

The Coq Proof Assistant I

ACM SIGPLAN Software Award 2013

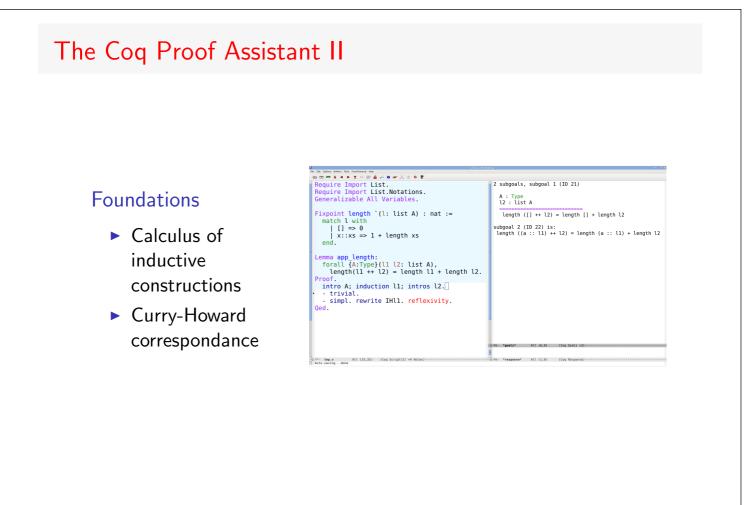
The Coq proof assistant provides a rich environment for interactive development of machine-checked formal reasoning. Coq is having a profound impact on research on programming languages and systems [...] It has been widely adopted as a research tool by the programming language research community [...] Last but not least, these successes have helped to spark a wave of widespread interest in dependent type theory, the richly expressive core logic on which Coq is based.

[...] The Coq team continues to develop the system, bringing significant improvements in expressiveness and usability with each new release.

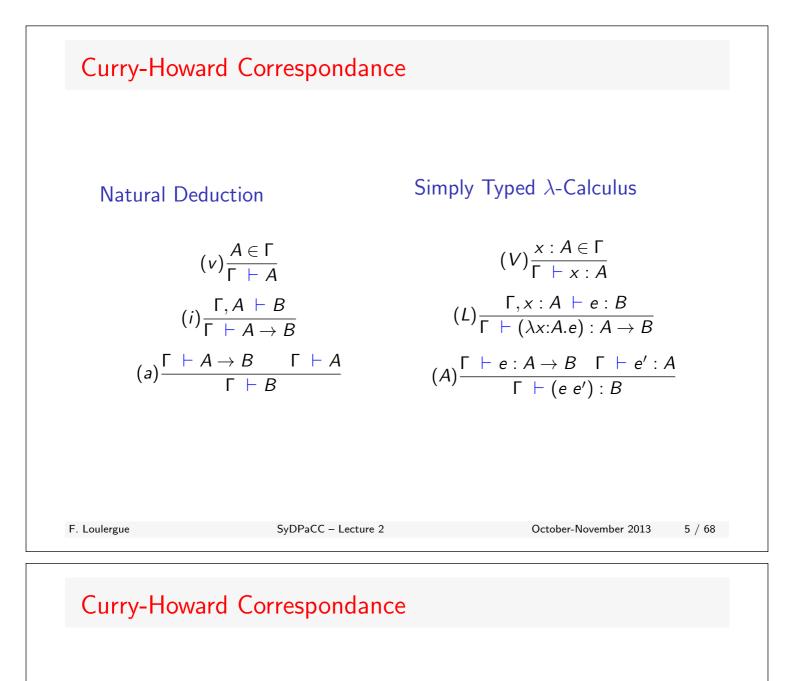
In short, Coq is playing an essential role in our transition to a new era of formal assurance in mathematics, semantics, and program verification.

F. Loulergue

SyDPaCC – Lecture 2

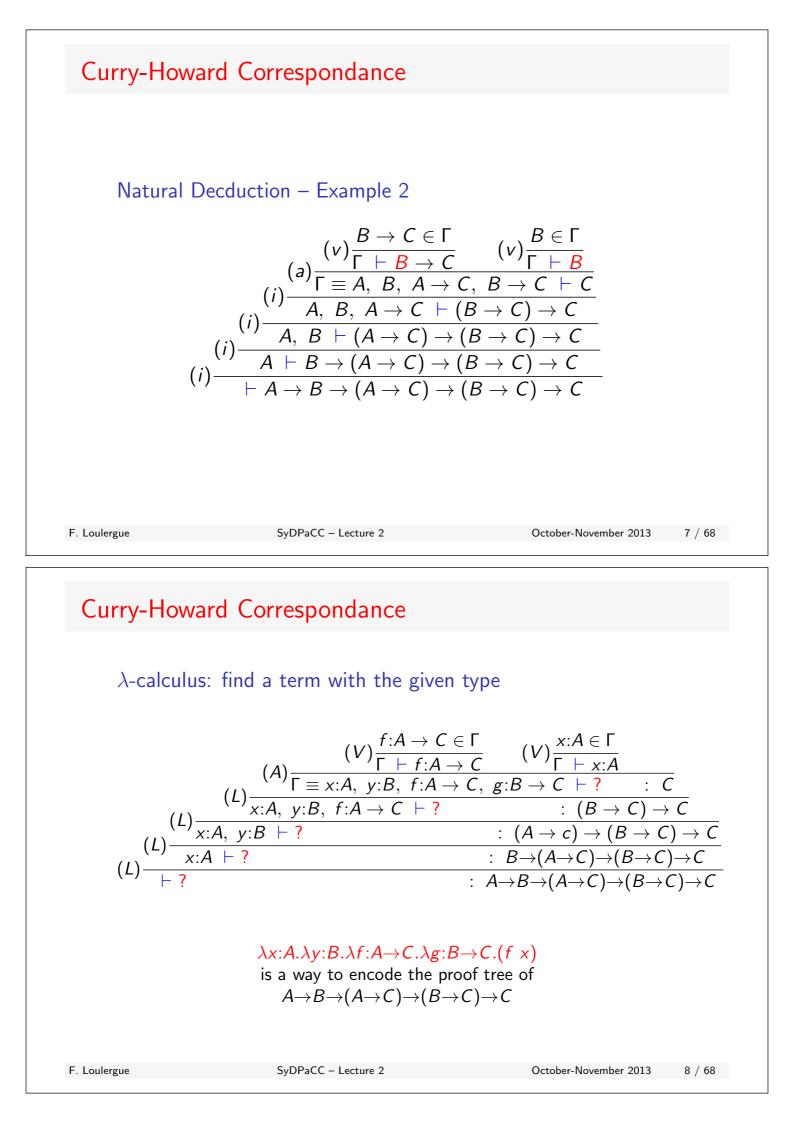


October-November 2013 3 / 68



Natural Decduction – Example 1

$$(i) \frac{(i) \frac{A \to C \in \Gamma}{\Gamma \vdash A \to C} \quad (v) \frac{A \in \Gamma}{\Gamma \vdash A}}{(i) \frac{(i) \frac{A \oplus C \oplus C}{\Gamma \vdash A}, \quad B, \quad A \to C, \quad B \to C \vdash C}{A, \quad B, \quad A \to C \vdash (B \to C) \to C}}$$
$$(i) \frac{(i) \frac{(i) \frac{A \oplus C \oplus C}{A, \quad B, \quad A \to C \oplus C} \oplus (B \to C) \to C}{A \oplus C \oplus C}}{(i) \frac{A \oplus C}{A \oplus C} \oplus (A \to C) \to (B \to C) \to C}}{(i) \frac{A \oplus C}{A \to C} \oplus (A \to C) \to (B \to C) \to C}}$$

