An Introduction to Program Verification with the Coq Proof Assistant
 NII Lectures Series
 国立情報学研究所
 National Institute of Informatics

Frédéric Loulergue

Université d＇Orléans－LIFO－PaMDA Team

October－November 2013

Outline

（1）Introduction
（2）Functional programming in Coq
（3）Stating and proving properties

4）Program extraction
（5）Bibliography

The Coq Proof Assistant I

ACM SIGPLAN Software Award 2013
The Coq proof assistant provides a rich environment for interactive development of machine-checked formal reasoning. Coq is having a profound impact on research on programming languages and systems [...] It has been widely adopted as a research tool by the programming language research community [...] Last but not least, these successes have helped to spark a wave of widespread interest in dependent type theory, the richly expressive core logic on which Coq is based.
[...] The Coq team continues to develop the system, bringing significant improvements in expressiveness and usability with each new release.
In short, Coq is playing an essential role in our transition to a new era of formal assurance in mathematics, semantics, and program verification.

The Coq Proof Assistant II

Foundations

- Calculus of inductive constructions
- Curry-Howard correspondance

Curry-Howard Correspondance

Natural Deduction
(v) $\frac{A \in \Gamma}{\Gamma \vdash A}$
(i) $\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}$
(a) $\frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}$

Simply Typed λ-Calculus
(V) $\frac{x: A \in \Gamma}{\Gamma \vdash x: A}$
(L) $\frac{\Gamma, x: A \vdash e: B}{\Gamma \vdash(\lambda x: A . e): A \rightarrow B}$
$(A) \frac{\Gamma \vdash e: A \rightarrow B \Gamma \vdash e^{\prime}: A}{\Gamma \vdash\left(e e^{\prime}\right): B}$

Curry-Howard Correspondance

Natural Decduction - Example 1

$$
\begin{array}{r}
\left(\text { (a) } \frac{(v) \frac{A \rightarrow C \in \Gamma}{\Gamma \equiv A, B, A \rightarrow C, B \rightarrow C \vdash C}}{\Gamma \equiv C} \quad(v) \frac{A \in \Gamma}{\Gamma \vdash A}\right. \\
(i) \frac{(i) B, A \rightarrow C \vdash(B \rightarrow C) \rightarrow C}{A, B \vdash(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C} \\
(i) \frac{(i) \cdot B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C}{}
\end{array}
$$

Curry-Howard Correspondance

Natural Decduction - Example 2

$$
(i) \frac{(i) \frac{A \vdash B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C}{\vdash A \rightarrow B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C}}{\vdash}
$$

Curry-Howard Correspondance

λ-calculus: find a term with the given type

$$
\begin{aligned}
& (L) \frac{(A) \frac{(V) \frac{f: A \rightarrow C \in \Gamma}{\Gamma \vdash f(A \rightarrow C}}{\Gamma: A: A, y: B, f: A \rightarrow C, g: B \rightarrow C \vdash ?} \quad(V) \frac{x: A \in \Gamma}{\Gamma \vdash x: A}}{} \\
& (L) \frac{(L) \frac{(B \rightarrow C) \rightarrow C}{x: A, y: B \vdash ?} \frac{x: A \rightarrow C \vdash ?}{x: A \vdash ?}}{\vdash ?} \quad: B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C \\
& (L)
\end{aligned}
$$

$$
\begin{aligned}
& \lambda x: A . \lambda y: B . \lambda f: A \rightarrow C . \lambda g: B \rightarrow C .(f x) \\
& \text { is a way to encode the proof tree of } \\
& \quad A \rightarrow B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C
\end{aligned}
$$

Curry-Howard Isomomorphism

For all formula there exists a proof of this formula in natural deduction if and only if there exists a λ-term that has this formula as type.

- Theorem statement \Leftrightarrow Type
- Proof \Leftrightarrow Program

Coq in practice

- Functional programming language
- Rich type system: allow to express logical properties
- Language for building proofs (ie proof terms)
- Program extraction

Previous examples in Coq

The Proof General mode for Emacs ...

Previous examples in Coq

... or the CoqIDE

Eile Edit View Navigation Iry Tactics Templates Queries Compile Windows Help

Ointro.v|

Section Examples.
Parameters A B C : Prop.

Lemma proof1:
$A \rightarrow>B \rightarrow>(A->C)->(B->C)->C$.

Proof.

intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A->B->(\mathrm{A}->\mathrm{C})->(\mathrm{B}->\mathrm{C})->\mathrm{C}$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.

Welcome to CoqIDE, an Integrated Development Envi ronment for Coq
You are running The Coq Proof Assistant, version $8.4 \mathrm{pl2}$ (November 2013)

Previous examples in Coq

We open the file intro. v^{1} :

Section Examples.
Parameters A B C : Prop.
Lemma proof1:
$\mathrm{A} \rightarrow>\mathrm{B} \rightarrow>(\mathrm{A}->\mathrm{C}) \rightarrow(\mathrm{B}->\mathrm{C})->\mathrm{C}$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A->B \rightarrow(A->C) \rightarrow(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.

