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Introduction

As seen in the previous seminar, many results in
parallel/distributed computing research are obtained in
simulation
Simulation has been used for decades in various areas of
computer science

Network protocol design, microprocessor design

By comparison, current practice in parallel/distributed
computing is in its infancy
Part of the problem is the lack of a standard tool, likely due
to research being partitioned in different sub-areas

cluster computing, grid computing, volunteer computing,
peer-to-peer computing, cloud computing, ...

Part of the problem is the lack of open methodology...



Lack of open methodology

The key to open science is that results can be reproduced
Unfortunately, open science is not yet possible in
parallel/distributed computing simulations
Example: "Towards Yet Another Peer-to-Peer Simulator",
Naicken et al., Proc. of HET-NETs, 2006

Surveyed 141 papers that use simulation
30% use a custom simulator
50% don’t say which simulator is used (!!)
Only few authors provide downloadable software artifacts /
datasets

Researchers don’t trust simulators developed by others?
They feel they can develop the best simulator themselves?
Ironic consequence: published simulation results are often
not reproducible



And yet....

There are parallel/distributed computing simulators that are
intended to be used by others!
These simulators all attempt to do the same 3 things:

Simulate CPUs
Simulate networks
Simulate storage

The two main concerns are:
Simulation accuracy
Simulation speed / scalability

Ability to simulate large/long-running applications/platforms
fast and without too much RAM

Simulators make choices to trade off one for the other
Let’s look at typical such choices...



State of the art

Simulating computation (I)

There are two main approaches for simulating
computations: microscopic or macroscopic
Microscopic approach: cycle-accurate simulation

Simulate micro-architecture components at the clock cycle
resolution based on instructions from real (compiled) code
or for synthetic instruction mixes
Typically used by computer architecture researchers

, Arguably very accurate (bus contention, cache effects,
instruction-level parallelism, multi-core, GPUs, ...)

/ Very slow (ratio of simulation/simulated time > 100)
/ Arbitrary unscalable as the volume of computation

increases, which is a problem for simulating long-running
applications (e.g., grid computing, cluster computing)



State of the art

Simulating computation (II)

Macroscopic approach: (scaled) delays
Defined for each compute resource a computation speed
Define a computation as a computation volume
The simulated time is computed as the ratio of the two, plus
an optional random component

, Reasonably accurate for compute-bound applications
Compute times can also be sampled from real application or
benchmark executions on a reference computer architecture,
and then scaled

, Scalable: simulation of a computation in O(1) space/time
/ Can be wildly inaccurate for memory-bound applications



State of the art

Simulating communication (see previous seminar)

Each link: latency and bandwidth
Protocol-accurate packet-level simulation

Used by network protocol researchers
, Accurate
/ slow and not scalable

Non-protocol-accurate store-and-forward of packets
/ An attempt to be more scalable than the above, but can be

made arbitrarily inaccurate (packet size?)
Ad-hoc fluid models

, Scalable
/ Not protocol-realistic

TCP fluid models
, Scalable and accurate within limits (see previous seminar)



State of the art

Simulating storage

Microscopic approach: detailed discrete-even simulation
(e.g., DiskSim)

, Accurate
/ Just like cycle-accurate, and packet-level: unscalable

Arbitrarily high simulated/simulation ratio for large data

Most simulators provide very little
Notion of storage capacity and stored data
Each transfer has a latency and bandwidth, with optional
random components

/ Fails to capture caching effects, file system effects, ...



State of the art

Specifying the simulated application (I)

There are three main approaches: Finite automata, Event
traces, Concurrent Sequential Processes (CSP)

Finite automata:
Each simulated process is described as an automaton or a
Markov chain
Each state is an action that lasts for some number of
(simulated) seconds

Example: compute for 10s, then with probability 0.5
communicate for 1s, then with probability 1.0 do nothing for
30s, ...

, Very scalable since each process is described with only a
few bytes and fast algorithms can do state transitions

/ Limited expressive power, no/little application logic



State of the art

Specifying the simulated application (II)

Event traces:
Each simulated process is described as a sequence of
compute, communicate, store events

At t = 0 compute for 10s, at time t = 10 send a message for
2s, at t = 12 receive a message for 20s, ...

