Simulating distributed applications with
SIMGRID

Henri Casanova!*?

'Associate Professor
Department of Information and Computer Science
University of Hawai'i at Manoa, U.S.A.
2Visiting Associate Professor
National Institute of Informatics, Japan

NIl Seminar Series, October 2013

Acknowledgments

m Joint work with a LOT of people:

http://simgrid.gforge.inria. fr

http://simgrid.gforge.inria.fr

Introduction

m As seen in the previous seminar, many results in
parallel/distributed computing research are obtained in
simulation

m Simulation has been used for decades in various areas of
computer science

m Network protocol design, microprocessor design
m By comparison, current practice in parallel/distributed
computing is in its infancy
m Part of the problem is the lack of a standard tool, likely due
to research being partitioned in different sub-areas
m cluster computing, grid computing, volunteer computing,
peer-to-peer computing, cloud computing, ...

m Part of the problem is the lack of open methodology...

Lack of open methodology

m The key to open science is that results can be reproduced

m Unfortunately, open science is not yet possible in
parallel/distributed computing simulations

m Example: "Towards Yet Another Peer-to-Peer Simulator”,
Naicken et al., Proc. of HET-NETs, 2006

m Surveyed 141 papers that use simulation

m 30% use a custom simulator

m 50% don’t say which simulator is used (!!)

m Only few authors provide downloadable software artifacts /
datasets

m Researchers don'’t trust simulators developed by others?
m They feel they can develop the best simulator themselves?

m [ronic consequence: published simulation results are often
not reproducible

m There are parallel/distributed computing simulators that are
intended to be used by others!
m These simulators all attempt to do the same 3 things:
m Simulate CPUs
m Simulate networks
m Simulate storage
m The two main concerns are:

m Simulation accuracy
m Simulation speed / scalability

| Ability to simulate large/long-running applications/platforms
fast and without too much RAM

m Simulators make choices to trade off one for the other
m Let’s look at typical such choices...

LState [RGEET

Simulating computation (l)

m There are two main approaches for simulating
computations: microscopic or macroscopic
m Microscopic approach: cycle-accurate simulation
m Simulate micro-architecture components at the clock cycle
resolution based on instructions from real (compiled) code
or for synthetic instruction mixes
m Typically used by computer architecture researchers
© Arguably very accurate (bus contention, cache effects,
instruction-level parallelism, multi-core, GPUs, ...)
® Very slow (ratio of simulation/simulated time > 100)
® Arbitrary unscalable as the volume of computation
increases, which is a problem for simulating long-running
applications (e.g., grid computing, cluster computing)

LState [RGEET

Simulating computation (II)

m Macroscopic approach: (scaled) delays

m Defined for each compute resource a computation speed

m Define a computation as a computation volume

m The simulated time is computed as the ratio of the two, plus

an optional random component
© Reasonably accurate for compute-bound applications
® Compute times can also be sampled from real application or

benchmark executions on a reference computer architecture,
and then scaled

© Scalable: simulation of a computation in O(1) space/time

® Can be wildly inaccurate for memory-bound applications

LState [RGEET

Simulating communication (see previous seminar)

m Each link: latency and bandwidth
m Protocol-accurate packet-level simulation
m Used by network protocol researchers
© Accurate
® slow and not scalable
m Non-protocol-accurate store-and-forward of packets
® An attempt to be more scalable than the above, but can be
made arbitrarily inaccurate (packet size?)
m Ad-hoc fluid models
© Scalable
® Not protocol-realistic
m TCP fluid models
© Scalable and accurate within limits (see previous seminar)

LState [RGEET

Simulating storage

m Microscopic approach: detailed discrete-even simulation
(e.g., DiskSim)
©® Accurate
® Just like cycle-accurate, and packet-level: unscalable
B Arbitrarily high simulated/simulation ratio for large data

m Most simulators provide very little
m Notion of storage capacity and stored data
m Each transfer has a latency and bandwidth, with optional
random components
® Fails to capture caching effects, file system effects, ...

