
An Introduction to
Program Verification with the Coq Proof

Assistant
NII Lectures Series

Frédéric Loulergue

Université d’Orléans – LIFO – PaMDA Team

October-November 2013

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 1 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 2 / 68

The Coq Proof Assistant I

ACM SIGPLAN Software Award 2013
The Coq proof assistant provides a rich environment for
interactive development of machine-checked formal
reasoning. Coq is having a profound impact on research on
programming languages and systems [. . .] It has been
widely adopted as a research tool by the programming
language research community [. . .] Last but not least,
these successes have helped to spark a wave of widespread
interest in dependent type theory, the richly expressive
core logic on which Coq is based.

[. . .] The Coq team continues to develop the system,
bringing significant improvements in expressiveness and
usability with each new release.

In short, Coq is playing an essential role in our transition
to a new era of formal assurance in mathematics,
semantics, and program verification.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 3 / 68

The Coq Proof Assistant II

Foundations

I Calculus of
inductive
constructions

I Curry-Howard
correspondance

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 4 / 68

Curry-Howard Correspondance

Natural Deduction

(v)
A 2 �

� ` A

(i)
�,A ` B

� ` A! B

(a)
� ` A! B � ` A

� ` B

Simply Typed �-Calculus

(V)
x : A 2 �

� ` x : A

(L)
�, x : A ` e : B

� ` (�x :A.e) : A! B

(A)
� ` e : A! B � ` e0 : A

� ` (e e0) : B

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 5 / 68

Curry-Howard Correspondance

Natural Decduction – Example 1

(i)
(i)

(i)
(i)

(a)
(v)

A! C 2 �

� ` A! C
(v)

A 2 �

� ` A
� ⌘ A, B , A! C , B ! C ` C
A, B , A! C ` (B ! C)! C

A, B ` (A! C)! (B ! C)! C
A ` B ! (A! C)! (B ! C)! C
` A! B ! (A! C)! (B ! C)! C

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 6 / 68

Curry-Howard Correspondance

Natural Decduction – Example 2

(i)
(i)

(i)
(i)

(a)
(v)

B ! C 2 �

� ` B ! C
(v)

B 2 �

� ` B
� ⌘ A, B , A! C , B ! C ` C
A, B , A! C ` (B ! C)! C

A, B ` (A! C)! (B ! C)! C
A ` B ! (A! C)! (B ! C)! C
` A! B ! (A! C)! (B ! C)! C

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 7 / 68

Curry-Howard Correspondance

�-calculus: find a term with the given type

(L)
(L)

(L)
(L)

(A)
(V)

f :A! C 2 �

� ` f :A! C
(V)

x :A 2 �

� ` x :A
� ⌘ x :A, y :B , f :A! C , g :B ! C ` ? : C

x :A, y :B , f :A! C ` ? : (B ! C)! C
x :A, y :B ` ? : (A! c)! (B ! C)! C

x :A ` ? : B!(A!C)!(B!C)!C
` ? : A!B!(A!C)!(B!C)!C

�x :A.�y :B .�f :A!C .�g :B!C .(f x)
is a way to encode the proof tree of

A!B!(A!C)!(B!C)!C

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 8 / 68

Curry-Howard Isomomorphism

For all formula there exists a proof of this formula in natural
deduction if and only if there exists a �-term that has this formula
as type.

I Theorem statement , Type

I Proof , Program

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 9 / 68

Coq in practice

I Functional programming language

I Rich type system: allow to express logical properties

I Language for building proofs (ie proof terms)

I Program extraction

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 10 / 68

Previous examples in Coq

The Proof General mode for Emacs . . .

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 11 / 68

Previous examples in Coq

. . . or the CoqIDE

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 12 / 68

Previous examples in Coq

We open the file intro.v1:

1available at http://frederic.loulergue.eu/nii2013
F. Loulergue SyDPaCC – Lecture 2 October-November 2013 13 / 68

Previous examples in Coq

We start to feed Coq with the commands:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 14 / 68

Previous examples in Coq

We state a lemma and enter the interactive proof mode:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 15 / 68

Previous examples in Coq

The tactic intro “apply” the (i) rule:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 16 / 68

Previous examples in Coq

The context is now similar to �:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 17 / 68