Events obtained from real-world executions and "replayed",
while scaling delays

, Fast since event replay is algorithmically simple
/ Not always scalable (traces can be large, obtaining large

traces on dedicated platforms can be hard)
/ Difficult to extrapolate traces to simulate more/fewer

processes



State of the art

Specifying the simulated application (III)

Concurrent Sequential Processes (CSP):
Application implemented as fragments of arbitrary code that
call simulation API functions

sim_compute, sim_send, sim_recv, ...

, Maximum expressive power, arguably
/ Not scalable

Number of threads is limited (e.g., "only" a few thousands
Java threads)
Context switching and synchronization overhead can be high
The user can implement expensive logic/computation, which
may be useful but also unscalable



State of the art

State-of-the-art simulators
Simulator Community of Origin Application Network CPU Disk
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PSINS X X X X X X X
LogGOPSim X X X X X

BigSim X X X X X X X
MPI-SIM X X X X X X
OptorSim X X X X X X X
GridSim X X X X X X X X X

GroudSim X X X X X X X
CloudSim X X X X X X X X
iCanCloud X X X X X X X X X

SimBA X X X X X
EmBOINC X X X X X
SimBOINC X X X X X X
PeerSim X X X
OverSim X X X X X
SIMGRID X X X X X X X X X X X X



State of the art

SIMGRID: a counter-intuitive design approach

Accepted wisdom: to be both accurate and fast/scalable, a
simulator must be highly specialized to a target domain
Typical rationale: to achieve scalability one must "cut
corners" and reduce accuracy in ways that are hopefully ok
for the target domain

Example: when simulating a p2p application, no need to
simulate network contention, or compute times
Example: when simulating a cluster computing application,
no need to simulate external load on the system

Instead, with SIMGRID we target multiple domains:
Grid, cloud, cluster/HPC, volunteer, peer-to-peer

We claim/demonstrate that we can be accurate/scalable
across domains!



SIMGRID overview

SIMGRID: history

A 14-year old open source project
First release: 1999

A tool to prototype/evaluate scheduling heuristics, with
naïve resource models
Essentially: a way to not have to draw Gantt charts by hand

Second release: 2000
Addition of TCP fluid network models
Addition of an API to describe simulated app as CSPs

Third release: 2005
Stability, documentation, packaging, portability, ...

Release v.3.3: 2009
Complete rewrite of the simulation core for better scalability
Possible to describe transient resource behavior via traces
Addition of an "Operating System"-like layer
Two new APIs



SIMGRID overview

Software stack

toward scalability and e�ciency, but GridSim still su↵ers from scalability issues (as demonstrated in Section 6.3).
We hypothesize that this is because simulated processes are not the only simulated entities in GridSim. Instead,
every platform elements (such as network links and compute nodes) are also registered as active simulation entities
that interact with other entities through simulation events. For example, when process A wants to send a message
to another process B, it fires a no-delay event to the first link of the network path. Upon reception of this event, the
link fires an event onto the next link of the path, with a network delay. Having each platform element represented
as an active simulation entity may seem sensible, but it highly increases the computational load of the simulation.
It also greatly increases the complexity of the source code. We feel that this design may be a cause of the validity
bugs presented in Section 2.2.1, which occur for simple scenarios.

SimGrid, like GridSim, allows users to describe the simulated application as a set of concurrent processes. By
contrast with GridSim, and as detailed in Section 3 and 6.2, these processes are the only active simulation entities,
continuations are used instead of threads to encapsulate these processes, and the simulation kernel manages the
processes using ad-hoc e�cient mechanisms. These design decisions and implementation mechanisms lead to
dramatically improved performance and scalability compared to state-of-the-art simulators.

3. SimGrid design and objectives
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Figure 1: Design and internals of SimGrid.

