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Low-rank tensor decompositions have become
valuable tools for many practical problems aris-
ing in machine learning and data mining appli-
cations concerned with higher-order data. While
much research has focused on specific methods
for decomposition, only a limited amount of at-
tention has been given to the process of locating
elements of interest from within a tensor.
Efficient strategies for identifying and extracting
targeted elements are very important in prac-
tical applications, which frequently operate on
scales at which one cannot afford the time re-
quirements associated with brute force methods.
We propose several algorithms for solving or ap-
proximating the problem of locating the k largest
elements of a tensor given only its factoriza-
tion. We provide experimental evidence that our
methods enable follow-on applications in areas
such as link prediction and recommender sys-
tems to operate at a significantly larger scale.

MoTIVATION

In virtually all practical applications of high-order
tensors, the number of elements of the tensor is
far larger than the number of objects in the data

Let X be a real-valued order-p tensor in IR "
and let k € IN. The top-k problem is to find a
set S of tensor elements whose sum Is maximal,
subject to S| = minik, 1y - - - 1.}

The provided data is modeled using a low-rank
factorization with factor matrices UY), ... UW:
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The tensor element at location (iy,...,7,) is the
inner product of the correpsonding rows of the
factor matrices:

DATA MoDEL

A clustering-based divide and conguer method
which aims to reduce the time complexity by dis-
carding as many subproblems as possible.
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Individual subproblems can either be solved ex-
actly via enumeration, or approximate using the
previously proposed heuristic.

IMPORTANCE OF SCALABILITY

Projections show that for real application data,
exhaustive query processing may require up to
31 years.

set. Generally speaking, in order to be effective, r roop s

tensor-based applications must take advantage (X0, = Z [\y(u(jl), .,u:(]P))] _ L 1 [”z(,? E ol

of the sparsity of the representation, and avoid i=1 T k= P ool

the expensive brute-force scanning of tensor el- — oW ... u I | . .
ements. One of the most important issues in the N v e

area of tensor analysis is therefore that of tensor The proportion of uninteresting tensor elements
completion, where after observing only a limited

'S overwhelmingly large.
number of element values, one seeks to deduce

properties of the remaining unobserved values. An exhaustive enumeration of all tensor ele- tos08
Depending on the application, one usually re- ments provides exact answers to top-k queries 108 |
quires knowledge of a relatively small set of ten- N time ©(ny - - - np(rp + log k). e
sor elements, rather than the entire unobserved oo
portion of the tensor at hand. Tensor completion 100 }
strategies have many real world applications in-
cluding, but not limited to, personalized tag rec-

ommendation and link prediction in social web

services.
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e Let X and Y be tensors of dimensions ny, ..., n,.

Their element-wise product X x %) Is given by

(XD, = X, - D

Distribution of Elements in the LastFM Data Set
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Performance of the methods for the LastFM data
set. The input tensor has size 2,100 x 18,744 x
12,647.

MetHoD Il — GREeDY HEURISTIC

An indexing-based method which provides ap-
proximate answers to ftop-k queries In time
O(p?sktr).

Algorithm 2 The Greedy heuristic provides approximate answers to top-k

Comparison on the full "LastFM" Data Set
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o Let ul ... ulP be vectors in R". Their inner

Accumulated Top-1000 Elements

pl’ Od uct |S queries by greedily combining only the most promising parts of the factor models. 700 | -

Parameters are the desired solution size k¥ € N and a scaling factor s > 1. 600 i .

n P . 1: fori <+ 2...pdo 500 I: —

(D (u(l) u(P) ) — u(]) 2:  Build similarity search index T; on U™, the set of rows of U®. 400 + EnumDC —— -+
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6: for i « 2,...,p do 0 100 200 300 400 500 600
(1) () ' (1) n; 7. for g€ Qdo Runtime [s]
elLetu'”/,...,u'”’ be vectors with u'”’ € IR" for s Comonte ftness o(a) = lalla.
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end for

1 <i < p. Their outer product is the order-p

10:  Compute p(Q) = > cq P(Q)-

tensor satisfying IR0
( ) ( ) p () 13: %et c <+ [sk- g(o(q))/gg(@ﬂ
(@ (u'V),..., "] ;= ul’. 15 "0 Z]YJ@' tapl .
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— 17: end for
Note that, whenever only two vectors u and v are b g the [sk] best candidates from Q- * Poster

o Implementation
o Documentation

20: end for

21: R+ {®(q) |q€ @}
22: Return the k-largest elements in R.

involved, one may conveniently use the simpler
notation of ®(u,v) =u'vand ¥Y(u,v) = uv'.
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