Definition proof3:
forall (A B C:Prop), A->B->(A->C)->(B->C)->C :=
fun A B C HA HB HAC HBC \Rightarrow (HAC HA).
U:--- intro.v
Beginning of buffer
${ }^{1}$ available at http://frederic.loulergue.eu/nii2013
F. Loulergue

Previous examples in Coq

We start to feed Coq with the commands:

Section Examples.
Parameters A B C : Prop.
Lemma proof1:
$A->B \rightarrow>(A->C)->(B->C)->C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A \rightarrow B \rightarrow(A->C) \rightarrow(B->C) \rightarrow C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.

```
uU:--- "goals* All (1,0) (Coq Goals Utoks)
    A is assumed
    B is assumed
\(C\) is assumed
```

Print proof2.
Definition proof3:
forall (A B C:Prop),A->B->(A->C)->(B->C)->C :=

| $-:---$ intro.v Top (4,0) (Coq Script(0-) Holes) | uU: $\%$ \%- *- *response* | All (1,0) | (Coq Response Utoks Trunc) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Previous examples in Coq

We state a lemma and enter the interactive proof mode:

Q Proof General welcome** intro.v $\quad \square \quad 1$ subgoals, subgoal 1 (ID 4) Section Examples.

Parameters A B C : Prop.
Lemma proof1:
$A \rightarrow B->(A->C) \rightarrow(B->C) \rightarrow C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A->B->(A->C)->(B->C) \rightarrow C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof 3 :
forall (A B C:Prop), A->B->(A->C)->(B->C)->C :=
$\stackrel{-:-- \text { intro.v } \quad \text { Top }(8,0) \quad \text { (Coq Script(1-) Holes) }}{\wedge \text { C }}$

Previous examples in Coq

The tactic intro "apply" the (i) rule:

Section Examples.
Parameters A B C : Prop.
Lemma proof1:
$A \rightarrow>B \rightarrow(A->C) \rightarrow(B->C)->C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$\mathrm{A} \rightarrow \mathrm{B} \rightarrow>(\mathrm{A}->\mathrm{C}) \rightarrow(\mathrm{B}->\mathrm{C}) \rightarrow \mathrm{C}$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof 3 :
forall (A B C:Prop), A $->B->(A->C)->(B->C)->C:=$
uU: wso- *goals* All (5,0) (Coq Goals Utoks)
fun A B C HA HB HAC HBC \Rightarrow (HAC HA).
$\stackrel{\mathrm{U}:--- \text { in }}{\wedge C}$

Previous examples in Coq

The context is now similar to Γ :

Section Examples.

```
Parameters A B C : Prop.
```

Lemma proof1:
$A->B->(A->C)->(B->C)->C$.
Proof.
intro HA.
intro HB .
intro HAC.
intro HBC.
| apply HAC.
assumption.
Qed.
Lemma proof2:
$A->B \rightarrow(A->C)->(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:
forall (A B C:Prop), A->B->(A->C)->(B->C)->C :=
fun A B C HA HB HAC HBC \Rightarrow (HAC HA).

Previous examples in Coq

We apply rule (a) by naming the implication part:

Section Examples.

Parameters A B C : Prop.

Lemma proof1:
$A->B->(A->C) \rightarrow(B->C) \rightarrow C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A \rightarrow B \rightarrow(A->C) \rightarrow(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.

Definition proof 3 :
 forall (A B C:Prop), A->B->(A->C) $->(\mathrm{B}->\mathrm{C})->\mathrm{C}:=$

fun A B C HA HB HAC HBC \Rightarrow (HAC HA).

1 subgoals, subgoal 1 (ID 9)

HA : A
$\mathrm{HB}: \mathrm{B}$
HAC : A \rightarrow C
HBC : B \rightarrow C

A
uU: $\$$ \%- "goals* All $(8,0) \quad$ (Coq Goals Utoks)
uU:\$\%- *response* All $(1,0) \quad$ (Coq Response Utoks Trunc)

Previous examples in Coq

\ldots that is an assumption, we use rule (v):

Section Examples.

```
Parameters A B C : Prop.
```


Lemma proof1:

$A->B->(A->C)->(B->C)->C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A->B->(A->C)->(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:
forall (A B C:Prop), A->B->(A->C) $->(B->C)->C$: $=$
fun A B C HA HB HAC HBC \Rightarrow (HAC HA).
$\underset{\wedge \mathrm{C} \wedge \mathrm{N}}{\mathrm{U}:--\mathrm{intr}}$
"No more subgoals" \equiv proof done $\equiv \lambda$-term built
F. Loulergue

Previous examples in Coq

Qed typechecks the term against the lemma statement:

Section Examples.
Parameters A B C : Prop.
Lemma proof1:
$A->B->(A->C)->(B->C)->C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC .
apply HAC.
assumption.
Qed.
Lemma proof2:
$A->B->(A->C)->(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:
fun A B C HA HB HAC HBC \Rightarrow (HAC HA).