3.1. Software stack
Figure 1 shows the main components in the design of SimGrid, and depicts some of the key concepts in this

design. The top part of the figure shows the three APIs through which users can develop simulators. The MSG
API allows users to describe a simulated application as a set of concurrent processes. These processes execute
code implemented by the user (in C, Java, Lua, or Ruby), and place MSG calls to simulate computation and
communication activities. The SMPI API is also used to simulate applications as sets of concurrent processes,
but these processes are created automatically from an existing application written in C or Fortran that uses the
MPI standard. MSG thus makes it possible to simulate any arbitrary application, while SMPI makes it possible
to simulate existing, unmodified MPI applications. The mechanisms for simulating the concurrent processes for
both these APIs are implemented as part of a layer called SIMIX, which is a kernel (in the Operating Systems
sense of the term) that provides process control and synchronization abstractions. The set of concurrent processes
is depicted in the SIMIX box in the figure. All processes synchronize on a set of condition variables, also shown
in the figure. Each condition variable corresponds to a simulated activity, computation or communication, and
is used to ensure that concurrent processes wait on activity completion to make progress throughout (simulated)

9



SIMGRID overview

APIs
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SIMGRID overview

The SIMDAG API

Application is described as a task graph
SD_TASK_CREATE(), SD_TASK_DEPENDENCY_ADD(), ...
SD_TASK_SCHEDULE() (on a host)
All types of API functions to get/set task
properties/parameters

One call to SD_SIMULATE() launches the simulation:
While there are ready tasks, run them

Computation + communication

Resolve dependencies
Repeat

A very simple API designed for users who don’t need the
full power of the CSP abstraction

Looks a lot like SIMGRID v1.0



SIMGRID overview

The SMPI API

Designed to simulate Message Passing Interface (MPI)
applications

Standard way to implement communication in parallel
applications

The (almost unmodified) application is compiled so that
MPI processes run as threads
MPI calls are intercepted and passed to SIMGRID’s
simulation core
"Tricks" are used to allow simulation on a single computer

CPU burst durations are samples a few times and
"replayed" for free
Arrays are shared among threads (wrong data-dependent
application behavior but small memory footprint)



SIMGRID overview

The MSG API

This is the most commonly used API: basic CSP
abstraction
It has bindings in C, Java, Lua, Ruby
Let’s go through a full (but simple) master-worker example

The master process has tasks to send to workers
Each worker "processes" the tasks until it receive a
termination signal

Let’s look at:
Master code
Worker code
Main function
XML platform description file
XML application deployment description file



SIMGRID overview

Master

int master(int argc, char *argv[ ]) {

int number_of_tasks = atoi(argv[1]); double task_comp_size = atof(argv[2]);
double task_comm_size = atof(argv[3]); int workers_count = atoi(argv[4]);
char mailbox[80]; int i;
char buff[64];
msg_task_t task;

/∗ Dispatching tasks (dumb round−robin algorithm) ∗/
for (i = 0; i < number_of_tasks; i++) {

sprintf(buff, "Task_%d", i);
task = MSG_task_create(buff, task_comp_size, task_comm_size, NULL);
sprintf(mailbox,"worker-%d",i % workers_count);
print("Sending task %s to mailbox %s\n",buff,mailbox);
MSG_task_send(task, mailbox);

}
/∗ Send finalization message to workers ∗/
for (i = 0; i < workers_count; i++) {

sprintf(mailbox,"worker-%ld",i % workers_count);
MSG_task_send(MSG_task_create("finalize", 0, 0, 0), mailbox);

}
return 0;

}



SIMGRID overview

Worker

int worker(int argc, char *argv[ ]) {

msg_task_t task; int errcode; int id = atoi(argv[1]);
char mailbox[80];
sprintf(mailbox,"worker-%d",id);
while(1) {

/∗ Receive a task ∗/
errcode = MSG_task_receive(&task, mailbox);
if (errcode != MSG_OK) {

print("Error"); return errcode;
}
if (!strcmp(MSG_task_get_name(task),"finalize")) {

MSG_task_destroy(task);
break;

}
print("Processing %s", MSG_task_get_name(task));
MSG_task_execute(task);
print("Task %s done", MSG_task_get_name(task));
MSG_task_destroy(task);

}
print("Worker done!");
return 0;

}



SIMGRID overview

Main program

int main(int argc, char *argv[ ]) {

char *platform_file = "my_platform.xml";
char *deployment_file = "my_deployment.xml";

MSG_init(&argc,argv);

/∗ Declare all existing processes, binding names to functions ∗/
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

/∗ Load a platform description ∗/
MSG_create_environment(platform_file);

/∗ Load an application deployment description ∗/
MSG_launch_application(deployment_file);