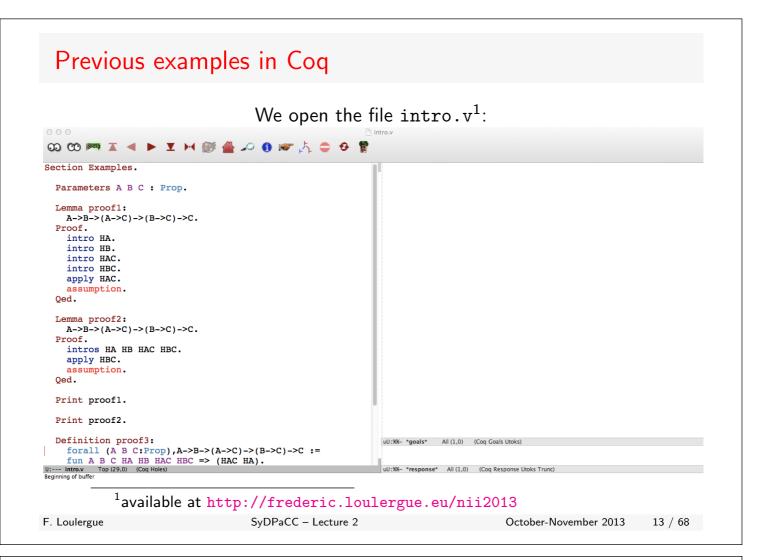


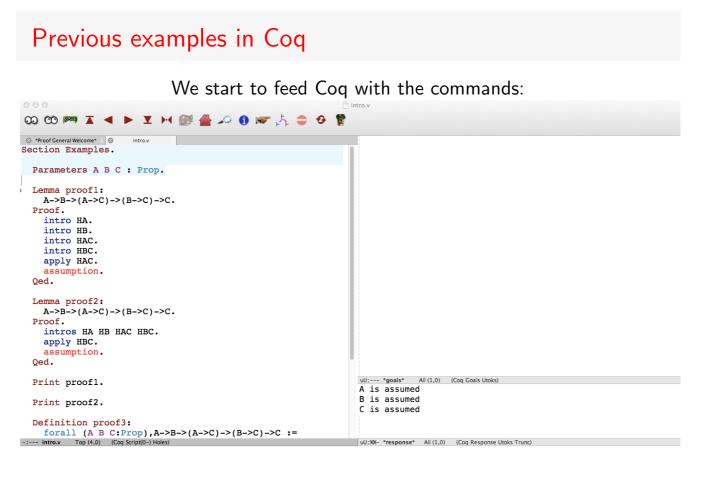
Curry-Howa	ard Isomomorphism	
deduction as type. ► Theo	mula there exists a proof of this if and only if there exists a λ -t rem statement \Leftrightarrow Type f \Leftrightarrow Program	
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 9 / 68
Coq in prac	tice	
RichLange	tional programming language type system: allow to express lo uage for building proofs (ie proo ram extraction	

	^	
roof General Welcome*	Cut Copy Paste Search	Preferences Help
cs Tutorial		
	cs Tutorial	cs_Tutorial

	or the CoqIDE
0.0	🔀 Coqlde
e Edit ⊻iew Navigation Iry Tactics Templates Queries <u>C</u> o	ompile <u>W</u> indows <u>H</u> elp
intro.v	
ection Examples.	Welcome to CoqIDE, an Integrated Development Envi ronment for Coq
Parameters A B C : Prop.	You are running The Coq Proof Assistant, version
	8.4pl2 (November 2013)
Lemma proof1:	
$A \rightarrow B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$.	
Proof.	
intro HA.	
intro HB.	
intro HAC. intro HBC.	
apply HAC.	
assumption.	
Qed.	
Lemma proof2:	
A - B - (A - C) - (B - C) - C.	
Proof.	
intros HA HB HAC HBC.	
apply HBC.	
assumption.	
Qed.	
Print proof1.	
Print proof.	