Previous examples in Coq

We apply rule (a) by naming the implication part:

and so now we have only to deal with A . . .
F. Loulergue SyDPaCC – Lecture 2 October-November 2013 18 / 68

Previous examples in Coq

. . . that is an assumption, we use rule (v):

“No more subgoals” ⌘ proof done ⌘ �-term built
F. Loulergue SyDPaCC – Lecture 2 October-November 2013 19 / 68

Previous examples in Coq

Qed typechecks the term against the lemma statement:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 20 / 68

Previous examples in Coq

Second version, we do multiple intro:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 21 / 68

Previous examples in Coq

and apply HBC instead of apply HAC:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 22 / 68

Previous examples in Coq

Print t. prints the term t:

It is the �-term we constructed “by hand”
F. Loulergue SyDPaCC – Lecture 2 October-November 2013 23 / 68

Previous examples in Coq

The �-term for the second proof is:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 24 / 68

Previous examples in Coq

We could give directly the proof as a �-term:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 25 / 68

Previous examples in Coq

. . . or use Coq more powerful tactics:

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 26 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 27 / 68

Inductive definitions

Inductive bool :=
| true : bool
| false : bool .

Definition and (b1 b2 : bool) : bool :=
match b1 with

| false) false
| true) b2

end.

Print bool .
Check bool .

Print and .
Check and .

For “data-structures”,
inductive definitions
are ML-like

Function definition by
pattern-matching

Check returns the type
of a term

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 28 / 68

Dependent types

An inductive definition could dependent on any kind of term:
I a type as in usual polymorphic definitions
I any other term

Lists

I OCaml:

type ’a list =
| nil | cons of ’a ⇤ ’a list

I Haskell:

data List a =
| Nil a | Cons a (List a)

I Coq:
Inductive list (A:Type) :=
| nil : list A
| cons: A ! list A ! list A.

Subsets and sigma-types
Inductive sig{A:Type}{P :A!Prop}:Type:=

exist : 8 x : A, P x ! @sig A P .

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 29 / 68

Recursive functions and notations

Inductive list (A:Type) :=
| nil : list A
| cons: A ! list A ! list A.

Arguments nil [A].
Arguments cons [A] .

Fixpoint app {A:Type}(xs ys :list A) : list A :=
match xs with
| nil) ys
| cons x xs) cons x (app xs ys)

end.

Notation ”[]” := nil .
Notation ”x :: xs”:=(cons x xs).
Notation ”[x1 ; .. ; x2]”:=

(cons x1 .. (cons x2 []) ..).
Notation ”l1 ++ l2” :=(app l1 l2).

To avoid to provide the type
parameter of lists, for both nil
and cons, the type argument is
made implicit

Recursive functions must be
terminating. Simple case:
recursive call on a syntactic
sub-term of an argument

Usual notations for lists

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 30 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 31 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties
More tactics
Homomorphism theorems on lists
Partial functions

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 32 / 68

Proofs by induction

Require Import list part1 .

Lemma app nil l :
8(A:Type)(xs:list A),
[] ++ xs = xs.

Proof.
intros A xs.
simpl.
reflexivity.

Qed.

Lemma app nil r :
8(A:Type)(xs:list A),
xs ++ [] = xs.

Proof.
intros A xs.
induction xs.
- trivial.
- simpl. rewrite IHxs. trivial.

Qed.

Tactics

simpl: reduction of all the
expressions in the goal

reflexivity: ends the proof if the
goal has the form e = e

induction e: applies the
induction principle associated to
the type of e. Creates one
sub-goal by induction case.

rewrite H: if H has the form
8 . . . , L = R finds the first
sub-term that matches L in the
goal, resulting in instances L0

and R 0, then replaces all L0 by
R 0. If H is conditional, creates
new sub-goals.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 33 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties
More tactics
Homomorphism theorems on lists
Partial functions

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 34 / 68

Monoids: A First Definition

Definition associative {A:Type}(f :A!A!A) : Prop :=
8 a b c : A, f (f a b) c = f a (f b c).

Definition left neutral {A:Type}(f :A!A!A)(e:A) : Prop :=
8 a, f e a = a.

Definition right neutral {A:Type}(f :A!A!A)(e:A) : Prop :=
8 a, f a e = a.

Definition monoid {A:Type}(f :A!A!A)(e:A) : Prop :=
associative f ^ left neutral f e ^ right neutral f e.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 35 / 68

Monoids: (N,+, 0) is a monoid

Require Import hom defs.