Previous examples in Coq

Second version, we do multiple intro:

Section Examples.

Parameters A B C : Prop.

Lemma proof1:
$A->B->(A->C)->(B->C)->C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A \rightarrow B->(A->C)->(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:

> forall (A B C:Prop), A->B->(A->C) ->(B->C) ->C :=
fun A B C HA HB HAC HBC $=>$ (HAC HA).
U:--- intro.v Top (20,0) (Coq Script(1-) Holes)

11 subgoals, subgoal 1 (ID 19)

HA : A
HB : B
$\mathrm{HAC}: \mathrm{A} \rightarrow \mathrm{C}$
$\mathrm{HBC}: \mathrm{B} \rightarrow \mathrm{C}$

C

\square
-
Lemma proof $1:$
$A \rightarrow B->(A->C) \rightarrow(B->C) \rightarrow C$.
U:--- introv Top (20,0) (Coq Script(1-) Holes) $\quad \underset{\text { fun }}{ }$

Previous examples in Coq

and apply HBC instead of apply HAC:

Section Examples.
Parameters A B C : Prop.
Lemma proof1:
$A \rightarrow>B->(A->C) \rightarrow(B->C)->C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A \rightarrow>B \rightarrow(A->C) \rightarrow(B->C) \rightarrow C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:
forall (A B C:Prop), A->B->(A->C) \rightarrow (B->C) $->C$:=
-:--- intro.v Top (22,6) (Coq Script(0-) Holes)

uU:--- *goals* All (1,0) (Coq Goals Utoks)

proof2 is defined

Previous examples in Coq

Print t. prints the term t :

Section Examples.

Parameters A B C : Prop.
Lemma proof1:
$A \rightarrow B \rightarrow(A->C) \rightarrow(B->C) \rightarrow C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A \rightarrow B \rightarrow(A->C)->(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:
forall (A B C:Prop), A->B->(A->C) $->(B->C)->C:=$ fun A B C HA HB HAC HBC \Rightarrow (HAC HA).

uu:--- "goals" All (1,0) (Coq Goals Utoks)

proof1
fun (HA : A) (_ : B) (HAC : A \rightarrow C) $\left(__{-}: B \rightarrow C\right) \Rightarrow$ HAC HA $: A \rightarrow B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C$

It is the λ-term we constructed "by hand"

Previous examples in Coq

The λ-term for the second proof is:

Section Examples.
Parameters A B C : Prop.
Lemma proof1:
$A->B->(A->C)->(B->C)->C$.
Proof.
intro HA.
intro HB.
intro HAC.
intro HBC.
apply HAC.
assumption.
Qed.
Lemma proof2:
$A \rightarrow B->(A->C)->(B->C)->C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.

```
uU:--- *goals* All (1,0) (Coq Goals Utoks)
proof2 =
fun (_ : A) (HB : B) (_ : A ->C) (HBC : B ->C) => HBC HB
```

 Definition proof3:
 forall (A B C:Prop), A->B->(A->C) \(->(B->C)->C:=\)
 fun A B C HA HB HAC HBC \(\Rightarrow\) (HAC HA).

Previous examples in Coq

We could give directly the proof as a λ-term:

$\underset{A \rightarrow B->(A->C)->(B->C)->C .}{\text { Lemma }}$
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:
forall (A B C:Prop), A->B->(A->C) ->(B->C) ->C :=
fun A B C HA HB HAC HBC $=>$ (HAC HA).
Definition proof4:
forall (A B C:Prop), A->B-> (A->C) $->(B->C)->C$.
Proof.
auto.
Qed.
End Examples.

Previous examples in Coq

... or use Coq more powerful tactics:

Lemma proof2:
$\xrightarrow[A \rightarrow B \rightarrow]{L}(A->C) \rightarrow(B->C) \rightarrow C$.
Proof.
intros HA HB HAC HBC.
apply HBC.
assumption.
Qed.
Print proof1.
Print proof2.
Definition proof3:
forall (A B C:Prop), A->B->(A->C)->(B->C)->C :=
fun A B C HA HB HAC HBC \Rightarrow (HAC HA).
Definition proof4:
forall (A B C:Prop), A \rightarrow B $->(A->C) \rightarrow(B->C)->C$.
Proof.
auto.
Qed.
End Examples.

Outline

(1) Introduction
(2) Functional programming in Coq
(3) Stating and proving properties
(4) Program extraction
(5) Bibliography

Inductive definitions

Inductive bool :=
| true: bool
| false: bool.
Definition and (b1 b2: bool) : bool := match b1 with
| false \Rightarrow false
| true \Rightarrow b2
end.
Print bool.
Check bool.
Print and.
Check and.

For "data-structures", inductive definitions are ML-like

Function definition by pattern-matching

Check returns the type of a term

Dependent types

An inductive definition could dependent on any kind of term:

- a type as in usual polymorphic definitions
- any other term

Lists

- OCaml:
type 'a list $=$
| nil | cons of 'a * 'a list

Subsets and sigma-types
Inductive $\operatorname{sig}\{A:$ Type $\}\{P: A \rightarrow$ Prop $\}:$ Type: $=$ exist : $\forall x: A, P x \rightarrow @$ sig $A P$.