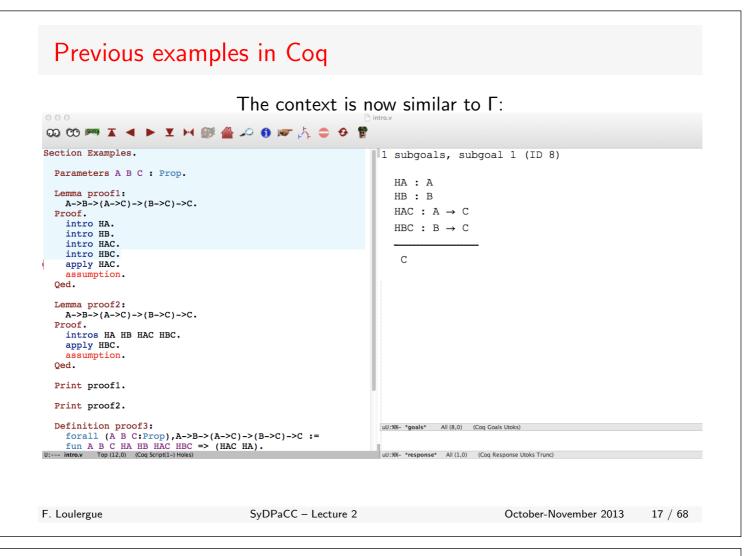
F. Loulergue





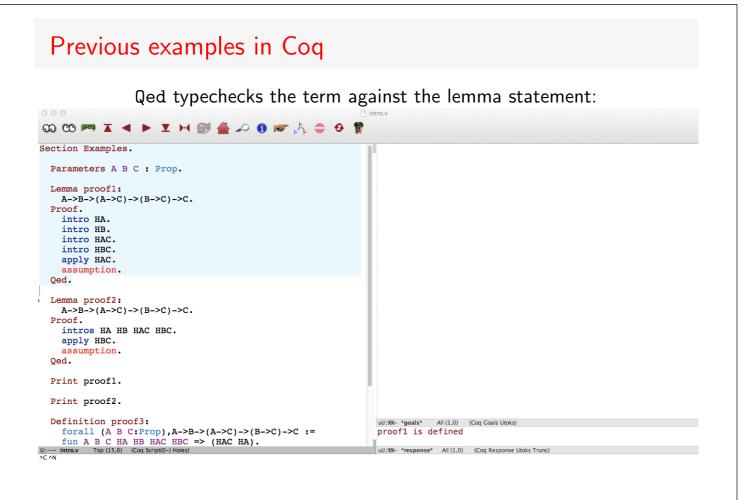
Previous exam	ples in Coq	
We state ∞ ∞ ∞ ► ▼ ► ♥		the interactive proof mode:
<pre>@ 'Proof Ceneral Welcome' 1 @ introw Section Examples. Parameters A B C : Prop. Lemma proof1: A->B->(A->C)->(B->C)->C. Proof. intro HA. intro HB. intro HB. intro HBC. apply HAC. assumption. Qed. Lemma proof2: A->B->(A->C)->(B->C)->C. Proof. intros HA HB HAC HBC. apply HBC. assumption. Qed. Print proof1. Print proof2. Definition proof3: forall (A B C:Prop), A->B-> ::== introx Top(8.0) (Cog Script(1-) Holes) AC-N</pre>		1 subgoals, subgoal 1 (ID 4) $A \rightarrow B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$ UU:36- "goals" All (4,0) (Coq Goals Utoks) UU:36- "response" All (1,0) (Coq Response Utoks Trunc)
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 15 / 68

Previous examples in Coq The tactic intro "apply" the (i) rule: 00 CO 🞮 I 🔺 🕨 I 🛏 🎯 🖀 🔎 🜖 🖝 🖧 🖨 🤣 🚏 Section Examples. 1 subgoals, subgoal 1 (ID 5) Parameters A B C : Prop. HA : A Lemma proof1: $A \rightarrow B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$. Proof. $B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$ intro HA. intro HB. intro HAC. intro HBC. apply HAC. assumption. Oed. Lemma proof2: $A \rightarrow B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$. Proof. intros HA HB HAC HBC. apply HBC. assumption. Qed. Print proof1. Print proof2. forall (A B C:Prop),A->B->(A->C)->(B->C)->C := fun A B C HA HB HAC HBC => (HAC HA). U:--- intro.v Top (9,0) (Coq Script(1-) Holes) A C AN Definition proof3: uU:9%- *goals* All (5,0) (Coq Goals Utoks) uU:%%- *response* All (1,0) (Coq Response Utoks Trunc)



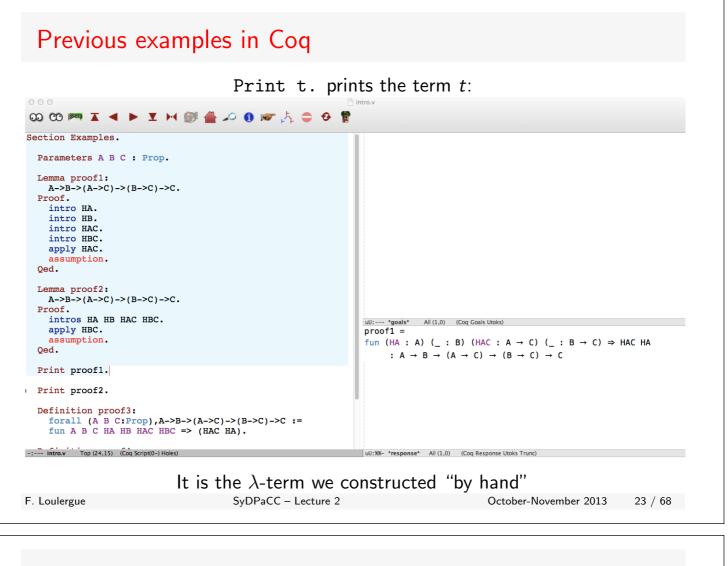
Previous examples in Coq We apply rule (a) by naming the implication part: 😡 00 🞮 🗶 🔺 🕨 🗶 🖂 🎒 🖀 🖉 0 🖝 🎠 😄 🤣 🚏 Section Examples. 1 subgoals, subgoal 1 (ID 9) Parameters A B C : Prop. HA : A Lemma proof1: HB : B $A \rightarrow B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$. HAC : $A \rightarrow C$ Proof. intro HA. HBC : $B \rightarrow C$ intro HB. intro HAC. intro HBC. Α apply HAC. assumption. Qed. Lemma proof2: A->B->(A->C)->(B->C)->C. Proof. intros HA HB HAC HBC. apply HBC. assumption. Oed. Print proof1. Print proof2. Definition proof3: uU:%%- *goals* All (8,0) (Coq Goals Utoks) forall (A B C:Prop), A->B->(A->C)->(B->C)->C := fun A B C HA HB HAC HBC => (HAC HA). - intro.v Top(13.0) (Coq Script(1-) Holes) uU:%%- *response* All (1,0) (Coq Response Utoks Trunc) U:---and so now we have only to deal with A ... F. Loulergue SyDPaCC – Lecture 2 October-November 2013 18 / 68

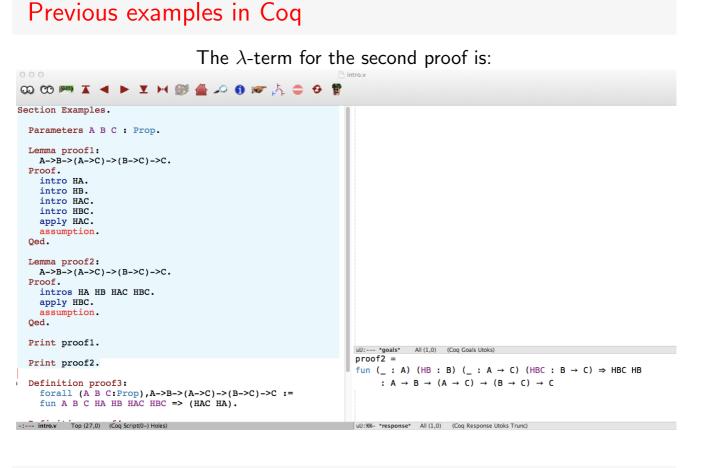
Previous	example	s in Coq		
	th	at is an assump	tion, we use rule (v):	
0 0 0 0 00 🕅 🛣 ┥ 🕨			intro.v	
	B→>C)→>C. B→>C)→>C. C HBC. C HBC. C HBC. HAC HBC ⇒ (A→>C) HAC HBC ⇒ (HAC Script(0→) Holes)	HA).	UU:%%- *goals* All (1,0) (Coq Goals Utoks) No more subgoals. UU:%%- *response* Top (1,0) (Coq Response Utoks Trunc)	
	No more	$subgoals \equiv$	proof done $\equiv \lambda$ -term built	
 Loulergue 		SyDPaCC – Lecture 2	October-November 2013	19 / 68