Lemma monoid plus 0 : monoid plus 0.
Proof.
split.
- intros a b c .
induction a as [|a Ha].
+ trivial.
+ simpl. rewrite Ha. trivial.

- split.
+ intro a. trivial.
+ induction a as [|a Ha].
⇥ trivial.
⇥ simpl. rewrite Ha. trivial.

Qed.

Tactics

split: splits a conjunctive goal
into two sub-goals

induction e as pattern: applies
the induction principle for e
using pattern for naming the
newly introduction terms.
[n1 n2]: conjunctive pattern
[n1|n2]: disjunctive pattern

trivial: ends the proof either by

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 36 / 68

Folds: Definitions

Require Import list.

Fixpoint foldr {A B :Type}(op:A!B!B)(e:B)(xs:list A) : B :=
match xs with

| []) e
| x ::xs) op x (foldr op e xs)

end.

Fixpoint foldl {A B :Type}(op:A!B!A)(e:A)(xs:list B) : A :=
match xs with

| []) e
| x ::xs) foldl op (op e x) xs

end.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 37 / 68

Folds: a Lemma

Require Import monoid defs fold defs.
Lemma folds:
8 (A:Type)(op:A!A!A)(e:A),

monoid op e !
8 xs, foldr op e xs = foldl op e xs.

Proof.
intros A op e Hmonoid xs.
destruct Hmonoid as [Ha [Hl Hr]].
induction xs as [|x xs Hxs].
- trivial.
- simpl. rewrite Hxs. clear Hxs.
rewrite Hl . generalize x . clear x .
induction xs.
+ intro x . simpl. apply Hr .
+ intro x . simpl. rewrite Hl .
rewrite IHxs with (x :=op x a).
rewrite IHxs, Ha.
trivial.

Qed.

destruct: splits a conjunctive
(or disjunctive, or existential)
hypothesis into two hypotheses.
Could use the same renaming
scheme than induction.

clear H: removes hypothesis H
from the context.

generalize x : generalize the
goal with respect to one of its
sub-terms.

rewrite H: rewrites using the
equality H from right to left.
rewrite H1, H2: rewrite using
H1, then using H2.
rewrite H with (v:=t): if H is a
universaly quantified equality,
binding variable v , specifies that
v should be t.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 38 / 68

Homomorphisms

Require Export list monoid defs.

Definition homomorphic {A B :Type}
(h:list A ! B)(op:B!B!B) : Prop :=

8 xs ys, h(xs ++ ys) = op (h xs) (h ys).

Fixpoint hom {A B :Type}(op:B!B!B)(e:B)
(mon:monoid op e)(f :A!B)(xs:list A) : B :=

match xs with
| []) e
| x ::xs)op (f x) (hom op e mon f xs)

end.

Definition ext eq {A B :Type}(f g :A!B) : Prop :=
8 a:A, f a = g a.

Notation ”f == g”:=(ext eq f g)(at level 40).

From [4]

If f and g are functions,
in Coq f = g i↵ f and g
are exactly the same. We
want an equivalence
relation that relates
functions if their
extensions are the same.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 39 / 68

Homomorphisms: A Simple Property

Require Import hom defs.

Lemma homomorphic hom:
8{A B :Type}(h:list A!B)(op:B!B!B)

(Hom: homomorphic h op)
(Mon: monoid op (h [])),

h ⌘ hom op (h[]) Mon (fun x)h[x]).
Proof.
intros A B h op Hom Mon xs.
induction xs as [|x xs IH].
- trivial.
- simpl.
change (x ::xs) with ([x]++xs).
rewrite Hom.
rewrite IH.
trivial.

Qed.

Tactics

change e with e0:
replaces e with e0 in the
goal if e and e0 are
convertible

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 40 / 68

First Homomorphism Theorem

Require Import hom defs.

Theorem First Homomorphism Theorem:
8{A B :Type}(op:B!B!B)(e:B)

(m:monoid op e)(f :A!B),
hom op e m f ⌘ (hom op e m (@id B)) · map f .

Proof.
intros A B op e m f xs.
induction xs as [|x xs IH].
- trivial.
- simpl. now f equal.

Qed.

