that makes domain concerned low-intensity to the visual confirmation from more than a fixed angle and beyond a fixed distance (example: privacy filter)





## Reference: Effect of using sunglasses



Input images with person wearing five different kinds of sunglasses were all recognized using Google Picasa image management software.

### Face detection cannot be prevented with sunglasses.



- 1. Background
- 2. Proposed method

∼Add disturbance that prevents unintentional capture of facial images ~

- 3. Prototype privacy visor
- 4. Evaluation experiment
- 5. Summary
- 6. Demonstration