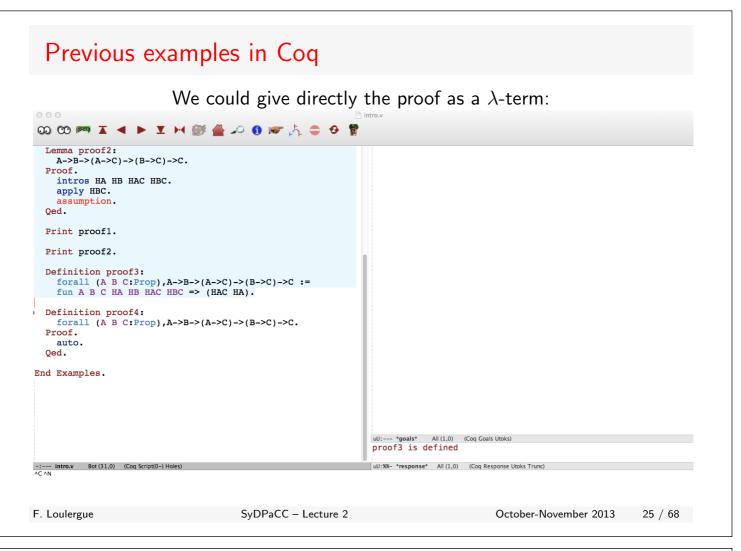


		do multiple intro:
000 🕅 🛣 🔺 🕨 🗴 🔜	鄮 📥 🗢 🗿 🖝 🆧 😄 😔 🌹	intro.v
<pre>Section Examples. Parameters A B C : Prop. Lemma proof1: A->B->(A->C)->(B->C)->C. Proof. intro HA. intro HB. intro HBC. apply HAC. assumption. Qed. Lemma proof2: A->B->(A->C)->(B->C)->C. Proof. intros HA HB HAC HBC. apply HBC. assumption. Qed. Print proof1. Print proof2.</pre>		1 subgoals, subgoal 1 (ID 19) HA : A HB : B HAC : A \rightarrow C HBC : B \rightarrow C C
Definition proof3: forall (A B C:Prop),A->B- fun A B C HA HB HAC HBC = I: introv Top (20,0) (Cog Scrip(1-) Holes)		uU:98- *goals* All (8,0) (Coq Goals Utoks)

Previous exa	mples in Coq			
	and apply HBC ins		y HAC:	
○ ○ ∞ ∞ ∞ ∡ ◀ ► ⊻ ►	• 鄮 🖀 🗢 🟮 🖝 六 😄 🔗 🚏	intro.v		
<pre>© 'Proof General Welcome' © Introx Section Examples. Parameters A B C : Prop. Lemma proof1: A->B->(A->C)->(B->C)->C Proof. intro HA. intro HB. intro HBC. apply HAC. assumption. Qed. Lemma proof2: A->B->(A->C)->(B->C)->C Proof. intros HA HB HAC HBC. apply HBC. assumption. Qed. Print proof1. Print proof1. Print proof3: forall (A B C:Prop),A-> introx Top (22,6) (Cog Scrpt(0-) Hole AC AP for goals; AC AL refreshes</pre>	<pre>>:</pre>	UU: *goals* All (1,0) (0 proof2 is defined UU:%- *response* All (1,0)	Coq Goals Utoks) (Coq Response Utoks Trunc)	
Loulergue	SyDPaCC – Lecture 2		October-November 2013	22 / 68







Previous examples in Coq ... or use Coq more powerful tactics: 😳 😳 🏧 🗶 🕨 🗶 H 🎯 🖀 🖉 🗿 🜌 📩 🤤 🤣 🚏 Lemma proof2: A->B->(A->C)->(B->C)->C. Proof. intros HA HB HAC HBC. apply HBC. assumption. Qed. Print proof1. Print proof2. Definition proof3: forall (A B C:Prop), A->B->(A->C)->(B->C)->C := fun A B C HA HB HAC HBC => (HAC HA). Definition proof4: forall (A B C:Prop), A->B->(A->C)->(B->C)->C. Proof. auto. Qed. End Examples. uU:%%- *goals* All (1,0) (Coq Goals Utoks) proof4 is defined -:--- intro.v Bot (37,0) (Coq Script(0-) Holes) uU:%%- *response* All (1,0) (Coq Response Utoks Trunc)

Outline		
1 Introduction	on	
2 Functional	l programming in Coq	
3 Stating an	nd proving properties	
4 Program e	extraction	
5 Bibliograp	hy	
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 27 / 68

Inductive definitions For "data-structures", Inductive *bool* := inductive definitions true : bool false : bool. are ML-like Definition and (b1 b2: bool) : bool := match *b1* with $| false \Rightarrow false$ Function definition by | true \Rightarrow b2 pattern-matching end. Print bool. Check bool. Check returns the type Print and. of a term Check and.

Dependent types An inductive definition could dependent on any kind of term: a type as in usual polymorphic definitions any other term Subsets and sigma-types Lists Inductive sig{A:Type}{ $P:A \rightarrow Prop$ }:Type:= OCaml: exist : $\forall x : A, P x \rightarrow \texttt{Qsig} A P$. type 'a list = | nil | cons of 'a * 'a list Haskell: data List a = | Nil a | Cons a (List a) ► Coq: Inductive list (A:Type) := | nil : list A | cons: $A \rightarrow$ list $A \rightarrow$ list A. SyDPaCC – Lecture 2 F. Loulergue October-November 2013 29 / 68

Recursive functions and notations

```
Inductive list (A:Type) :=
| nil : list A
                                                        To avoid to provide the type
| cons: A \rightarrow list A \rightarrow list A.
                                                        parameter of lists, for both nil
                                                        and cons, the type argument is
Arguments nil [A].
                                                        made implicit
Arguments cons [A] _ _.
Fixpoint app {A:Type}(xs ys : list A) : list A :=
                                                        Recursive functions must be
                                                        terminating. Simple case:
  match xs with
     | nil \Rightarrow ys
                                                        recursive call on a syntactic
     | cons \times xs \Rightarrow cons \times (app xs ys) |
                                                        sub-term of an argument
  end.
                                                        Usual notations for lists
Notation "[]" := nil.
Notation "x :: xs" := (cons x xs).
Notation "[ x1 ; ... ; x2 ]" :=
  (cons x1 .. (cons x2 []) ..).
Notation "11 ++ 12" := (app 11 12).
```

