
1

NII Lectures:Next Languages --
Access To Parallelism For All

Lawrence Snyder
www.cs.washington.edu/homes/snyder

15 October 2008

Example

 Assume 4 processors
C A B B B C C C B B B CA A A A A BA A A B B C

1
3
2

4
5
3

9
6
3

9
9
69

9
6

A A A A A A C C C C C CB B B B B BA A A B B B

C A B B B C C C B B B CA A A A A BA A A B B C

 Color corrected

2

OpenMP Compiler

 4 Processor Sun
Enterprise running
the NAS PB written
in C with OpenMP

Block Tridiagonal
Conjugate Gradient
Embarrassingly ||
Fast Fourier Trans
Integer Sort
LU Decomposition
Multigrid Iteration
Sparse Matrix-Vector

http://phase.hpcc.jp/Omni/benchmarks/NPB/

Outline

 Context
 Global View Languages

 NESL
 ZPL

 ZPL details including SUMMA
 Transparent Performance Model

3

The Present Situation

 Previous lectures have argued that
 We have tremendous opportunities to use ||ism
 Much is known about parallel computation
 There is (at least) one “right” machine model
 Today’s programming facilities are weak,

having few abstractions
 What do we want? What can we practically

expect in the future?
 Consider a few basic goals …

Using Parallelism
 “Parallelism is best when it is unseen” --

Calvin Lin, UT Austin
 Processors are amazingly parallel
 Parallel techniques are applied widely in OSs
 Web search (Google) and other Internet

services apply parallelism that we all use
 But writing fast || programs requires using

the CTA machine model and knowing how
a || computer will run the program … how
can ||ism be transparent?

4

Making Parallelism Transparent
 Higher level abstractions --

 Write less, but get more done
 Rely on compilers to generate parallel code

 Expose the machine’s behavior by implicit
means
 Sound foundations for abstractions & compiler
 Visible performance model

Contrast: Low level programming
forms with compiler optimizations

Outline

 Context
 Global View Languages

 NESL
 ZPL

 ZPL details including SUMMA
 Transparent Performance Model

5

Global View Languages
 There is a (pleasant) alternative to shared

memory parallel programming -- global view
languages
 Global view means “seeing” all of the data
 Opposite is local view: MPI, threads, PGAS,…
 Technically, Global View means P-independent, all

program executions produce same result regardless of
the number or arrangement of processors

 Higher abstractions available to simplify programming
by eliminating nuisance details

 Higher abstractions put premium on thinking rather than
slamming out lines of code

NESL
 NESL was developed by Guy Belloch at Carnegie Mellon (CMU)
 Key structure is a sequence

 [2 14 -5 0 7]
 "sequences can be composed of characters"
 ["sequence" "elements" "can be sequences"]

provided all are composed of the same atomic type
 Basic operation is apply to each, written with set notation

{a+1: a in [2 13 0 4 8]} produces [3 14 1 5 9]
{a+b: a in [1 2 3]; b in [8 7 6]} produces [9 9 9]

6

More on NESL

 Compare NESL dot product with UPC
function dotprod(a,b) = sum({x*y: x in a; y in b});

dotprod([2, 3, 1], [6, 1, 4]);

producing [19]
 “Nested” in NESL refers to nested parallelism:

 Applying parallelism and within each parallel
operation, applying more parallelism

 In NESL, apply to each ops in apply to each
 Consider NESLʼs matrix multiplication algorithm

MM in NESL

 The function is defined
function matrix_multiply(A,B)=
 {{sum({x*y : x in rowA; y in columnB})
 : columnB in transpose(B)}
 : rowA in A}

 Three apply to each braces
 Outer brace applied to rowA, in ||
 Next brace applied to columnB, transposed, in ||
 Inner brace applied to each of n2 row/col pairs

7

NESL Complexity Model
 NESL researchers identify two types of

complexity in a program:
 Work, which is the number of basic operations

 MM has O(n3) work; dotproduct has O(n) work
 Depth, which is the longest chain of

dependences; e.g. sum has O(log2 n) depth
 Both MM and dotproduct have O(log2 n) depth

 Like the PRAM, these metrics do not yield
a performance model because they ignore
P, λ, locality, etc.