Tactics, notation, and

tactical

@e: if e has implicit
parameters, makes them
explicit.

f equal: if the goal is
f e1 . . . en = g e01 . . . e0n
creates subgoals f = g ,
e1 = e01, . . . en = e0n and
solves the simple ones.

now T : applies tactic T
and if it generates
sub-goals tries to solve
them automatically. Fails
if all subgoals are not
proved automatically.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 41 / 68

Second Homomorphism Theorem I

Require Import fold defs hom defs.

Theorem Second Homomorphism Theorem:
8{A B :Type}(op:B!B!B)(e:B)

(m:monoid op e)(f :A!B),
(let oplus := fun a s) op (f a) s in
hom op e m f ⌘ foldr oplus e) ^
(let otimes := fun r a) op r (f a) in
hom op e m f ⌘ foldl otimes e).

Proof.
intros A B op e m f .
split.
- intros oplus xs.
induction xs as [| x xs IH].
+ trivial.
+ simpl. unfold oplus. now f equal.

Tactics

unfold e: replaces e by
its definition.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 42 / 68

Second Homomorphism Theorem II

- intros otimes xs.
induction xs as [| x xs IH].
+ trivial.
+ unfold otimes. simpl.
destruct m as [Ha [Hnl Hnr]].
rewrite Hnl , IH.
clear IH. generalize (f x). clear x .
induction xs as [| x xs IH].
⇥ trivial.
⇥ intro b. simpl.
rewrite IH with (b:=op b (f x)).
rewrite IH.
rewrite Ha.
repeat f equal.
unfold otimes. rewrite Hnl .
trivial.

Qed.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 43 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties
More tactics
Homomorphism theorems on lists
Partial functions

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 44 / 68

Operator of a homomorphic function

For a binary operator �, the list function h is
�-homomorphic i↵, for all lists x and y:

h(x ++ y) = (hx)� (hy)

Note that � is necessarily associative on the range of h
[. . .]
Moreover, necessarily h [] is the unit of � on the range
of h

I we need to deal with partial functions

I but all functions are total in Coq

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 45 / 68

Partial functions

Ways to deal with partiality using only total functions:

Function returning an optional value
Inductive option (A : Type) : Type :=

| Some : A ! option A
| None : option A.

Require Import list.

Fixpoint nth option{A:Type}(n:nat)(xs:list A):option A:=
match xs with

| []) None
| x ::xs)
match n with

| 0) Some x
| S n) nth option n xs

end

end.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 46 / 68

Partial functions

Ways to deal with partiality using only total functions:

Function taking an additional parameter

that is returned if outside the range:
Require Import list.

Fixpoint nth {A:Type}(n:nat)(xs:list A)(default:A): A :=
match xs with

| []) default
| x ::xs)
match n with

| 0) x
| S n) nth n xs default

end

end.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 47 / 68

Partial functions

Ways to deal with partiality using only total functions:

Function with pre-conditions on the parameters
Require Import list.

Require Import Omega Program.

Local Obligation Tactic :=
(program simpl; simpl in *; omega).

Program Fixpoint nth pre {A:Type}(n:nat)(xs:list A)
(H: n < length xs): A :=

match xs with

| [])
| x ::xs) match n with

| 0) x
| S n) nth pre n xs

end

end.
F. Loulergue SyDPaCC – Lecture 2 October-November 2013 48 / 68

Partial functions

Ways to deal with partiality using only total functions:

Function with pre-conditions on the parameters
Program Fixpoint nth sig {A:Type}(xs:list A)

(n:{n:nat|n < length xs}): A :=
match xs with

| [])
| x ::xs) match n with

| 0) x
| S n) nth sig xs n

end

end.

I where {x : A | P x} is a notation for @sig A P

I a value of this type is a dependent pair containing:
I a value x of type A
I a proof of P x

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 49 / 68

Operator of a homomorphic function I

The subset of B that is in the range of h:

Definition range {A B :Set}(h:list A!B) :=
{b:B | 9 xs, h xs = b}.

A value of type range h is a pair consisting of a value of type B and a
proof that it is in the range of h.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 50 / 68

Operator of a homomorphic function II

Seeing (h xs) as a value of type range h:

Definition to range {A B :Set} (h:list A!B)(xs:list A) : range h :=
let P := fun b)9 xs, h xs=b in
let prf := ex intro (fun xs0)h xs0=h xs) xs eq refl in
exist P (h xs) prf .