Outlin	е	
1 Ir	ntroduction	
2 F	unctional programming in Coq	
3 S	tating and proving properties	
4 P	rogram extraction	
5 B	ibliography	
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 31 / 6
F. Loulergue		October-November 2013 31 / 6
Outlin		October-November 2013 31 / 6
Outlin 1 Ir	e	October-November 2013 31 / 6
Outlin 1 Ir 2 F	e	October-November 2013 31 / 6
Outlin 1 Ir 2 F 3 S	e ntroduction unctional programming in Coq tating and proving properties More tactics Homomorphism theorems on lists	October-November 2013 31 / 6
Outlin 1 Ir 2 F 3 S	e ntroduction unctional programming in Coq tating and proving properties More tactics Homomorphism theorems on lists Partial functions	October-November 2013 31 / 6

Proofs by induction

Require Import <i>list_part1</i> .
Lemma app_nil_l : $\forall (A:Type)(xs:list A),$ [] ++ xs = xs.
Proof.
intros A xs.
simpl.
reflexivity.
Qed.
Lemma app_nil_r : $\forall (A:Type)(xs:list A),$ xs ++ [] = xs.
Proof.
intros A xs.
induction xs.
- trivial.
- simpl. rewrite <i>IHxs</i> . trivial.
Qed.
F. Loulergue SyDPaCC – Lecture 2

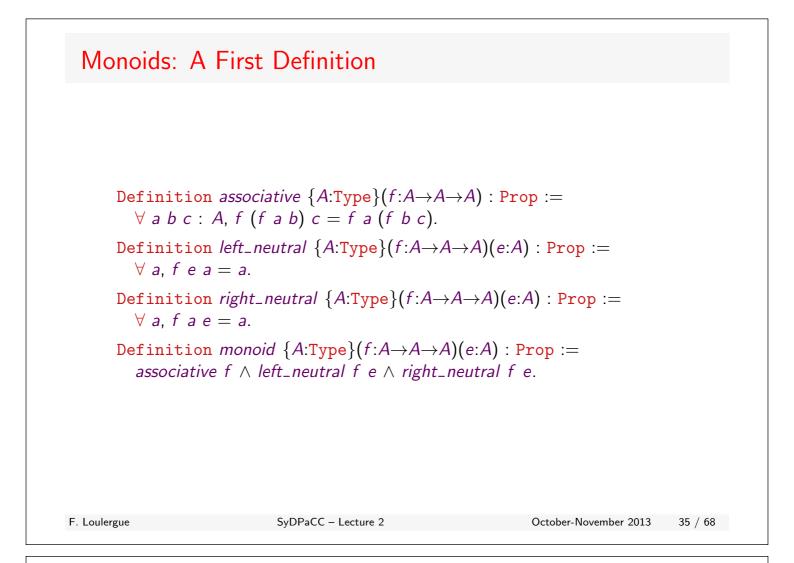
Tactics simpl: reduction of all the expressions in the goal

reflexivity: ends the proof if the goal has the form e = e

induction *e*: applies the induction principle associated to the type of *e*. Creates one sub-goal by induction case.

rewrite *H*: if *H* has the form $\forall \dots, L = R$ finds the first sub-term that matches *L* in the goal, resulting in instances *L'* and *R'*, then replaces all *L'* by *R'*. If *H* is conditional, creates new sub-goals. October-November 2013 33 / 68

<section-header>
Outline
Introduction
Functional programming in Coq
Stating and proving properties More tactics Homomorphism theorems on lists Partial functions
Program extraction
Bibliography



Monoids: $(\mathbb{N}, +, 0)$ is a monoid

Require Import hom_defs.

Lemma monoid_plus_0 : monoid plus 0. Proof.

split.

- intros a b c. induction a as [|a Ha]. + trivial. + simpl. rewrite Ha. trivial. - split. + intro a. trivial. + induction a as [|a Ha]. × trivial. × simpl. rewrite Ha. trivial.

Tactics

split: splits a conjunctive goal into two sub-goals

induction *e* **as** *pattern*: applies the induction principle for *e* using *pattern* for naming the newly introduction terms.

 $[n_1 \ n_2]$: conjunctive pattern $[n_1|n_2]$: disjunctive pattern

trivial: ends the proof either by

F. Loulergue

Folds: Definitions

```
Require Import list.
Fixpoint foldr {A \ B:Type}(op:A \rightarrow B \rightarrow B)(e:B)(xs:list \ A) : B :=
   match xs with
      | [] \Rightarrow e
      | x::xs \Rightarrow op x (foldr op e xs)
   end.
Fixpoint fold {A B: Type}(op: A \rightarrow B \rightarrow A)(e: A)(xs: list B) : A :=
   match xs with
      | [] \Rightarrow e
      | x::xs \Rightarrow foldl op (op e x) xs
   end.
```

F. Loulergue

SyDPaCC – Lecture 2

October-November 2013 37 / 68

Folds: a Lemma

```
Require Import monoid_defs fold_defs.
Lemma folds:
  \forall (A:Type)(op:A \rightarrow A \rightarrow A)(e:A),
     monoid op e 
ightarrow
     \forall xs, foldr op e xs = foldl op e xs.
Proof.
   intros A op e Hmonoid xs.
  destruct Hmonoid as [Ha [HI Hr]].
   induction xs as [|x xs Hxs].
  - trivial.
  - simpl. rewrite Hxs. clear Hxs.
     rewrite HI. generalize x. clear x.
     induction xs.
     + intro x. simpl. apply Hr.
     + intro x. simpl. rewrite HI.
       rewrite \leftarrow IHxs with (x:=op x a).
       rewrite \leftarrow IHxs, Ha.
       trivial.
Qed.
F. Loulergue
                            SyDPaCC – Lecture 2
```

destruct: splits a conjunctive (or disjunctive, or existential) *hypothesis* into two hypotheses. Could use the same renaming scheme than induction.

clear *H*: removes hypothesis *H* from the context.

generalize x: generalize the goal with respect to one of its sub-terms.

rewrite \leftarrow *H*: rewrites using the equality H from right to left. **rewrite** H1, H2: rewrite using H1, then using H2.

rewrite H with (v:=t): if H is a universaly quantified equality, binding variable v, specifies that v should be t.

October-November 2013 38 / 68

Homomorphisms

Require Export list monoid_defs. From [4] **Definition** homomorphic {A B:Type} $(h:list A \rightarrow B)(op:B \rightarrow B \rightarrow B) : Prop :=$ $\forall xs ys, h(xs ++ ys) = op (h xs) (h ys).$ Fixpoint hom { $A \ B:$ Type} $(op: B \rightarrow B \rightarrow B)(e:B)$ $(mon:monoid op e)(f:A \rightarrow B)(xs:list A) : B :=$ match xs with $|[] \Rightarrow e$ $x::xs \Rightarrow op (f x) (hom op e mon f xs)$ If f and g are functions, end. in Coq f = g iff f and g **Definition** $ext_eq \{A \ B: Type\}(f \ g: A \rightarrow B) : Prop :=$ are exactly the same. We $\forall a:A, f a = g a.$ want an equivalence Notation "f == g":=(ext_eq f g)(at level 40). relation that relates functions if their extensions are the same. F. Loulergue SyDPaCC – Lecture 2 October-November 2013 39 / 68

Homomorphisms: A Simple Property Tactics Require Import hom_defs. Lemma homomorphic_hom: $\forall \{A \ B: Type\}(h: list \ A \rightarrow B)(op: B \rightarrow B \rightarrow B)$ (Hom: homomorphic h op) (*Mon*: *monoid* op (*h* [])), $h \equiv hom \ op \ (h[]) \ Mon \ (fun \ x \Rightarrow h[x]).$ Proof. intros A B h op Hom Mon xs. induction xs as [|x xs IH]. - trivial. - simpl. **change** *e* with *e*': change (x::xs) with ([x]++xs). replaces e with e' in the rewrite Hom. goal if e and e' are rewrite IH. convertible trivial. Qed.