Outline

 Context
 Global View Languages

 NESL
 ZPL

 ZPL details including SUMMA
 Transparent Performance Model

8

ZPL
 ZPL, a || language developed University of

Washington: www.cs.washington.edu/research/zpl
 ZPL, a research parallel language w/ 3 goals

 Performance == platform-specific custom code
 Portability == runs well on all platforms
 Convenience == clean, easy-to-understand programs; no

parallel grunge
 ZPL is

 A global view array language (ZPL != APL)
 Implicitly parallel, so it is easy to use
 Many new parallel abstractions

ZPL Is Important To Us
 ZPL is a representative of a high-level parallel

language … few competitors because achieving
those goals is tough

 To realize a solution …
 ZPL is designed and built on the CTA
 ZPL is the first high-level language to achieve

“performance portability”
 ZPL presents programmers with a visually-cued

performance model: WYSIWYG
 ZPL is insensitive to shared or message passing

architectures, making it universal

ZPL is “designed from first principles”

9

A ZPL Example: Conway’s Life
program Life;
config const n : integer = 10;
region R = [1..n, 1..n];
direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];
 w = [0, -1]; e = [0, 1];
 sw = [1, -1]; so = [1, 0]; se = [1, 1];
var TW : [R] boolean;
 NN : [R] sbyte;
procedure Life();
begin -- Initialize the world
[R] repeat
 NN := TW@^nw + TW@^no + TW@^ne
 + TW@^w + TW@^e
 + TW@^sw + TW@^so + TW@^se;
 TW := (TW & NN = 2) | (NN = 3);
 until !(|<< TW);
end;

Conway’s Game of Life
 Life: organisms w/2,3 neighbors live, birth occurs w/

3 neighbors; death otherwise; world is a torus

 TheWorld[i,j] == 1 in generation n+1
 if [i,j] is 1 in generation n and has 2 neighbors or
 if [i,j] in generation n has 3 neighbors

 Or: (thisGen && neighbors== 2) || (neighbors==3)
See Life As An Array Computation

10

Global View of Life

 Count neighbors by adding organisms (bits)

 Closer look at World@^NW

Edges wrap around ⇓

:= + + + + + + +

TW@^nw is the array of Northwest neighbors

Express Array Computation in ZPL

Conway’s Life: The World is bits
[1..n,1..n] repeat
 NN := TW@^NW + TW@^N + TW@^NE
 + TW@^W + TW@^E
 + TW@^SW + TW@^S + TW@^SE;
 TW := (TW & NN = 2) | (NN = 3);
 until ! (|<< TW);

Add up
neighbor bits

Apply rules
to live by“Or” bits in world

to see if any alive

:= + + + + + + +

11

Life In ZPL
program Life; Conway's Life
config const n : integer = 10; The world is n × n; default to 10
region R = [1..n, 1..n]; Index set of computation
direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];
 w = [0, -1]; e = [0, 1];
 sw = [1, -1]; so = [1, 0]; se = [1, 1];
var TW : [R] boolean; Problem state, The World
 NN : [R] sbyte; Work array, Number of Neighbors
procedure Life(); Entry point procedure
begin -- Initialize the world I/O or other data specification
[R] repeat Region R ==> apply ops to all indices
 NN := TW@^nw + TW@^no + TW@^ne Add 8 nearest neighbor bits (type
 + TW@^w + TW@^e coercion like C); carat(^) means
 + TW@^sw + TW@^so + TW@^se; toroidal neighbor reference
 TW := (TW & NN = 2) | (NN = 3); Update world with next generation
 until !(|<< TW); Continue till all die out
end;