- Haskell:
data List $\mathrm{a}=$
Nil a | Cons a (List a)
- Coq:

Inductive list (A :Type) $:=$ | nil: list A \mid cons: $A \rightarrow$ list $A \rightarrow$ list A.

Recursive functions and notations

Inductive list (A:Type) :=
| nil : list A
| cons: $A \rightarrow$ list $A \rightarrow$ list A.
Arguments nil $[A]$.
Arguments cons $[A]$ _ -.
Fixpoint app $\{A: T y p e\}(x s$ ys :list $A)$: list $A:=$ match xs with

$$
\mid \text { nil } \Rightarrow \text { ys }
$$ end.

Notation " []" := nil.
To avoid to provide the type parameter of lists, for both nil and cons, the type argument is made implicit

Recursive functions must be terminating. Simple case: recursive call on a syntactic

$$
\text { cons } x \times s \Rightarrow \text { cons } x(a p p x s y s)
$$ sub-term of an argument

Notation "x $:: \times s$ " $:=($ cons $\times x s)$.
Notation "[x1 ; .. ; x2]":= (cons x1 .. (cons x2 []) ..).
Notation "I1 + + I2" :=(app I1 I2).

Outline

(1) Introduction
(2) Functional programming in Coq
(3) Stating and proving properties
4) Program extraction
(5) Bibliography

Outline

(1) Introduction
(2) Functional programming in Coq
(3) Stating and proving properties

More tactics

Homomorphism theorems on lists
Partial functions
4) Program extraction
(5) Bibliography

Proofs by induction

Require Import list_part1.
Lemma app_nil_l: $\forall(A$:Type $)(x s:$ list $A)$,
[]$++x s=x s$.
Proof.
intros $A x s$.
simpl.
reflexivity.
Qed.
Lemma app_nil_r:
$\forall(A$:Type $)(x s:$ list $A)$,
$x s++[]=x s$.
Proof.
intros A xs.
induction x.

- trivial.
- simpl. rewrite $/ H x s$. trivial.

Qed.
F. Loulergue

SyDPaCC - Lecture 2

Tactics

simpl: reduction of all the expressions in the goal
reflexivity: ends the proof if the goal has the form $e=e$
induction e: applies the induction principle associated to the type of e. Creates one sub-goal by induction case.
rewrite H : if H has the form $\forall \ldots, L=R$ finds the first sub-term that matches L in the goal, resulting in instances L^{\prime} and R^{\prime}, then replaces all L^{\prime} by R^{\prime}. If H is conditional, creates new sub-goals.

Outline

(1) Introduction
(2) Functional programming in Coq
(3) Stating and proving properties

More tactics

Homomorphism theorems on lists
Partial functions
4) Program extraction
(5) Bibliography

Monoids: A First Definition

Definition associative $\{A:$ Type $\}(f: A \rightarrow A \rightarrow A)$: Prop := $\forall a b c: A, f(f a b) c=f a(f b c)$.
Definition left_neutral $\{A: T y p e\}(f: A \rightarrow A \rightarrow A)(e: A)$: Prop $:=$ $\forall a, f e a=a$.
Definition right_neutral $\{A: T y p e\}(f: A \rightarrow A \rightarrow A)(e: A):$ Prop $:=$ $\forall a, f a e=a$.

Definition monoid $\{A: T y p e\}(f: A \rightarrow A \rightarrow A)(e: A)$: Prop $:=$ associative $f \wedge$ left_neutral $f e \wedge$ right_neutral $f e$.

Monoids: $(\mathbb{N},+, 0)$ is a monoid

Require Import hom_defs.
Lemma monoid_plus_0 : monoid plus 0.
Proof.
split.

- intros a b c.
induction a as [|a Ha].
+ trivial.
+ simpl. rewrite $H a$. trivial.
- split.
+ intro a. trivial.
+ induction a as [|a Ha]. \times trivial. \times simpl. rewrite H. trivial. Qed.

Tactics

split: splits a conjunctive goal into two sub-goals
induction e as pattern: applies the induction principle for e using pattern for naming the newly introduction terms.
[$\left.\begin{array}{ll}n_{1} & n_{2}\end{array}\right]$: conjunctive pattern [$n_{1} \mid n_{2}$]: disjunctive pattern
trivial: ends the proof either by

Folds: Definitions

Require Import list.
Fixpoint foldr $\{A B:$ Type $\}(o p: A \rightarrow B \rightarrow B)(e: B)(x s: l i s t ~ A): B:=$ match xs with
| [] $\Rightarrow e$
$\mid x:: x s \Rightarrow$ op x (foldr op exs)
end.
Fixpoint foldl $\{A B: T y p e\}(o p: A \rightarrow B \rightarrow A)(e: A)(x s: l i s t ~ B): A:=$ match xs with
| [] $\Rightarrow e$
$\mid x:: x s \Rightarrow$ foldl op $(o p e x) x s$
end.