/∗ Launch the simulation (until its terminates) ∗/
MSG_main();

print("Simulated execution time %g seconds",MSG_get_clock());
}



SIMGRID overview

Platform and app deployment description

toward scalability and e�ciency, but GridSim still su↵ers from scalability issues (as demonstrated in Section 6.3).
We hypothesize that this is because simulated processes are not the only simulated entities in GridSim. Instead,
every platform elements (such as network links and compute nodes) are also registered as active simulation entities
that interact with other entities through simulation events. For example, when process A wants to send a message
to another process B, it fires a no-delay event to the first link of the network path. Upon reception of this event, the
link fires an event onto the next link of the path, with a network delay. Having each platform element represented
as an active simulation entity may seem sensible, but it highly increases the computational load of the simulation.
It also greatly increases the complexity of the source code. We feel that this design may be a cause of the validity
bugs presented in Section 2.2.1, which occur for simple scenarios.

SimGrid, like GridSim, allows users to describe the simulated application as a set of concurrent processes. By
contrast with GridSim, and as detailed in Section 3 and 6.2, these processes are the only active simulation entities,
continuations are used instead of threads to encapsulate these processes, and the simulation kernel manages the
processes using ad-hoc e�cient mechanisms. These design decisions and implementation mechanisms lead to
dramatically improved performance and scalability compared to state-of-the-art simulators.

3. SimGrid design and objectives
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3.1. Software stack
Figure 1 shows the main components in the design of SimGrid, and depicts some of the key concepts in this

design. The top part of the figure shows the three APIs through which users can develop simulators. The MSG
API allows users to describe a simulated application as a set of concurrent processes. These processes execute
code implemented by the user (in C, Java, Lua, or Ruby), and place MSG calls to simulate computation and
communication activities. The SMPI API is also used to simulate applications as sets of concurrent processes,
but these processes are created automatically from an existing application written in C or Fortran that uses the
MPI standard. MSG thus makes it possible to simulate any arbitrary application, while SMPI makes it possible
to simulate existing, unmodified MPI applications. The mechanisms for simulating the concurrent processes for
both these APIs are implemented as part of a layer called SIMIX, which is a kernel (in the Operating Systems
sense of the term) that provides process control and synchronization abstractions. The set of concurrent processes
is depicted in the SIMIX box in the figure. All processes synchronize on a set of condition variables, also shown
in the figure. Each condition variable corresponds to a simulated activity, computation or communication, and
is used to ensure that concurrent processes wait on activity completion to make progress throughout (simulated)
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SIMGRID overview

Platform description file (XML)

my_platform.xml

<?xml version="1.0"?>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">

<platform version="3">
<AS id="mynetwork" routing="Full">
<host id="host1" power="1E6" />
<host id="host2" power="1E8" />
<host id="host3" power="1E6" />
<host id="host4" power="1E9" />

<link id="link1" bandwidth="1E4" latency="1E-3" />
<link id="link2" bandwidth="1E5" latency="1E-2" />
<link id="link3" bandwidth="1E6" latency="1E-2" />
<link id="link4" bandwidth="1E6" latency="1E-1" />

<route src="host1" dst="host2"> <link id="link1"/> <link id="link2"/> </route>
<route src="host1" dst="host3"> <link id="link1"/> <link id="link3"/> </route>
<route src="host1" dst="host4"> <link id="link1"/> <link id="link4"/> </route>

</AS>
</platform>



SIMGRID overview

Application deployment description file (XML)

my_deployment.xml

<?xml version="1.0"?>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<!-- The master (with some arguments) -->
<process host="host1" function="master">

<argument value="6"/> <!-- Number of tasks -->
<argument value="50000000"/> <!-- Computation size of tasks -->
<argument value="1000000"/> <!-- Communication size of tasks -->
<argument value="3"/> <!-- Number of workers -->

</process>

<!-- The workers (argument: mailbox number to use) -->
<process host="host2" function="worker"><argument value="0"/></process>
<process host="host3" function="worker"><argument value="1"/></process>
<process host="host4" function="worker"><argument value="2"/></process>

</platform>



SIMGRID overview

Simulation core

toward scalability and e�ciency, but GridSim still su↵ers from scalability issues (as demonstrated in Section 6.3).
We hypothesize that this is because simulated processes are not the only simulated entities in GridSim. Instead,
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is used to ensure that concurrent processes wait on activity completion to make progress throughout (simulated)
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SIMGRID overview

Simulation core

The SURF component implements all simulation models
All application activities are called actions
SURF keeps track of all actions:

Work to do
Work that remains to be done
Link to a set of variables

All action variables occur in constraints
Capture the fact that actions use one of more resources

SURF solves the a (modified) Max-min constrained
optimization problem betwen each simulation event

See previous seminar for more details

Let’s explain the example in the figure...