Outline

 Context
 Global View Languages

 NESL
 ZPL

 ZPL details including SUMMA
 Transparent Performance Model

12

Regions, A Key ZPL Idea
 Regions are index sets … not arrays
 Any number of dimensions, any bounds

region V = [1..n];
region R = [1..m, 1..m]; BigR = [0..m+1,0..m+1];
region Left = [1..m, 1];
region Odds = [1..n by 2];

 Short names are preferred--regions are used
everywhere--and capitalization is a coding convention

 Naming regions is recommended, but literals are OK

Regions Control Computation
 Statements containing arrays need a region (index set) to

specify which items participate
[1..n,1..n] A := B + C;
 [R] A := B + C; -- Same as above if region R = [1..n,1..n]

 Regions are used to declare variables
var A, B, C : [R] double;
var Seq : [1..n] boolean;

 Regions are scoped
[R] begin All array computations in compound

… statements are performed over indices
[Left] … in [R], except statement prefixed by

 end; [Left]
 Operations over region elements performed in parallel

13

Parallelism In Statement Evaluation

Let A, B be arrays over [1..n,1..n], and C be an
array over [2..n-1,2..n-1] as in

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;
Then

[2..n-1,2..n-1] A := C;

[2..n-1,2..n-1] C := A + B;

 [2..n-1,2] A := B;

:=

:= +

:=

@ Uses Regions & Directions
The @ operator combines regions with directions to allow

references to neighbors
 Two forms, standard(@) and wrapping(@^)

 Syntax: A@east A@^east
 Semantics: the direction is added to elements of region

giving new region, whose elements are referenced; think of
a region translation

[1..n,1..n] A := A@^east; -- shift array left with wrap around

 @-modified variables can appear on l or r of :=

:=

14

Parallelism In Statement Evaluation
Let

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;
direction east = [0,1]; ne = [-1,1];

Then
[2..n-1,2..n-1] A := C@^east;

[2..n-1,2..n-1] A := C@^ne + B@^ne;

 [2..n-1,2] A@east := B; :=

:=

:= +

Reductions, Global Combining
Operations
 Reduction (<<) “reduces” the size of an array by

combining its elements
 Associative (and commutative) operations are

+<<, *<<, &<<, |<<, max<<, min<<
[1..n, 1..n] biggest := max<<A;
 [R] all_false := |<< TW;

 All elements participate; order of evaluation is
unspecified … caution floating point users

 ZPL also has partial reductions, scans, partial
scans, and user defined reductions and scans

15

Operations On Regions
 The importance of regions motivates region operators
 Prepositions: at, of, in, with, by … take region and

direction and produce a new region
 at translates the region’s index set in the direction
 of defines a new region adjacent to the given region

along direction edge and of direction extent
region R = [1..8,1..8];
 C = [2..7,2..7];
var X, Y : [R] byte;

direction e = [0,1];
 n = [-1,0];
 ne = [-1,1];

[n of C]Y:= [C]Y:=X@ne[R]X:= [C]X:= [C at e]Y:=
execution

Applying Ideas: Jacobi Iteration
 Model heat defusing through a plate
 Represent as array of floating point

numbers
 Use a 4-point stencil to model defusing
 Main steps when thinking globally

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

High-level Language should match high-level thinking

16

“High Level” Logic Of J-Iteration
program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;
region R = [1..n, 1..n];
 BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; S = [1, 0];
 E = [0, 1]; W = [0,-1];
var Temp : [R] float;
 A : [BigR] float;
 err : float;

procedure Jacobi();
 [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
 Temp := (A@N + A@E + A@S + A@W)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
until err < eps;

 end;

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

Partial Reduce
 ZPL has ‘full’ reduce: +<<, *<<, max<<, …
 ZPL also has ‘partial’ reduce

 Applies reduce across rows, down columns,…
 Requires two regions:

 One region on statement, as usual
 One region between operator and operand
[1..n,1] B := +<< [1..n,1..n] A; -- add across rows
[1,1..n] C := min<<[1..n,1..n] A; -- min down columns