Folds: a Lemma

Require Import monoid_defs fold_defs. Lemma folds:
$\forall(A: T y p e)(o p: A \rightarrow A \rightarrow A)(e: A)$, monoid op $e \rightarrow$
$\forall x$ s, foldr op e xs $=$ foldl op exs.
Proof.
intros A op e Hmonoid xs.
destruct Hmonoid as [Ha [HI Hr]].
induction xs as [|x xs Hxs].

- trivial.
- simpl. rewrite $H x s$. clear $H x s$. rewrite H. generalize x. clear x. induction $x s$.
+ intro x. simpl. apply Hr .
+ intro x. simpl. rewrite H. rewrite $\leftarrow I H x s$ with $(x:=o p \times a)$. rewrite $\leftarrow I H x s, H a$. trivial.
Qed.
destruct: splits a conjunctive (or disjunctive, or existential) hypothesis into two hypotheses.
Could use the same renaming scheme than induction.
clear H : removes hypothesis H from the context.
generalize x : generalize the goal with respect to one of its sub-terms.
rewrite $\leftarrow H$: rewrites using the equality H from right to left. rewrite $H 1, H 2$: rewrite using $H 1$, then using $H 2$.
rewrite H with ($\mathrm{v}:=\mathrm{t}$): if H is a universaly quantified equality, binding variable v, specifies that v should be t.

Homomorphisms

Require Export list monoid_defs.
Definition homomorphic $\{A B:$ Type $\}$

From [4]

$(h:$ list $A \rightarrow B)(o p: B \rightarrow B \rightarrow B):$ Prop $:=$
$\forall x s y s, h(x s++y s)=o p(h x s)(h y s)$.
Fixpoint hom $\{A B: T y p e\}(o p: B \rightarrow B \rightarrow B)(e: B)$
(mon:monoid op e)(f:A $\rightarrow B)(x s: l i s t ~ A): B:=$ match $x s$ with

$$
\left\lvert\, \begin{aligned}
& {[] \Rightarrow e} \\
& x:: x s \Rightarrow o p(f x)(\text { hom op e mon } f x s)
\end{aligned}\right.
$$

end.
Definition ext_eq $\{A B:$ Type $\}(f g: A \rightarrow B)$: Prop $:=$ $\forall a: A, f a=g a$.
Notation " $\mathrm{f}==\mathrm{g}$ ":=(ext_eq $f \mathrm{~g})($ at level 40).

If f and g are functions, in Coq $f=g$ iff f and g are exactly the same. We want an equivalence relation that relates functions if their extensions are the same.

Homomorphisms: A Simple Property

Require Import hom_defs.
Lemma homomorphic_hom:
$\forall\{A$ B:Type $\}(h:$ list $A \rightarrow B)(o p: B \rightarrow B \rightarrow B)$
(Hom: homomorphic h op)
(Mon: monoid op (h [])),
$h \equiv$ hom op $(h[])$ Mon (fun $x \Rightarrow h[x]$).
Proof.
intros $A B$ op Hom Mon xs.
induction xs as [|x xs $I H$].

- trivial.
- simpl.
change ($x:: x s$) with $([x]++x s)$.
rewrite Hom.
rewrite $I H$.
trivial.

Tactics

change e with e^{\prime} :
replaces e with e^{\prime} in the goal if e and e^{\prime} are convertible

Qed.

First Homomorphism Theorem

Require Import hom_defs.
Theorem First_Homomorphism_Theorem:
$\forall\{A B:$ Type $\}(o p: B \rightarrow B \rightarrow B)(e: B)$
(m :monoid op e) $(f: A \rightarrow B$),
hom op e m $f \equiv($ hom op e $m($ @id $B)) \cdot \operatorname{map} f$.
Proof.
intros $A B$ op e $m f$ xs.
induction $x s$ as [|x xs $I H$].

- trivial.
- simpl. now f_equal.

Qed.
$f e_{1} \ldots e_{n}=g e_{1}^{\prime} \ldots e_{n}^{\prime}$ creates subgoals $f=g$, $e_{1}=e_{1}^{\prime}, \ldots e_{n}=e_{n}^{\prime}$ and solves the simple ones.
now T : applies tactic T and if it generates sub-goals tries to solve them automatically. Fails if all subgoals are not proved automatically.

Tactics, notation, and tactical
@e: if e has implicit parameters, makes them explicit.
f_{-}equal: if the goal is

Second Homomorphism Theorem I

Require Import fold_defs hom_defs.
Theorem Second_Homomorphism_Theorem:
$\forall\{A$ B:Type $\}(o p: B \rightarrow B \rightarrow B)(e: B)$
(m:monoid op e) $(f: A \rightarrow B)$,
(let oplus $:=$ fun a $s \Rightarrow o p(f a) s$ in hom op e m $f \equiv$ foldr oplus e) \wedge
(let otimes $:=$ fun $r a \Rightarrow$ op $r(f a)$ in hom op e $m f \equiv$ fold otimes e).
Proof.
intros $A B$ op emf.
split.