SIMGRID overview

Simulation core

toward scalability and e�ciency, but GridSim still su↵ers from scalability issues (as demonstrated in Section 6.3).
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Figure 1: Design and internals of SimGrid.

3.1. Software stack
Figure 1 shows the main components in the design of SimGrid, and depicts some of the key concepts in this

design. The top part of the figure shows the three APIs through which users can develop simulators. The MSG
API allows users to describe a simulated application as a set of concurrent processes. These processes execute
code implemented by the user (in C, Java, Lua, or Ruby), and place MSG calls to simulate computation and
communication activities. The SMPI API is also used to simulate applications as sets of concurrent processes,
but these processes are created automatically from an existing application written in C or Fortran that uses the
MPI standard. MSG thus makes it possible to simulate any arbitrary application, while SMPI makes it possible
to simulate existing, unmodified MPI applications. The mechanisms for simulating the concurrent processes for
both these APIs are implemented as part of a layer called SIMIX, which is a kernel (in the Operating Systems
sense of the term) that provides process control and synchronization abstractions. The set of concurrent processes
is depicted in the SIMIX box in the figure. All processes synchronize on a set of condition variables, also shown
in the figure. Each condition variable corresponds to a simulated activity, computation or communication, and
is used to ensure that concurrent processes wait on activity completion to make progress throughout (simulated)
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SIMGRID overview

The SIMIX simcall interface

SIMIX: an "OS kernel" on top of the simulation core
Each simulated processes is a "thread" (more on this later)
These threads run in mutual exclusion, round-robin, as
controlled by SIMIX
Each time a thread places an API call, translated to a
simcall (a simulated syscall), it blocks on a condition
variable in SIMIX
When all threads are blocked in this way, SIMIX tells the
simulation core computes the simulation models
Threads are then unblocked and proceed until they all
enter the SIMIX "kernel" again
Total separation: application / synchronization / models



SIMGRID and scalability

Scalability

We have spent many years trying to increase scalability
The first step was fast analytical resource modeling

Solving a weighted Max-min problem as opposed to
packet-level, cycle-accurate simulation
Implementing the solver with cache-efficient data structures

Scalability issues in SIMGRID don’t come from the models!

Four limits to scalability:
X Running the simulation models too often
X Too large platform descriptions
X Too many simulated processes
X Simulation limited to a single core



SIMGRID and scalability

Lazy updates

Running models too often

SIMGRID was originally intended for simulating
tightly-coupled parallel apps on hierarchical networks

e.g., a grid platforms with 3 clusters on a fast wide-area
network for running parallel scientific applications

In this setting, every simulated action can have an impact
on every other simulated action

A data transfer completion frees up some bandwidth usable
by many other transfers
A computation completion can lead to a message that will
unblock many other computations

As a result, SIMGRID was implemented in the typical loop:
Run all simulation models
Determining the next event (e.g., action completions)
Update all actions remaining work amounts
Advance the simulated time and repeat



SIMGRID and scalability

Lazy updates

Running models too often

As SIMGRID gained popularity, we and users tried to apply
it to different domains
One such domain: volunteer computing

Donated compute cycles and disk space at the edge of the
network to contribute to public-interest projects
e.g., SETI@Home, AIDS@Home, BOINC, etc.