First Homomorphism Theorem

Require Import hom_ Theorem First_Homom		Tactics, notation, and tactical
∀{A B: Type }(op:B– (m:monoid oµ hom op e m f ≡ (•	@ <i>e</i> : if <i>e</i> has implicit parameters, makes them <i>f</i> . explicit.
<pre>Proof. intros A B op e m induction xs as [], - trivial. - simpl. now f_equ Qed.</pre>	x xs IH].	f_equal : if the goal is $f e_1 \ldots e_n = g e'_1 \ldots e'_n$ creates subgoals $f = g$, $e_1 = e'_1, \ldots e_n = e'_n$ and solves the simple ones.
		now <i>T</i> : applies tactic <i>T</i> and if it generates sub-goals tries to solve them automatically. Fails if all subgoals are not proved automatically.
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 41 / 68

Second Homomorphism Theorem I Tactics Require Import fold_defs hom_defs. **Theorem** Second_Homomorphism_Theorem: $\forall \{A \ B: \texttt{Type}\}(op: B \rightarrow B \rightarrow B)(e: B)$ $(m:monoid op e)(f:A \rightarrow B),$ (let oplus := fun $a s \Rightarrow op (f a) s$ in hom op e m f \equiv foldr oplus e) \land (let otimes := fun $r a \Rightarrow op r (f a)$ in hom op e m $f \equiv$ fold otimes e). Proof. intros A B op e m f. split. - intros oplus xs. induction xs as [| x xs IH]. + trivial. **unfold** *e*: replaces *e* by + simpl. unfold oplus. now f_equal. its definition.

Second Homomorphism Theorem II

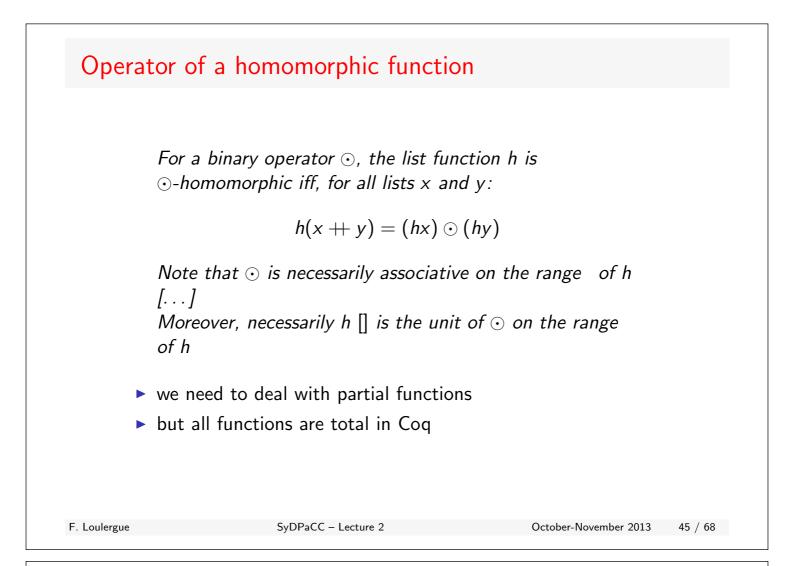
```
- intros otimes xs.
    induction xs as [| x xs IH].
    + trivial.
    + unfold otimes. simpl.
       destruct m as [Ha [Hn] Hnr]].
       rewrite Hnl. IH.
       clear IH. generalize (f x). clear x.
       induction xs as [| x xs IH].
       \times trivial.
       \times intro b. simpl.
         rewrite \leftarrow IH with (b:=op \ b \ (f \ x)).
         rewrite \leftarrow IH.
         rewrite Ha.
         repeat f_equal.
         unfold otimes. rewrite Hnl.
         trivial.
Qed.
```

F. Loulergue

SyDPaCC – Lecture 2

```
<section-header>
Outline
Introduction
Introduction
Introduction programming in Cog
Stating and proving properties
Marg tacticg
Manonorphism theorems on lists
Data functions
Introductions
Introductions
```

October-November 2013 43 / 68



Partial functions Ways to deal with partiality using only total functions: Function returning an optional value Inductive option (A : Type) : Type := Some : $A \rightarrow option A$ None : option A. Require Import list. Fixpoint nth_option{A:Type}(n:nat)(xs:list A):option A:= match xs with $| [] \Rightarrow None$ $| x::xs \Rightarrow$ match *n* with $| 0 \Rightarrow Some x$ $| S n \Rightarrow nth_option n xs$ end end.

Partial functions Ways to deal with partiality using only total functions: Function taking an additional parameter that is returned if outside the range: Require Import list. Fixpoint nth {A:Type}(n:nat)(xs:list A)(default:A): A := match xs with $| [] \Rightarrow default$ $x::xs \Rightarrow$ match *n* with $| 0 \Rightarrow x$ $|S n \Rightarrow nth n xs default$ end end. SyDPaCC – Lecture 2 F. Loulergue October-November 2013 47 / 68

Partial functions

Ways to deal with partiality using only total functions:

```
Function with pre-conditions on the parameters

Require Import list.

Require Import Omega Program.

Local Obligation Tactic :=

(program_simpl; simpl in *; omega).

Program Fixpoint nth_pre {A:Type}(n:nat)(xs:list A)

(H: n < length xs): A :=

match xs with

|[] \Rightarrow _

| x::xs \Rightarrow match n with

|0 \Rightarrow x

| S n \Rightarrow nth_pre n xs _

end

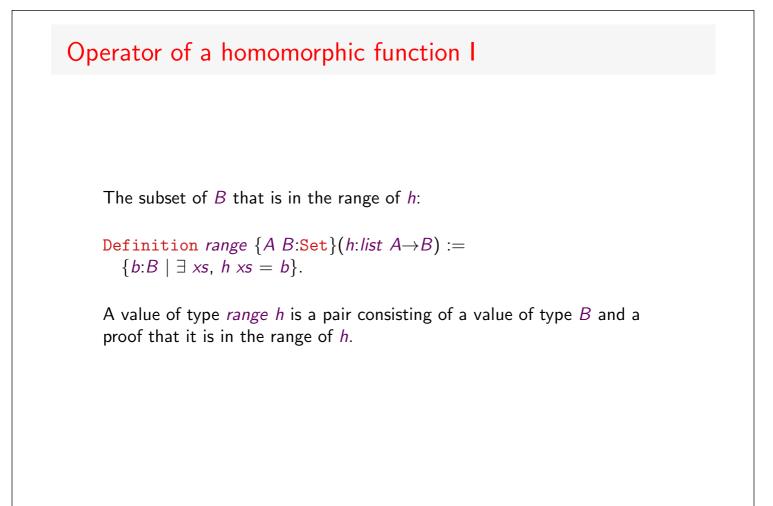
end.
```