- intros oplus xs.
induction xs as [|x xs IH].
+ trivial.
+ simpl. unfold oplus. now f_equal.
unfold e : replaces e by its definition.

Second Homomorphism Theorem II

- intros otimes xs.
induction xs as [|x xs $\mid H]$.
+ trivial.
+ unfold otimes. simpl.
destruct m as [Ha [Hnl Hnr]].
rewrite $\mathrm{Hnl}, \mathrm{IH}$.
clear IH. generalize ($f x$). clear x.
induction $x s$ as [|x x / H].
\times trivial.
\times intro b. simpl.
rewrite $\leftarrow I H$ with $(b:=o p b(f x))$.
rewrite $\leftarrow I H$.
rewrite Ha .
repeat f_equal.
unfold otimes. rewrite Hnl .
trivial.
Qed.

Outline

(1) Introduction
(2) Functional programming in Coq
(3) Stating and proving properties

More tactics

Homomorphism theorems on lists
Partial functions
(4) Program extraction
(5) Bibliography

Operator of a homomorphic function

For a binary operator \odot, the list function h is \odot-homomorphic iff, for all lists x and y :

$$
h(x+y)=(h x) \odot(h y)
$$

Note that \odot is necessarily associative on the range of h [...]
Moreover, necessarily h [] is the unit of \odot on the range of h

- we need to deal with partial functions
- but all functions are total in Coq

Partial functions

Ways to deal with partiality using only total functions:
Function returning an optional value
Inductive option (A : Type) : Type :=
| Some: $A \rightarrow$ option A
| None: option A.
Require Import list.
Fixpoint nth_option\{A:Type\}(n:nat)(xs:list A):option A:= match xs with
| [] \Rightarrow None
$x:: x s \Rightarrow$
match n with
| $0 \Rightarrow$ Some x
| $S n \Rightarrow$ nth_option $n \times s$
end
end.

Partial functions

Ways to deal with partiality using only total functions:

Function taking an additional parameter

that is returned if outside the range:
Require Import list.
Fixpoint nth $\{A: T y p e\}(n: n a t)(x s: l i s t ~ A)(d e f a u l t: A): A:=$ match xs with
| [] \Rightarrow default
$x:: x s \Rightarrow$
match n with
$\mid 0 \Rightarrow x$
|Sngnth n xs default
end
end.

Partial functions

Ways to deal with partiality using only total functions:
Function with pre-conditions on the parameters
Require Import list.
Require Import Omega Program.
Local Obligation Tactic:=
(program_simpl; simpl in *; omega).
Program Fixpoint nth_pre $\{A: T y p e\}(n: n a t)(x s: l i s t ~ A)$
($H: n<$ length $x s$): $A:=$
match $x s$ with
$\mid[] \Rightarrow$ -
$x:: x s \Rightarrow$ match n with

$$
\begin{aligned}
& \qquad \begin{array}{l}
0 \Rightarrow x \\
\mid S n \Rightarrow \text { nth_pre } n x s \\
\text { end }
\end{array}
\end{aligned}
$$

end.

Partial functions

Ways to deal with partiality using only total functions:
Function with pre-conditions on the parameters
Program Fixpoint nth_sig \{A:Type $\}$ (xs:list A)

$$
(n:\{n: n a t \mid n<\text { length } x s\}): A:=
$$

match $x s$ with

$$
\begin{aligned}
& {[] \Rightarrow-} \\
& x:: x s \Rightarrow \text { match } n \text { with } \\
& \qquad \begin{array}{l}
\left.\left\lvert\, \begin{array}{l}
0
\end{array}\right.\right] \\
\\
\text { end } n \Rightarrow \text { nth_sig xs } n
\end{array}
\end{aligned}
$$

end.

- where $\{x$: A | $P \mathrm{x}\}$ is a notation for ©sig A P
- a value of this type is a dependent pair containing:
- a value x of type A
- a proof of $\mathrm{P} x$

Operator of a homomorphic function I

The subset of B that is in the range of h :
Definition range $\{A B:$ Set $\}(h: / i s t A \rightarrow B):=$ $\{b: B \mid \exists x s, h x s=b\}$.

A value of type range h is a pair consisting of a value of type B and a proof that it is in the range of h.

Operator of a homomorphic function II

Seeing ($h x s$) as a value of type range h :

Definition to_range $\{A B:$ Set $\}(h:$ list $A \rightarrow B)(x s: l i s t ~ A)$: range $h:=$ let $P:=$ fun $b \Rightarrow \exists x s, h x s=b$ in
let prf :=ex_intro (fun $x s 0 \Rightarrow h$ xs $0=h$ xs) xs eq_refl in exist $P(h x s)$ prf.