 In these examples, result stored in 1st row/col

Collapsed dimensions indicate reduce dimension(s)

:=

17

Flood -- Inverse of Partial Reduce
 Reduce “reduces” 1 or more dimensions
 Opposite is flood -- fill 1 or more dimensions

[1..n,1..n] B := >> [1..n, 1] A;

[1..n,1..n] B := >> [1..n, n] A;

 The replication uses multicast, often an
efficient operation

:=

:=

Closer Look At Scaling Each Row
[1..m,1] MaxC := max<<[1..m,1..n] A; Max of each row
[1..m,1..n] A := A / >>[1..m,1] MaxC; Scale each row

Flooding distributes values (efficiently) so
that the computation is element-wise …
lowers communication

2 4 4 2
0 2 3 6
3 3 3 3
8 2 4 0

A

4
6
3
8

MaxC >>[1..m,1] MaxC

4 4 4 4
6 6 3 6
3 3 3 3
8 8 8 8

Keep MaxC a 2D array to control allocation

18

Flood Regions and Arrays
Flood dimensions recognize that specifying a particular

column over specifies the situation
Need a generic column -- or a column that does not have a

specific position … use ‘*’ as value
region FlCol = [1..m, *]; -- Flood regions
 FlRow = [*, 1..n];
var MaxC : [FlCol] double; --An m length col
 Row : [FlRow] double; --An n length row
[1..m,*] MaxC := max<< [1..m,1..n] A; -- Better

max

......

Think of column
in every position

Flood v. Singleton Difference
 Lower dimensional arrays can specify a

singleton or a flood … it affects allocation
Region [1..n,1..n] allocated
to 4 processors

Regions [1..n,1] and [n,1..n]
allocated to 4 processors

Regions [1..n,*] and [*,1..n]
allocated to 4 processors

19

SUMMA Algorithm
For each col-row in the common dimension, flood the item and

combine it...
var A:[1..m, 1..n] double;
 B:[1..n, 1..p] double;
 C:[1..m, 1..p] double;
 Col:[1..m,*] double;
 Row: [*, 1..p] double;
...
[1..m,1..p] C := 0.0; -- Initialize C
 for k := 1 to n do
 [1..m,*] Col := >>[,k] A; -- Flood kth col of A
 [*,1..p] Row := >>[k,] B; -- Flood kth row of B
[1..m,1..p] C += Col*Row; -- Combine elements
 end;;

Inherit the
prevailing
dimension

c11 c12 c13 a11 a12 a13 a14 b11 b12 b13
c21 c22 c23 a21 a22 a23 a24 b21 b22 b23
c31 c32 c33 a31 a32 a33 a34 b31 b32 b33
c41 c42 c43 a41 a42 a43 a44 b41 b42 b43

SUMMA, The First Step

a11 a11 a11
a21 a21 a21
a31 a31 a31
a41 a41 a41

b11 b12 b13
b11 b12 b13
b11 b12 b13
b11 b12 b13

a11b11 a11b12 a11b13
a21b11 a21b12 a21b13
a31b11 a31b12 a31b13
a41b11 a41b12 a41b13

×

Col RowC

SUMMA is the easiest MM
algorithm to program in ZPL

=

20

SUMMA Algorithm (continued)
For each col-row in the common dimension, flood the

item and combine it...
[1..m,1..p] C := 0.0; -- Initialize C
 for k := 1 to n do
 [1..m,*] Col := >>[,k] A; -- Flood kth col of A
 [*,1..p] Row := >>[k,] B; -- Flood kth row of B
[1..m,1..p] C += Col*Row; -- Combine elements
 end;
 --- or, more simply ---

 for k := 1 to n do
[1..m,1..p] C += (>>[,k] A)*(>>[k,] B);

 end;
This code is shorter than C’s 3-loop
This is SUMMA, fastest || MM alg
New abstractions are key to the win

