BRT—E2RETOFLWNENNTAT ST IL—LT—

A New Parallel Programming Framework for Processing Large-scale Data
2l 8L

Yu LIU Zhenjiang HU

Background and Objective An Example
(MapReduce is a popular framework for data- | InputData Shuffle & sort OuiputData The maximum prefix sum problem)
intensive distributed computing. It uses a — . .
. . . el N — Compute the maximum of all the prefix sums, e.g.,
simple but efficient divide-and-conquer P -§ p—)
fashion to harnesses the power of large — T - mps[1,2,-1,4,3,-9]=9
clusters of computers. e result |
il — , \
The IiSt homOmorphismS dare d C|aSS Of R map phase reduce phase FOIdIng funCtlon: h
h [a] — f a recursive functions on lists, which serve return: (mps XS, sum Xxs)
well with D&C paradigm and can be 9
h (55 T ?J) — h(«’“) © h(y) efficiently implemented in parallel. -
L Unfolding function: 4#°
_J o)
) x Input: (m, s) N
To resolve many computation problems that are difficult to be programmed by -
MGpREdUCE, we propose a homomorphism-based framework to prOVide d > Automatica"y Derived Homomorphism:
systematical solution of automatically generating efficient MapReduce A homomorphism h can be derived from above inputs:
programs.
k | h=(f,®]) where
. ~ f = h
The 3" homomorphism theorem d [a]ﬂ .
Ior =h(h° [+ h°r)
h |a] = fa h la] = fa : . , ,
“ h ([a] 4t a;,) — adhx » MapReduce implementation of list homomorphism
h (3.’3 +- y) — h(il?) O, h(y) h (33 4 [a]) — hzr®a. Through the algorithm that implements list homomorphisms
| using MapReduce, multi-phase map-reduce jobs are obtained
Our framework is base on the 3@ homomorphism theorem. By the 3™ and can be executed on Hadoop cluster.

homomorphism theorem, a list homomorphism can be got from two sequential
functions.

Homomorphism-based Framework

Benchmark on Hadoop Cluster

COE cluster of Tokyo University

Testing with MPS on 1, 2, 4, 8 and 16 nodes cluster
mps : length =100 milion , file size =4GB

mps : speedup ~ L&zs

By our framework, list homeomorphisms can be derived from user-input
sequential functions, and automatically mapped to efficient MapReduce

programs. The Schematic Diagram - oo L 1

Programming Internal derivation Map BB : 6 § so0

, implementation . N |

interfaces . f L e
The user implements The corresponding A chain of MapReduce *34 ; - \\“E\.
2 sequential list homomorphism jobs is generated, which o | =
functions using is derived by implements the list 22 : JT T 1
system APIs. framework. homomorphism. o l 13

L ‘

2 1

Tests on NIl edubaseCloud
Benchmark with SUM, Variance
700 — and MPS programs, showing the
system performance and
overhead.

System Architecture

nodes number

PPPPP

11 1.1.1 2.1 2.1.1 7.1

list manipulation

list manipulationl Inpu Data Format Output Data Format Resultl

Y

Final Results

B SUM-MR
B SUM-LH
VAR-LH
B MPS-LH
m MPS-MR

User Application

Unfolding Input Paths; Output Path;

3.1 23 Ll a1
Y

A 4 v
Rightwards Interface Leftwards Interface I/O Wrapping Class

Folding () — Unfolding () Wrapping the 1/0
» setting for creating
MapReduce Jobs

dlamae

g nodes 16 nodes 32 nodes

MapReduce-aware
Homomorphism Programming
Interface

e Efficiency: List homomorphism can be efficiently implemented
with MapReduce.
e —— Programmability: The third homomorphism theorem makes it

Inputs

List-Homomorphism Layer

T R—) g etbed simple to develop parallel program with MapReduce.
* Practicability: The experiments of mps and others have shown the
usefulness and power of list homomorphism framework.

Step

Reference
Yu Liu, Zhenjiang Hu, Kiminori Matsuzaki, Towards Systematic Parallel
Programming over MapReduce (Euro-Par’11).

Eigk: ® R (Zhenjiang HU) / BN TRIFHIRM 7—FTIOFYEIFHRER BB

TEL : 03-4212-2530 FAX : 03-4212-2533 Email : hu@nii.ac.jp