In this setting, many actions are independent
There is little resource contention among participating hosts
Computations are independent and long-running

Yet there are many events (thousands of simulated hosts)
Essentially, SIMGRID keeps decreasing the remaining work
amounts of all actions by ε over and over
The result: sloooooow simulations at large-scale



SIMGRID and scalability

Lazy updates

Lazy action updates

Modified "Lazy Updates" simulation loop:
All actions are stored in a heap, sorted by their current
completion dates
When a resource state is modified, we remove relevant
actions (those that use the resource) from the heap, we
update their remaining work amounts and completion
dates, and we re-insert them into the heap
Removing/Inserting from/to a heap: O(log n)
Finding the next action that completes: O(1)

Not a revolutionary idea of course
Large simulation literature on efficient future event sets
But not seen in parallel/distributed computing simulators

If the application is tightly coupled, then lazy updates are
slower because all actions are removed/inserted
Lazy updates enabled by default but optional



SIMGRID and scalability

Lazy updates

Lazy updates in action

Lazy updates for the motivating volunteer computing
scenario [Heien et al., 2008]
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SIMGRID and scalability

Lazy updates

SIMGRID better than specialized simulator?

Lazy updates are really effective
Example: from 3h to 1min for a simulation with 2,560 hosts
on a 2.2GHz processor

And in fact, SIMGRID, even though it implements more
sophisticated (network) models is ∼25 times faster than
the SimBA volunteer computing simulator
SimBA was optimized for scalability in a different way

It uses finite automata to describe simulated processes

And yet, a more versatile simulator can "out-scale" it
thanks to careful design



SIMGRID and scalability

Lazy updates

Four limits to SIMGRID’s scalability

X Running the simulation models too often
X Too large platform descriptions
X Too many simulated processes
X Simulation limited to a single core



SIMGRID and scalability

Hierarchical platform description

Large platform descriptions

Users who used SIMGRID for truly large-scale platform
simulations often found themselves stuck

Long XML parse time
Out-of-memory errors
Long time to compute network routes, especially because
we need N × (N − 1) routes for N hosts!

To enable large-scale simulation we must have hierarchical
platform descriptions
A platform is an Autonomous System (AS), that can
contain interconnected ASes
Each AS has its own routing scheme

Full routing tables, Dijkstra, Floyd, no routing, routing based
on rules encoded as regular expressions
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Hierarchical platform description

Platform description example
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SIMGRID and scalability

Hierarchical platform description

Recursive route computation

Each AS declared gateways to other ASes, and that are
used to compute routes
To determine a route between two hosts:

1 Search for the common ancestor AS
2 Search for the route between the two relevant AS children
3 Repeat until the full route is determined

Let’s see this on a figure...



SIMGRID and scalability

Hierarchical platform description

Recursive route computation



SIMGRID and scalability

Hierarchical platform description

Generating platform descriptions

The SIMGRID user can either generate an XML file, or
used SIMGRID’s platform generation API
The overhead of (recursively) computing the route is
negligible in our implementation
The memory footprint of the platform description is small
XML parsing is fast
Example:

The Grid’5000 testbed (10 sites, 40 clusters, 1,500 nodes)
Described with 22KiB of XML, parsed in < 1s
Previous SIMGRID versions: 520MiB, parsed in 20min



SIMGRID and scalability

Hierarchical platform description

Four limits to SIMGRID’s scalability

X Running the simulation models too often
X Too large platform descriptions
X Too many simulated processes
X Simulation limited to a single core



SIMGRID and scalability

Fast and scalable "threads"

Too many threads

SIMGRID allows users to described simulated apps as sets
of CSPs
Great for flexibility and expressivity
Not scalable if implemented as processes/threads:

Thread creation/management overhead in the kernel
Thread memory footprint in the kernel
Thread synchronization overhead (locks + condvar)

But in a SIMGRID simulation threads run in mutual
exclusion and in a round-robin fashion
Therefore, we don’t need the full power/flexibility of kernel
threads since we do our own scheduling and our own
synchronization



SIMGRID and scalability

Fast and scalable "threads"

Scalable CSPs (I)

As opposed to having threads each with a bunch of locks
and condition variables we take a different approach
A single "core context":

Since simulation models are fast, a single thread does all
model computations (i.e., it run the SURF code)
All simulated processes place SIMIX simcalls, and all these
simcalls are resolved by the core context: no shared state
among threads

Two simulated processes waiting on each other don’t really
wait on each other
i.e., no multi-step process-to-process interactions
Instead, they place wait/notify-like simcalls to the core
context



SIMGRID and scalability

Fast and scalable "threads"

Scalable CSPs (I)

Lightweight "continuations":
Since we don’t need full threads we can use cooperative,
light-weight, non-preemptive threads

Known as continuations
No actual context-switching by the kernel

Windows: fibers
Linux, Mac OSX: ucontexts
We actually re-implemented them in assembly to avoid a
costly system call that is not needed for our purpose



SIMGRID and scalability

Fast and scalable "threads"

How scalable is it?