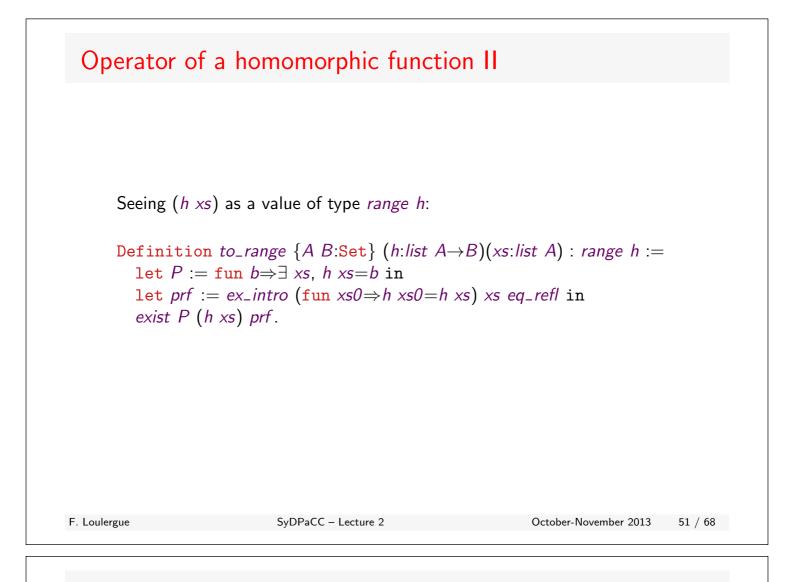
F. Loulergue

Partial functions

Ways to deal with partiality using only total functions:

```
Function with pre-conditions on the parameters
      Program Fixpoint nth_sig {A:Type}(xs:list A)
                 (n:\{n:nat|n < length xs\}): A :=
         match xs with
            |[] \Rightarrow _{-}
            x::xs \Rightarrow match n with
                              | 0 \Rightarrow x
                              |S n \Rightarrow nth_sig xs n
                           end
         end.
         • where \{x : A \mid P \mid x\} is a notation for (a \in A \mid P \mid x)
         ▶ a value of this type is a dependent pair containing:
               a value x of type A
               a proof of P x
                            SyDPaCC – Lecture 2
                                                                October-November 2013 49 / 68
F. Loulergue
```





Operator of a homomorphic function III

To get the value of type B from a *range* h:

```
Definition of_range1 {A B:Set} {h:list A \rightarrow B}(b:range h): B := match b with

| exist b _ \Rightarrow b

end.
```

A more generic function is defined in Coq library: $proj1_sig$. To get the proof of type $\exists xs, h xs = b$ from a range h:

```
Definition of_range2 {A B:Set} {h:list A \rightarrow B}(b:range h):

\exists xs, h xs = of_range1 b :=

match b with

\mid exist \_ prf \Rightarrow prf

end.
```

A more generic function is defined in Coq library: proj2_sig.

Operator of	f a homomorphic functio	n IV
It is not po	ossible to define such a function:	
	on list_of_range {A B:Set} {h:list	$(A \rightarrow B)$ (b:range h): list A.
Proof. Abort.		
ADOL C.		
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 53 / 68
I. Louieigue		
	f a homomorphic functio	n V
	f a homomorphic functio	n V
Operator of		
	na:	n V Tactics

An auxiliary lemma:TacticsLemma range_op: $\langle A B:Set \} (h:list A \rightarrow B)(op:B \rightarrow B \rightarrow B)$
(hom:homomorphic h op)(b1 b2:B),
($\exists xs1, h xs1 = b1$) \rightarrow
($\exists xs2, h xs2 = b2$) \rightarrow
($\exists xs, h xs = op b1 b2$). \neg Proof.intros A B h op hom b1 b2
[xs1 Hb1] [xs2 Hb2].
rewrite \leftarrow Hb1, \leftarrow Hb2, \leftarrow hom.
exists (xs1++xs2).
reflexivity.exists e: if the goal has
the form $\exists x.g.$, provides a
x and the goal becomes g

Operator of a homomorphic function	on VI
Using the Program feature of Coq, we define an operator on the range of h , from this operator and h :	Tactics
Program Definition restrict $\{A \ B: Set\}$ $\{h: list \ A \rightarrow B\}(op: B \rightarrow B \rightarrow B)$ $(hom: homomorphic \ h \ op):$ range $h \rightarrow range \ h \rightarrow range \ h :=$	
fun (x y:range h) \Rightarrow op x y. Next Obligation. destruct x as [x [xs Hx]]. destruct y as [y [ys Hy]]. apply range_op.	eexists : creates an existantial variable and gives it as a witness. At the end of the proof there shoud be no remaining existential variable.
 trivial. eexists. simpl. eassumption. eexists. eassumption. Defined. 	eassumption: same as assumption but could eliminate existential variables in the goal.