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 51 / 68

Operator of a homomorphic function III

To get the value of type B from a range h:

Definition of range1 {A B :Set} {h:list A!B}(b:range h) : B :=
match b with

| exist b) b
end.

A more generic function is defined in Coq library: proj1 sig .
To get the proof of type 9 xs, h xs =b from a range h:

Definition of range2 {A B :Set} {h:list A!B}(b:range h) :
9 xs, h xs = of range1 b :=
match b with

| exist prf) prf
end.

A more generic function is defined in Coq library: proj2 sig .

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 52 / 68

Operator of a homomorphic function IV

It is not possible to define such a function:

Definition list of range {A B :Set} {h:list A!B}(b:range h): list A.
Proof.
Abort.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 53 / 68

Operator of a homomorphic function V

An auxiliary lemma:
Lemma range op:
8 {A B :Set}(h:list A!B)(op:B!B!B)

(hom:homomorphic h op)(b1 b2 :B),
(9 xs1 , h xs1 = b1) !
(9 xs2 , h xs2 = b2) !
(9 xs, h xs = op b1 b2).

Proof.
intros A B h op hom b1 b2

[xs1 Hb1] [xs2 Hb2].
rewrite Hb1 , Hb2 , hom.
exists (xs1++xs2).
reflexivity.

Defined.

Tactics

exists e: if the goal has
the form 9x .g , provides a
x and the goal becomes g

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 54 / 68

Operator of a homomorphic function VI

Using the Program feature of Coq, we define an
operator on the range of h, from this operator
and h:

Program Definition restrict {A B :Set}
{h:list A!B}(op:B!B!B)
(hom:homomorphic h op) :

range h ! range h ! range h :=
fun (x y :range h)) op x y .

Next Obligation.
destruct x as [x [xs Hx]].
destruct y as [y [ys Hy]].
apply range op.
- trivial.
- eexists. simpl. eassumption.
- eexists. eassumption.

Defined.

Tactics

eexists: creates an existantial
variable and gives it as a
witness. At the end of the proof
there shoud be no remaining
existential variable.

eassumption: same as
assumption but could eliminate
existential variables in the goal.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 55 / 68

Operator of a homomorphic function VII

to range is injective: both the value and the proofs are equal when the
values are equal:

Lemma to range inj :
8 {A B :Set} {h:list A!B}(xs ys:list A),

xs = ys !
to range h xs = to range h ys.

Proof.
intros A B h xs ys Heq.
rewrite Heq.
trivial.

Qed.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 56 / 68

Operator of a homomorphic function VIII

Any value of type range h could be obtained using the function to range:

Lemma norm :
8 {A B :Set}{h:list A!B}(b:range h),
9 xs, b = to range h xs.

Proof.
intros A B h b.
destruct b as [b [xs Hb]].
exists xs.
rewrite Hb.
now apply to range inj .

Qed.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 57 / 68

Operator of a homomorphic function IX

restrict and to range composition:

Lemma restrict to range:
8 {A B :Set} {h:list A!B}{op:B!B!B}

(hom:homomorphic h op) (xs ys:list A),
restrict op hom (to range h xs)(to range h ys) =
to range h (xs++ys).

Proof.
intros A B h op hom xs ys.
unfold restrict, restrict obligation 1 , to range.
simpl.
rewrite hom.
reflexivity.

Qed.

This lemma could be
proven because restrict
and its associated
obligation
restrict obligation 1
have been carefully
designed and made
transparent using
Defined instead of Qed.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 58 / 68

Operator of a homomorphic function X

op restricted to the range of h has (h []) as a left neutral:

Lemma homomorphic op left neutral :
8 {A B :Set}(h:list A ! B) (op:B!B!B) (hom:homomorphic h op),

left neutral (restrict op hom) (to range h []).
Proof.
intros A B h op hom b.
destruct (norm b) as [xs Hb].
rewrite Hb.
rewrite restrict to range.
now apply to range inj .

Qed.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 59 / 68

Operator of a homomorphic function XI

op restricted to the range of h has (h []) as a right neutral:

Lemma homomorphic op right neutral :
8 {A B :Set}(h:list A ! B) (op:B!B!B) (hom:homomorphic h op),

right neutral (restrict op hom) (to range h []).
Proof.
intros A B h op hom b.
destruct (norm b) as [xs Hb].
rewrite Hb.
rewrite restrict to range.
apply to range inj .
apply app nil r .