With all three scalability improvements so far, we can now
compare SIMGRID to "competitors"

Case study #1: Grid computing
Master-worker scenario
Comparison to GridSim (implemented in Java)

Case study #2: Peer-to-peer computing
The Chord protocol [Stoica et al., 2003]
Comparison to PeerSim and OverSim



SIMGRID and scalability

Fast and scalable "threads"

Scalability case study #1

One master, N workers, P tasks, round-robin scheduling
Simulation on a 2.4GHz core and 8GiB of RAM

GridSim:
No network topology simulated (simply latency+bandwidth
communication costs)

SimGrid:
Grid’5000 topology simulated (with TCP flow-level
modeling, etc.)



SIMGRID and scalability

Fast and scalable "threads"

Scalability case study #1

Polynomial fits based on measured values

Simulation Time (s) Peak Memory Footprint (byte)
GridSim 5.599 × 10−2P + 1.405 × 10−8N2 2.457 × 106 + 226.6P + 3.11N
SIMGRID 1.021 × 10−4P + 2.588 × 10−5N 5188 + 79.9P

Example: N = 2, 000, P = 500, 000
GridSim: 4.4GiB of RAM, > 1hour
SIMGRID: 165MiB of RAM, < 14s

And SIMGRID uses more sophisticated models!



SIMGRID and scalability

Fast and scalable "threads"

Scalability case study #2

Implementation of the Chord protocol for N hosts
Simulations on a 1.7Ghz core with 48GiB of RAM
SIMGRID

TCP flow-level modeling on a full topology
OverSim [Baumgart et al., 2007]

Communication delays based on Euclidian distance
between peers
Implemented in C++

PeerSim [Montresor et al., 2009]
Constant communication delays
Implemented in Java



SIMGRID and scalability

Fast and scalable "threads"

Scalability case study #2
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Fast and scalable "threads"

Scalability results

We have shown SIMGRID to be faster than specialized
simulators, even when it uses more sophisticated network
simulation models!
Some of these simulators were designed specifically for
scalability (especially p2p simulators)

Of course, they may suffer from implementation
inefficiencies, while we have spent hours trying to optimize
our implementation

Nevertheless, we claim that it is not necessary to be
specialized to be scalable, at least for parallel/distributed
computing simulations
Can we go further?



SIMGRID and scalability

Fast and scalable "threads"

Four limits to SIMGRID’s scalability

X Running the simulation models too often
X Too large platform descriptions
X Too many simulated processes
X Simulation limited to a single core



SIMGRID and scalability

Parallel simulation

Parallelizing SIMGRID

Because of all the optimizations we’ve talked about, often
most of the compute time is spent in user code!

What simulated processes do outside of SIMGRID

There is thus no need to parallelize SIMGRID’s internals
Which would be very difficult anyway since Parallel Discrete
Event Simulation is difficult

We are thus able to run concurrent user processes easily
on multiple cores
Experiments for "difficult cases" (e.g., peer-to-peer Chord)
show that achieved speedup is minimal (13%) but non-zero
Experiments for "easy cases" (e.g., simulated processes
that do complex logic in between calls to SIMGRID) show
that achieved speedup up is large



Conclusion

The SIMGRID community

SIMGRID is both a usable simulator and a research vehicle
Research papers with results obtained with SIMGRID
Research papers about SIMGRID itself

SIMGRID has a large user community and a large
development team
SIMGRID is well-funded for the upcoming years
SIMGRID welcomes collaborators, patches, comments,
typo fixes in the documentation ,



Conclusion

Where to find out more information

http://simgrid.gforge.inria.fr

http://simgrid.gforge.inria.fr


The End

This concludes this 6-seminar series

Thanks again to NII for the invitation

I am always available for questions
henric@hawaii.edu
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