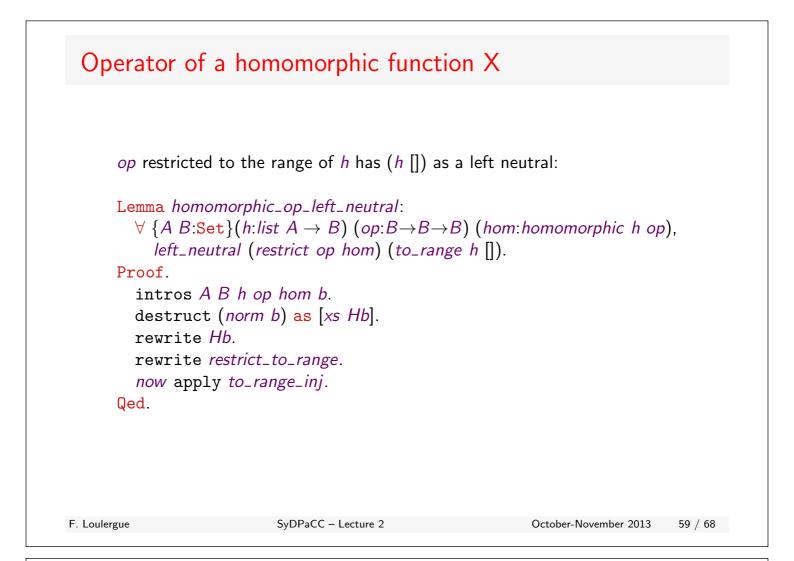
```
F. Loulergue
```

SyDPaCC – Lecture 2

October-November 2013 55 / 68

Stote State Sta

Operator of a homomorphic function IX *restrict* and *to_range* composition: Lemma restrict_to_range: $\forall \{A B: \texttt{Set}\} \{h: list A \rightarrow B\} \{op: B \rightarrow B \rightarrow B\}$ (hom:homomorphic h op) (xs ys:list A), restrict op hom (to_range h xs)(to_range h ys) = $to_range h (xs++ys).$ Proof. This lemma could be intros A B h op hom xs ys. proven because *restrict* unfold restrict, restrict_obligation_1, to_range. and its associated simpl. obligation rewrite \leftarrow hom. *restrict_obligation_1* reflexivity. have been carefully Qed. designed and made transparent using Defined instead of Qed.



Operator of a homomorphic function XII

Tactic & Tactical op restricted to the range of h is associative: Lemma homomorphic_op_assoc: $\forall \{A B: \texttt{Set}\}(h: list A \rightarrow B)(op: B \rightarrow B \rightarrow B)$ (hom:homomorphic h op), associative (restrict op hom). Proof. **subst**: rewrites in the intros A B h op hom b1 b2 b3. goal and the context destruct (norm b1) as [xs1 Hb1]. using all the equalities of destruct (norm b2) as [xs2 Hb2]. the context that have the destruct (norm b3) as [xs3 Hb3]. form v = e where v is a subst. variable, then clears all repeat rewrite *restrict_to_range*. these equalities. apply to_range_inj. rewrite app_assoc. **repeat** T: repeats the trivial. tactic T until its Qed. application fails.

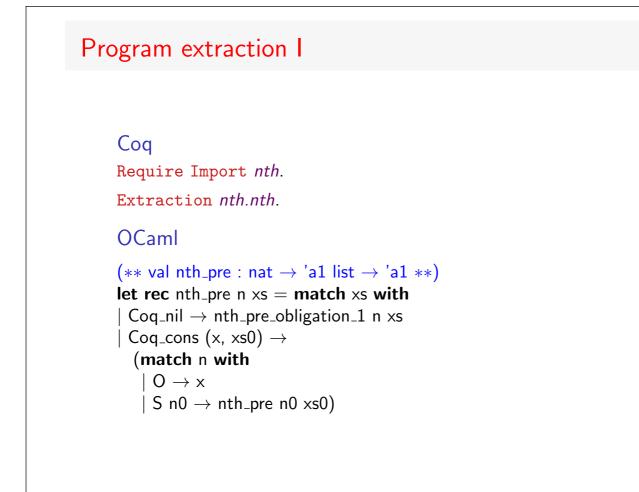
October-November 2013 61 / 68

F. Loulergue

SyDPaCC – Lecture 2

Dealing with subset/sigma types Subset/sigma types Inductive sig{A:Type}{ $P:A \rightarrow Prop$ }:Type:= exist : $\forall x : A, P x \rightarrow \texttt{Osig} A P$. Alternative solutions (not possible in all cases): The proof part has for type an equality on a type with decidable equality: In this case the unicity of the equality proofs is proved² • Prove that given a value v the proof of P v is unique Carefull design of the functions and proofs so that the equality of proofs is true in the cases your are interested in, Use of the proof irrevelance axiom, in Coq.Logic.ProofIrrelevance: Axiom proof_irrelevance : \forall (P:Prop) (p1 p2:P), p1 = p2. and its consequences in *ProofIrrelevanceTheory* ²see Coq.Logic.Eqdep_dec F. Loulergue SyDPaCC – Lecture 2 October-November 2013 62 / 68

Outline			
1 Introduction	on		
2 Functional	l programming in Coq		
3 Stating an	d proving properties		
4 Program e	extraction		
5 Bibliograp	hy		
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 63 / 6	



Program extraction II

Coq Require Import *nth*. Recursive Extraction *nth.nth_pre*. OCaml type nat = |O| S of nat type 'a list = |Ni| | Cons of 'a * 'a list $(** val nth_pre_obligation_1 : nat <math>\rightarrow$ 'a1 list \rightarrow 'a1 **) let nth_pre_obligation_1 n xs = assert false (* absurd case *) (** val nth_pre : nat \rightarrow 'a1 list \rightarrow 'a1 **) let rec nth_pre n xs = match xs with $|Ni| \rightarrow$ nth_pre_obligation_1 n xs $|Cons (x, xs0) \rightarrow (match n with)$ $|O \rightarrow x|$ $|S n0 \rightarrow$ nth_pre n0 xs0)

F. Loulergue

SyDPaCC – Lecture 2

October-November 2013 65 / 68

Program extraction III

Coq

Require Import nth.

```
Extract Inductive list \Rightarrow "list" ["[]" "(::)"].
```

Extraction *nth.nth_sig*.

```
OCaml
```

```
(** val nth_sig : 'a1 list \rightarrow nat \rightarrow 'a1 **)

let rec nth_sig xs n =

match xs with

| [] \rightarrow nth_sig_obligation_1 xs n

| x::xs0 \rightarrow

(match n with

| O \rightarrow x

| S n0 \rightarrow nth_sig xs0 n0)
```

Outline		
1 Introduc	tion	
2 Function	al programming in Coq	
3 Stating a	and proving properties	
4 Program	extraction	
5 Bibliogra	iphy	
F. Loulergue	SyDPaCC – Lecture 2	October-November 2013 67 / 68
Bibliography	<i>x</i>]	
Bibliography	y	
[1] Y. Berte	y ot. Coq in a hurry, 2006. /hal.inria.fr/inria-000011	173.
 [1] Y. Berto http:/ [2] Y. Berto 	ot. Coq in a hurry, 2006. /hal.inria.fr/inria-000011 ot and P. Castéran. <i>Interactive</i> 7	
 [1] Y. Berto http:// [2] Y. Berto Program [3] A. Chlip Depend 	ot. Coq in a hurry, 2006. /hal.inria.fr/inria-000011	Theorem Proving and mming and Proving with ormalized Reasoning, 3(2),
 [1] Y. Berton [2] Y. Berton [2] Y. Berton [3] A. Chlip [3] A. Chlip [4] J. Gibbon [4] J. Gibbon 	ot. Coq in a hurry, 2006. /hal.inria.fr/inria-000011 ot and P. Castéran. <i>Interactive</i> <i>n Development</i> . Springer, 2004. oala. An Introduction to Programent Types in Coq. <i>Journal of Fo</i>	Theorem Proving and mming and Proving with ormalized Reasoning, 3(2),