Still Another MM Algorithm
If flooding is so good for columns/rows, why not use

it for whole planes?
region IK = [1..n,*,1..n];
 JK = [*,1..n,1..n];
 IJ = [1..n,1..n,*];
 IJK = [1..n,1..n,1..n];
[IJ] A2 := >>A#[Index1, Index2];
[JK] B2 := >>B#[Index2, Index3];
[IK] C := +<<[IJK](A2*B2);

Input

A2

B2

C

21

Recalling Reduce, Scan & Flood
 The operators for reduce, scan and flood

are suggestive …
 Reduce << produces a result of smaller size

 Scan || produces a result of the same size

 Flood >> produces a result of greater size

⇐

⇐

⇐

Outline

 Context
 Global View Languages

 NESL
 ZPL

 ZPL details including SUMMA
 Transparent Performance Model

22

There’s More

 ZPL has many more important features
 Not needed here … check out the docs
 The abstractions are nice, but they are not the

reason to be using ZPL … it is the WYSIWYG
performance model

Outline

 Context
 Global View Languages

 NESL
 ZPL

 ZPL details including SUMMA
 Transparent Performance Model

23

CTA and ZPL
 ZPL was built on the CTA

 Semantics of operation customized to CTA
 Compiler targets CTA machines
 Performance model reflects the costs of CTA

 The benefit of building on the CTA:
 Programming constraints are realistic, scalable
 Programs are portable with performance
 Programmers can reliably estimate performance

and observe it (or better) on every platform

Building on CTA is a main contribution of ZPL

Knowing Performance of Programs
 Recall that in the sequential case, writing in a

performance-sensitive language (C), the RAM
model describes how the program will run

 Writing in ZPL, the CTA model describes how the
program will run
 Programmer needs to know the CTA
 Language constructs’ performance must be described

in CTA terms
 Information must “compose”

 This is called ZPL’s “What you see is what you
get” (WYSIWYG) Performance Model”

24

Goal For Nex Few Minutes
 Let’s explain the WYSIWYG Model

 What is it? It is a way to look at your code and
see how fast it will run -- like algorithm analysis

 What other languages have it? None.
 How does it work?

 We explain how ZPL arrays map on to CTA model
 We explain how ZPL’s operators -- scan and flood

etc -- run on the CTA with that array allocation
 Can I see it in action?

 Yes, we’ll give examples at the end

This is the most important idea in today’s lecture

Assumes Many Pts Per Processor
ZPL allocates regions (and therefore arrays) to

processors so that many contiguous elements are
assigned to each processor to exploit locality

 Array Allocation Rules
 Union the regions together to compute the bounding

region
 Get processor number and arrangement from the

command line
 Allocate the bounding region to the processors

Let’s walk-through the process

25

Union The Regions Together
Create the “footprint” of the regions by aligning

indices to define the computation

Technical point: Only interacting regions are
“unioned,” e.g. if region R is used to declare an
array which is manipulated in the scope of
region S, R and S are said to interact

=

Bounding
2D Region

The bounding region is allocated to processors

i,j

Get Processor Num + Arrangement
The number and arrangement of processors is given by the

programmer on the command line

 For the purpose of [understanding] allocation, processors
are viewed as being arranged in grids … this is simply an
abstraction:

P2P1 P3P0 P4 P5 P6 P7

P2P1 P3P0

P4 P5 P6 P7

P4 P5

P6 P7
P2

P1

P3

P0

The CTA does not
favor any
arrangement, so
use a generic one

26

Allocate Bounding Region to Grid
The bounding region is allocated to processor grid

in the “most balanced” way possible
 Regions inherit their position from their position in

the bounding region
 Array elements inherit their positions from their

index’s position in the region, and hence their
allocation

⇒

P0 P1

P3P2

More Typical Allocations

 1D is segmented;
 2D is panels, strips or blocks;

 3D ...