Operator of a homomorphic function III

To get the value of type B from a range h :
Definition of_range1 $\{A B:$ Set $\}\{h: l i s t ~ A \rightarrow B\}(b:$ range $h): B:=$ match b with

$$
\left.\right|_{\text {exist }} b_{-} \Rightarrow b
$$

end.
A more generic function is defined in Coq library: proj1_sig.
To get the proof of type $\exists x s, h x s=b$ from a range h :
Definition of_range2 $\{A B:$ Set $\}\{h: l i s t ~ A \rightarrow B\}(b:$ range $h):$
$\exists x s, h$ xs $=o f$ _rangel $b:=$ match b with
| exist _ prf \Rightarrow prf end.

A more generic function is defined in Coq library: proj2_sig.

Operator of a homomorphic function IV

It is not possible to define such a function:

Definition list_of_range $\{A$:Set $\}$ \{h:list $A \rightarrow B\}(b:$ range $h)$: list A. Proof.

Abort.

Operator of a homomorphic function V

An auxiliary lemma:
Lemma range_op:
$\forall\{A B: \operatorname{Set}\}(h:$ list $A \rightarrow B)(o p: B \rightarrow B \rightarrow B)$
(hom:homomorphic h op)(b1 b2:B),
$(\exists x s 1, h$ xs1 $=b 1) \rightarrow$
$(\exists x s 2, h x s 2=b 2) \rightarrow$
$(\exists x s, h$ xs $=o p b 1 b 2)$.
Proof.
intros $A B$ h op hom b1 b2
[xs1 Hb1] [xs2 Hb2].
rewrite $\leftarrow \mathrm{Hb1}, \leftarrow \mathrm{Hb} 2, \leftarrow$ hom .
exists (xs1++xs2).
reflexivity.
Defined.

Tactics

Operator of a homomorphic function VI

Using the Program feature of Coq, we define an operator on the range of h, from this operator and h :

Program Definition restrict $\{A B: S e t\}$
$\{$ h:list $A \rightarrow B\}(o p: B \rightarrow B \rightarrow B)$
(hom:homomorphic hop):
range $h \rightarrow$ range $h \rightarrow$ range $h:=$
fun ($x y$:range $h) \Rightarrow o p x y$.
Next Obligation.
destruct x as $[x[x s H x]]$.
destruct y as [y [ys Hy]].
apply range_op.

- trivial.
- eexists. simpl. eassumption.
- eexists. eassumption.

Defined.

Tactics

eexists: creates an existantial variable and gives it as a witness. At the end of the proof there shoud be no remaining existential variable.
eassumption: same as assumption but could eliminate existential variables in the goal.

Operator of a homomorphic function VII

to_range is injective: both the value and the proofs are equal when the values are equal:

Lemma to_range_inj:
$\forall\{A B:$ Set $\}$ \{h:list $A \rightarrow B\}(x s$ ys:list $A)$,
$x s=y s \rightarrow$
to_range h xs $=$ to_range h ys.
Proof.
intros A B h xs ys Heq.
rewrite Heq.
trivial.
Qed.

Operator of a homomorphic function VIII

Any value of type range h could be obtained using the function to_range:

Lemma norm :
$\forall\{A B:$ Set $\}\{h:$ list $A \rightarrow B\}(b$:range $h)$,
$\exists x s, b=$ to_range $h x s$.
Proof.
intros $A B h b$.
destruct b as [b [xs $H b]$].
exists xs.
rewrite $\leftarrow H b$.
now apply to_range_inj.
Qed.

Operator of a homomorphic function IX

restrict and to_range composition:
Lemma restrict_to_range:
$\forall\{A B$:Set $\}\{$ h:list $A \rightarrow B\}\{$ op: $B \rightarrow B \rightarrow B\}$
(hom:homomorphic h op) (xs ys:list A),
restrict op hom (to_range h xs) (to_range $h y s)=$ to_range $h(x s++y s)$.

Proof.
intros $A B$ op hom xs ys.
unfold restrict, restrict_obligation_1, to_range.
simpl.
rewrite \leftarrow hom.
reflexivity.
Qed.

This lemma could be proven because restrict and its associated obligation restrict_obligation_1 have been carefully designed and made transparent using Defined instead of Qed.

Operator of a homomorphic function X

op restricted to the range of h has $(h[])$ as a left neutral:
Lemma homomorphic_op_left_neutral:
$\forall\{A B: \operatorname{Set}\}(h: l i s t ~ A \rightarrow B)(o p: B \rightarrow B \rightarrow B)$ (hom:homomorphic h op), left_neutral (restrict op hom) (to_range $h[])$.
Proof
intros $A B$ h op hom b.
destruct (norm b) as [xs Hb].
rewrite Hb .
rewrite restrict_to_range.
now apply to_range_inj.
Qed.

Operator of a homomorphic function XI

op restricted to the range of h has $(h[])$ as a right neutral:

Lemma homomorphic_op_right_neutral:
$\forall\{A B:$ Set $\}(h: l i s t ~ A \rightarrow B)(o p: B \rightarrow B \rightarrow B)$ (hom:homomorphic hop), right_neutral (restrict op hom) (to_range $h[]$).
Proof.
intros $A B$ h op hom b.
destruct (norm b) as [xs Hb].
rewrite Hb .
rewrite restrict_to_range.
apply to_range_inj.
apply app_nil_r.
Qed.