Qed.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 60 / 68

Operator of a homomorphic function XII

op restricted to the range of h is associative:
Lemma homomorphic op assoc :
8 {A B :Set}(h:list A ! B)(op:B!B!B)

(hom:homomorphic h op),
associative (restrict op hom).

Proof.
intros A B h op hom b1 b2 b3 .
destruct (norm b1) as [xs1 Hb1].
destruct (norm b2) as [xs2 Hb2].
destruct (norm b3) as [xs3 Hb3].
subst.
repeat rewrite restrict to range.
apply to range inj .
rewrite app assoc .
trivial.

Qed.

Tactic & Tactical

subst: rewrites in the
goal and the context
using all the equalities of
the context that have the
form v = e where v is a
variable, then clears all
these equalities.

repeat T : repeats the
tactic T until its
application fails.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 61 / 68

Dealing with subset/sigma types

Subset/sigma types
Inductive sig{A:Type}{P :A!Prop}:Type:=

exist : 8 x : A, P x ! @sig A P .

Alternative solutions (not possible in all cases):

I The proof part has for type an equality on a type with
decidable equality: In this case the unicity of the equality
proofs is proved2

I Prove that given a value v the proof of P v is unique

I Carefull design of the functions and proofs so that the equality
of proofs is true in the cases your are interested in,

I Use of the proof irrevelance axiom, in
Coq.Logic.ProofIrrelevance:

Axiom proof irrelevance : 8 (P :Prop) (p1 p2 :P), p1 = p2 .

and its consequences in ProofIrrelevanceTheory
2see Coq.Logic.Eqdep dec

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 62 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 63 / 68

Program extraction I

Coq
Require Import nth.

Extraction nth.nth.

OCaml

(⇤⇤ val nth pre : nat ! ’a1 list ! ’a1 ⇤⇤)
let rec nth pre n xs = match xs with
| Coq nil ! nth pre obligation 1 n xs
| Coq cons (x, xs0) !
(match n with

| O ! x
| S n0 ! nth pre n0 xs0)

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 64 / 68

Program extraction II

Coq
Require Import nth.

Recursive Extraction nth.nth pre.

OCaml

type nat = | O | S of nat
type ’a list = | Nil | Cons of ’a ⇤ ’a list
(⇤⇤ val nth pre obligation 1 : nat ! ’a1 list ! ’a1 ⇤⇤)
let nth pre obligation 1 n xs = assert false (⇤ absurd case ⇤)
(⇤⇤ val nth pre : nat ! ’a1 list ! ’a1 ⇤⇤)
let rec nth pre n xs = match xs with
| Nil ! nth pre obligation 1 n xs
| Cons (x, xs0) ! (match n with

| O ! x
| S n0 ! nth pre n0 xs0)

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 65 / 68

Program extraction III

Coq
Require Import nth.

Extract Inductive list) ”list” [”[]” ”(::)”].

Extraction nth.nth sig .

OCaml

(⇤⇤ val nth sig : ’a1 list ! nat ! ’a1 ⇤⇤)
let rec nth sig xs n =
match xs with
| [] ! nth sig obligation 1 xs n
| x::xs0 !
(match n with

| O ! x
| S n0 ! nth sig xs0 n0)

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 66 / 68

Outline

1 Introduction

2 Functional programming in Coq

3 Stating and proving properties

4 Program extraction

5 Bibliography

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 67 / 68

Bibliography I

[1] Y. Bertot. Coq in a hurry, 2006.
http://hal.inria.fr/inria-00001173.

[2] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development. Springer, 2004.

[3] A. Chlipala. An Introduction to Programming and Proving with
Dependent Types in Coq. Journal of Formalized Reasoning, 3(2),
2010. doi:10.6092/issn.1972-5787/1978.

[4] J. Gibbons. The third homomorphism theorem. Journal of Functional
Programming, 6(4):657–665, 1996.
doi:10.1017/S0956796800001908.

[5] The Coq Development Team. The Coq Proof Assistant.
http://coq.inria.fr.

F. Loulergue SyDPaCC – Lecture 2 October-November 2013 68 / 68