P2P1 P3P0

P1P0

P2 P3

P2P1 P3P0

P1

P0

P2

P3

27

Fundamental Fact of ZPL
Such allocations are mostly standard, but one fact

makes ZPL performance clear:
ZPL has the property that for any arrays A, B of the
same rank and having an element [i, …, k], that
element of each will be stored on the same processor

Corollary: Element-wise operations do not require any
communication: [R] … A+B …

=

Performance Model (WYSIWYG)
To state how ZPL performs operations, each

operator’s work and communication needs are
given … producing a performance model
 Performance is given in terms of the CTA
 Performance is relative, e.g. x is more expensive in

communication than y
 Rules…

A + B -- Element-wise array operations
 No communication
 Per processor work is comparable to C
 Work fully parallelizable, i.e. time = work/P

28

Rules Of Operation (continued)
B+A@^east -- @ references including @^
Arrays allocated with “fluff” for every direction used

 Nearest neighbor point-to-point communication of edge
elements, i.e. small communication, little congestion

 Edge communication benefits from surface-to-volume
advantage: an n increase in elements, adds √n comm load

 Local data motion, possibly

P2P1 P3P0

<< || >>
+<<A -- Reduce

 Accumulate local elements
 O(log P) tree accumulation, or better
 Broadcast, which is worst case O(log P), but usu. less

+||A -- Scan
 Accumulate local elements
 Ladner/Fischer O(log P) tree parallel prefix logic
 Update of local elements

>>[1..n,k]A -- Flood
 Multicast array segments, O(log P) w.c.
 Represent data “non-redundantly”

29

Rules of Operation (continued)
A#[I1, I2] -- Remap, both gather and scatter

 (Potential) all-to-all processors communication to
distribute routing information implied by I1, I2

 (Potential) all-to-all processors communication to
route the elements of A

 Heavily optimized, esp. to save first all-to-all
 Full information online in Chapter 8 of ZPL

Programmer’s Guide or in dissertations
 “What you see is what you get” performance

model … large performance features visible

ZPL is only parallel language with performance model

Applying WYSIWYG In Real Life...
program Life;
config var n : integer = 512;
region R = [1..n, 1..n];
 BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; NE = [-1, 1];
 E = [0, 1]; SE = [1, 1];
 S = [1, 0]; SW = [1,-1];
 W = [0,-1]; NW = [-1,-1];
var NN : [R] ubyte; TW : [BigR] boolean;
procedure Life();
 [R] begin
 TW := (Index1 * Index2) % 2; -- Make data
 repeat
 NN := (TW@N + TW@NE + TW@E + TW@SE
 + TW@S + TW@SW + TW@W + TW@NW);
 TW := (NN=2 & TW) | NN=3;
 until !|<<TW;
 end;

Code for performance costs implied by WYSIWYG

30

Analyzing Life By Color
Blue: Effectively no time … each processor does
set-up and scalar computation locally
Pink: Element-wise computation perfectly parallel
… Indexi constants are generated

How is TW allocated on 4 procs? Three basic choices...

Delay is cλ

Analyzing By Color (continued)
Purple: Element-wise computation with
@ operations … expect λ delay for @ (all
at once if synch’ed) and then full parallel
speed-up for local operations
Red: Reduce uses Ladner/Fischer parallel
prefix, with local combining and log(P)
tree to communicate … potentially the
most complex operation in Life

Knowing the relative costs of the program allows us
to optimize it for some purpose … count generations

31

Optimizations Can Help
 WYSIWYG is the worst case … optimizations are

possible …
 Sequential Optimizations e.g. stencil opts

Sum of orange items performed once

 Parallel Optimizations e.g. communication motion --
prefetching to overlap communication with
computation

7 additions are
used for each
element, but fewer
adds are sufficient

⇒ ⇒

Applying WYSIWYG in Alg Design
WYSIWYG, a key tool for parallel algorithm design … work

through the logic of balancing costs
 There are dozens (hundreds?) of matrix product algorithms

… which do you want?
MM is a common building block, so someone else should have done this
(vdG&W did!), but we use it as an example of process

 Two popular choices are
 Cannon’s algorithm
 SUMMA (vdG&W)

 Which is better as a ZPL program, i.e. better for scalable
parallel machines, clusters, CTA model

32

Cannon’s Algorithm, A Classic
c11 c12 c13 a11 a12 a13 a14
c21 c22 c23 a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34
c41 c42 c43 a41 a42 a43 a44

 b13
 b12 b23
b11 b22 b33
b21 b32 b43
b31 b42
b41

Compute: C = AB as follows ...