Operator of a homomorphic function XII

op restricted to the range of h is associative:
Lemma homomorphic_op_assoc:
$\forall\{A$ B:Set $\}(h:$ list $A \rightarrow B)(o p: B \rightarrow B \rightarrow B)$
(hom:homomorphic h op), associative (restrict op hom).
Proof.
intros $A B$ h op hom b1 b2 b3.
destruct (norm b1) as [xs1 Hb1].
destruct (norm b2) as [xs2 Hb2].
destruct (norm b3) as [xs3 Hb3].
subst.
repeat rewrite restrict_to_range.
apply to_range_inj.
rewrite app_assoc.
trivial.
Qed.

Tactic \& Tactical

subst: rewrites in the goal and the context using all the equalities of the context that have the form $v=e$ where v is a variable, then clears all these equalities.
repeat T : repeats the tactic T until its application fails.

Dealing with subset/sigma types

Subset/sigma types

Inductive sig $\{A:$ Type $\}\{P: A \rightarrow$ Prop $\}:$ Type: $=$ exist: $\forall x: A, P x \rightarrow @$ sig $A P$.
Alternative solutions (not possible in all cases):

- The proof part has for type an equality on a type with decidable equality: In this case the unicity of the equality proofs is proved ${ }^{2}$
- Prove that given a value v the proof of $P v$ is unique
- Carefull design of the functions and proofs so that the equality of proofs is true in the cases your are interested in,
- Use of the proof irrevelance axiom, in

Coq.Logic.Prooflrrelevance:
Axiom proof_irrelevance : $\forall(P: \operatorname{Prop})(p 1 p 2: P), p 1=p 2$. and its consequences in ProoflrrelevanceTheory

[^0]
Outline

(1) Introduction
(2) Functional programming in Coq
(3) Stating and proving properties
4) Program extraction
(5) Bibliography

Program extraction I

Coq
Require Import nth.
Extraction nth.nth.
OCaml
(** val nth_pre : nat \rightarrow 'a1 list \rightarrow 'a1 **)
let rec nth_pre $\mathrm{n} \times \mathrm{s}=$ match $\times s$ with
| Coq_nil \rightarrow nth_pre_obligation_1 n xs
Coq_cons (x, xs)) \rightarrow

(match n with

$\mathrm{O} \rightarrow \mathrm{x}$
$\mathrm{S} \mathrm{n} 0 \rightarrow$ nth_pre n0 xs0)

Program extraction II

Coq
Require Import nth.
Recursive Extraction nth.nth_pre.

OCaml

type nat $=|\mathrm{O}| \mathrm{S}$ of nat
type 'a list $=\mid$ Nil | Cons of 'a $*$ 'a list
($* *$ val nth_pre_obligation_1 : nat \rightarrow 'a1 list \rightarrow 'a1 $* *$)
let nth_pre_obligation_1 n xs = assert false ($*$ absurd case $*$)
$(* *$ val nth_pre : nat \rightarrow 'a1 list \rightarrow 'a1 $* *$)
let rec n th_pre $\mathrm{n} \times s=$ match $\times s$ with
\mid Nil \rightarrow nth_pre_obligation_1 n xs
Cons (x, xs) $) \rightarrow$ (match n with

$$
\begin{aligned}
& \mathrm{O} \rightarrow \mathrm{x} \\
& \mathrm{~S} n 0 \rightarrow \text { nth_pre } \mathrm{n} 0 \times \mathrm{s} 0)
\end{aligned}
$$

Program extraction III

Coq
Require Import nth.
Extract Inductive list \Rightarrow "list" ["[]" "(::)"].
Extraction nth.nth_sig.
OCaml
$(* *$ val nth_sig : 'a1 list \rightarrow nat \rightarrow 'a1 $* *$)
let rec n th_sig xs $\mathrm{n}=$
match xs with
| [] \rightarrow nth_sig_obligation_1 xs n
x::xs0 \rightarrow

(match n with

O \rightarrow x
S n0 \rightarrow nth_sig xs0 n0)

Outline

(1) Introduction
(2) Functional programming in Coq
(3) Stating and proving properties
(4) Program extraction
(5) Bibliography

Bibliography I

[1] Y. Bertot. Coq in a hurry, 2006.
http://hal.inria.fr/inria-00001173.
[2] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Springer, 2004.
[3] A. Chlipala. An Introduction to Programming and Proving with Dependent Types in Coq. Journal of Formalized Reasoning, 3(2), 2010. doi:10.6092/issn.1972-5787/1978.
[4] J. Gibbons. The third homomorphism theorem. Journal of Functional Programming, 6(4):657-665, 1996.
doi:10.1017/S0956796800001908.
[5] The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr.

[^0]: ${ }^{2}$ see Coq.Logic.Eqdep_dec

