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SUMMARY FacToRrizATION MODELS COMPLEXITIES

Low-rank factorizations of higher-order tensors
have become an invaluable tool for researchers
from many scientific disciplines. Tensor factor-

Complexities of the different factorization mod-
els, as compared to operations on the original
unfactorized tensor.

e The CP model describes a tensor X as a conical
combination of rank-1 tensors x . xm The
individual X may be expressed in terms of
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0 Figure: Speed-ups achieved for a rank-m CP factorization of
an order-p tensor.

1

w

r=\l2 7 2|,uld =

i ,U[Q’l] —

-
- — =

Within many emerging areas of computing, such .

as data mining, recommendation systems, se- o3 o - : . 1

curity, and multimedia, applications of similarity 3 0=4, =1 —— B ;
search naturally arises in the context of such s osl g:j: 32421 _____ o F )
fundamental tasks as clustering, classification, AU AL g pgz4,qug ------ o /

. " " - — Ty Y= y
matching and detection. Multi-modal data can Depending on the factorization model, we pre- S gL PO *
be naturally represented in the form of a ten- compute the following values 5 B

i i ' £ ¥ *
sor (also known as a multiway array), a higher- | Giyen a rank-m CP model, store inner products S o4l P
Slmensmnal extension of the matrix representa- of the form d)(u,[{”,um), for each mode 1 < k < p g X
on. o | with 1 <i <j < m. S ol “ @ ]
Tensor-based data modeling is particularly ap- . = .
. . e Given a rank-(m;, ..., m,) Tucker model, store S OO A

pealing whenever the data dynamics can be SN Y rode & ) IS e L et | | .
captured by truncated (low-rank) representa- O (u, /4, ) foreach mode k € {1,...,p} an 2 4 6 8 10 12 14

o Given a PITF model, store inner products of the
form @ (u”) and @(ug’]],ug’k]) for any choice of

tions, in terms of a small number of latent vari-
ables. However, due to the complexity inher-
ent in managing multi-modal data, effective and
scalable strategies for similarity search are cru-
cial to the overall performance of such systems.
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Figure: Speed-ups achieved for a rank-(m x - - - x m) Tucker
factorization of an order-p tensor. The computation is
distributed across g processors.
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User profiles can be represented as slices (ma- m D)  Technical Report

trices) and rating profiles as fibers (vectors). The
need to efficiently search for similar rating- or
user profiles arises in applications such as, for
example, recommender systems.
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e Implementation

The process is similar for higher-order substruc- .
e Documentation

tures (slices, ...).
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