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step at a time

Elements arriving at a place are
multiplied, added in

⇑

⇐

Motion of Cannon’s, First Step

c43 = c43 + a41b13

⇑

⇐

Second steps ...

c43 = c43 + a42b23
c33 = c33 + a31b13
c42 = c42 + a41b12

c11 c12 c13 a11 a12 a13 a14
c21 c22 c23 a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34
c41 c42 c43 a42 a43 a44
 b12 b23
b11 b22 b33
b21 b32 b43
b31 b42
b41

33

Programming Cannon’s In ZPL
c11 c12 c13 a11 a12 a13 a14
c21 c22 c23 a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34
c41 c42 c43 a41 a42 a43 a44

 b13 c11 c12 c13 a11 a12 a13 a14
 b12 b23 c21 c22 c23 a22 a23 a24 a21
b11 b22 b33 c31 c32 c33 a33 a34 a31 a32
b21 b32 b43 c41 c42 c43 a44 a41 a42 a43
b31 b42 b11 b22 b33
b41 b21 b32 b43
 b31 b42 b13
 b41 b12 b23

Pack skewed arrays into
dense arrays by rotation;
process all n2 vals at once

Four Steps of Skewing A
 for i := 2 to m do
 [i..m, 1..n] A := A@^right; Shift last m-i rows left
 end;

a11 a12 a13 a14 a11 a12 a13 a14
a21 a22 a23 a24 a22 a23 a24 a21
a31 a32 a33 a34 a32 a33 a34 a31
a41 a42 a43 a44 a42 a43 a44 a41
 Initial i = 2 step
a11 a12 a13 a14 a11 a12 a13 a14
a22 a23 a24 a21 a22 a23 a24 a21
a33 a34 a31 a32 a33 a34 a31 a32
a43 a44 a41 a42 a44 a41 a42 a43
 i = 3 step i = 4 step

… And Skew B vertically

34

Cannon’s Declarations
For completeness, if A is m×n and B is n×p, the

declarations are …

region Lop = [1..m, 1..n];
 Rop = [1..n, 1..p];
 Res = [1..m, 1..p];
direction right = [0, 1];
 below = [1, 0];
var A : [Lop] double;
 B : [Rop] double;
 C : [Res] double;

Cannon’s Algorithm
Skew A, Skew B, {Multiply, Accumulate, Rotate}n

 for i := 2 to m do Skew A
 [i..m, 1..n] A := A@^right;
 end;
 for i := 2 to p do Skew B
 [1..n, i..p] B := B@^below;
 end;

 [Res] C := 0.0; Initialize C
 for i := 1 to n do For common dim
 [Res] C := C + A*B; For product
 [Lop] A := A@^right; Rotate A
 [Rop] B := B@^below; Rotate B
 end;

35

SUMMA Algorithm To Compare To
var Col : [1..m,*] double; Col flood array
 Row : [*,1..p] double; Row flood array
 A : [1..m,1..n] double;
 B : [1..n,1..p] double;
 C : [1..m,1..p] double;

...
[1..m,1..p] C := 0.0; Initialize C
 for k := 1 to n do
 [1..m,*] Col := >>[,k] A; Flood kth col of A
 [*,1..p] Row := >>[k,] B; Flood kth row of B
[1..m,1..p] C += Col*Row; Combine elements
 end;

Compare Cannon’s & SUMMA MM
 Analyze the choices with WYSIWYG …

 SUMMA has shortest code [so what?]
 Cannon’s uses only local communication

 The two algorithms abstractly:
Cannon’s
Declare
Skew A
Skew B
Initialize
loop til n
C+=A*B
Rotate A,B

SUMMA
Declare
Initialize
loop til n
Flood A
Flood B
C+=A*B

36

Compare Cannon’s & SUMMA MM
 Step one is to cancel out the equivalent parts

of the two solutions … they’ll work the same
 For MM the comparison reduces to whether

the initial skews and the iterated rotates are
more/less expensive than iterated floods

Cannon’s
Declare
Skew A
Skew B
Initialize
loop til n
C+=A*B
Rotate A,B

SUMMA
Declare
Initialize
loop til n
Flood A
Flood B
C+=A*B

Skew A, Skew B, {Multiply, Accumulate, Rotate}

 for i := 2 to m do Skew A
 [i..m, 1..n] A := A@^right;
 end;
 for i := 2 to p do Skew B
 [1..n, i..p] B := B@^below;
 end;

 [Res] C := 0.0; Initialize C
 for i := 1 to n do For common dim
 [Res] C := C + A*B; For product
 [Lop] A := A@^right; Rotate A
 [Rop] B := B@^below; Rotate B
 end;

Cannon’s Algorithm

Comms have λ latency,
but much data motion

37

SUMMA Algorithm Analysis
The flood is (likely) more expensive than λ time,

but less that λ(log P) ... probably much less,
and there are fewer of them

[1..m,1..p] C := 0.0; Initialize C
 for k := 1 to n do
 [1..m,*] Col := >>[,k] A; Flood kth col of A
 [*,1..p] Row := >>[k,] B; Flood kth row of B
[1..m,1..p] C += Col*Row; Combine elements
 end; SUMMA does not require as

much comm or data motion
as Cannon’s, nor does it
“touch” the array as much

Bottom Line ...
 We assert that SUMMA is the better algorithm

 Though it does “potentially more expensive”
communication, it does less of it

 It’s “nonredundant” flood arrays cache well
 There is less data motion

 Analytically ...

 Test the assertion experimentally…

38

ZPL’s WYSIWYG Performance Model Chamberlain, Choi, Lewis, Lin, Snyder, Weathersby IEEE HIPS-98, 1998

Guarantees
ZPL uses a different approach to performance than

other parallel languages
 Historically, performance came from compiler

optimizations that might/might not fire …
 WYSIWYG guarantees (it’s a contract) that ZPL

programs will work a certain way …
 It may be better … WYSIWYG is a worst case that

often doesn’t materialize
 Aggressive optimizations help a lot

If there are any surprises, they’ll be pleasant

39

Summarizing WYSIWYG Model
 Data and processing allocations are given
 All constructs of the language are explained in

terms of the allocations and the CTA
 Result: relative, worst-case statement of how

the computation runs anywhere … rely on it
 Optimizations can improve on the times, but if

they don’t fire, nothing is lost

The best use of the WYSIWYG model is to
make comparative programming decisions

Bottom Line for Learning About ZPL

 The reason we’re learning ZPL is because
it illustrates how a parallel programming
language can give access to the CTA
machine model, allowing programmers to
write intelligent parallel programs

 You want your programming language to
have that property, too!

 If it doesn’t, dump it and use a library that
lets you apply the CTA model yourself

40

The Future: Transparent Parallelism
 Higher level abstractions --

 Write less, but get more done

 Rely on compilers to generate parallel code
 Expose the machine’s behavior by implicit

means
 Sound foundations for abstractions & compiler
 Visible performance model: WYSIWYG

Notice: This will require actual research

What Can Microsoft Do?

 “Parallelism requires adjustments at every
level of the stack … the repartitioning of
different tasks to different layers … So look
for a rebalancing of roles and runtimes. We
need to formalize that in the operating
system. Expect the first pieces in the next
generation of Windows.” Craig Mundy, Microsoft
Chief Research & Strategy Officer, 2008/10/3