LState [RGEET

Specifying the simulated application (I)

m There are three main approaches: Finite automata, Event
traces, Concurrent Sequential Processes (CSP)

m Finite automata:
m Each simulated process is described as an automaton or a
Markov chain
m Each state is an action that lasts for some number of
(simulated) seconds
m Example: compute for 10s, then with probability 0.5
communicate for 1s, then with probability 1.0 do nothing for
30s, ...
© Very scalable since each process is described with only a
few bytes and fast algorithms can do state transitions
® Limited expressive power, no/little application logic

LState [RGEET

Specifying the simulated application (Il)

m Event traces:
m Each simulated process is described as a sequence of
compute, communicate, store events
m Att = 0 compute for 10s, at time r = 10 send a message for
2s, at r = 12 receive a message for 20s, ...
m Events obtained from real-world executions and "replayed”,
while scaling delays
© Fast since event replay is algorithmically simple
® Not always scalable (traces can be large, obtaining large
traces on dedicated platforms can be hard)
® Difficult to extrapolate traces to simulate more/fewer

processes

LState [RGEET

Specifying the simulated application (llI)

m Concurrent Sequential Processes (CSP):

m Application implemented as fragments of arbitrary code that
call simulation API functions

B sim_compute, sim_send, sim_recv, ...

©® Maximum expressive power, arguably
® Not scalable
® Number of threads is limited (e.g., "only" a few thousands
Java threads)
B Context switching and synchronization overhead can be high
B The user can implement expensive logic/computation, which
may be useful but also unscalable

[8A8]-00|q >
me. J9jSUBI} + %99S SIS S >
Ayoeded SOSOSS >
> Relap PAEIS [S S SN SIS IS SIS S S ~
o
Ol fejepreaipseos > > >
|ons|-1exoed ~ ~ >
|spow piny 401 ~ ~
B MOJy 90U-PE |\, NNIN
2
w pJemio}-pue-aiols SIS
YIPIMPUBG | 5 5 S 1S S 1S S S > ~>
ROUBIEI S S S SIS SIS IS SIS S S ~
S [0ads onewweiboid SIS SIS S SIS S S >
mu m -oads joBIISQR S0 >
O B
— < 90BJ] UOINDSXD |\ N ~>
©
—_ |, o
S 5 dwod 19ad-0}-19ad
m m ‘dwod Jaajunjon ASASAN
- — o
wn 2 -dwo9 pnojo SIS S
—— 5
— £ ‘dwoo pub SO S
T W3
1 o ‘dwod pad ybiy | S S
()
e N £ o
+ e woeSIEEEES<S2EE|S
! = z235925(888d50[22|5
< Yy— =1 528 |cT|53QER &G 62
& O W eQmila5eesmeE|RS|2
2] o 8- 20Ccoel mgC|»
s Q -
[0} gt
: o
(/]
i w

LState [RGEET

SIMGRID: a counter-intuitive design approach

m Accepted wisdom: to be both accurate and fast/scalable, a
simulator must be highly specialized to a target domain
m Typical rationale: to achieve scalability one must "cut

corners" and reduce accuracy in ways that are hopefully ok
for the target domain

m Example: when simulating a p2p application, no need to
simulate network contention, or compute times
m Example: when simulating a cluster computing application,
no need to simulate external load on the system
m Instead, with SIMGRID we target multiple domains:
m Grid, cloud, cluster/HPC, volunteer, peer-to-peer

m We claim/demonstrate that we can be accurate/scalable
across domains!

LSIMGR\D overview

SIMGRID: history

m A 14-year old open source project
m First release: 1999
m A tool to prototype/evaluate scheduling heuristics, with
naive resource models
m Essentially: a way to not have to draw Gantt charts by hand
m Second release: 2000
m Addition of TCP fluid network models
m Addition of an API to describe simulated app as CSPs
m Third release: 2005
m Stability, documentation, packaging, portability, ...
m Release v.3.3: 2009
m Complete rewrite of the simulation core for better scalability
m Possible to describe transient resource behavior via traces
m Addition of an "Operating System"-like layer
m Two new APIs

LSIMGRID overview

Software stack

MSG SMPI

App. spec. as concurrent code SIMIX

Concurrent
processes

variables

} Condition

!

SIMDAG

App. spec. as
task graph

|

A S|
[

work 530 245
remaining | 372
variable [o | [9 | [¢] [|

aF Jin

X1
X2
X + X3
X3 + X,
SURF Variables

} Activities

< Cp,
<Cp
<Gy

<Cp,
NE——;

Resource
Constraints

Resource capacities
and interconnections
specification

LSIMGRID overview

APls

MSG SMPI SIMDAG
App. spec. as
App. spec. as concurrent code SIMIX (e
] Concurrent
processes
Condition
i i i i } variables

and interconnections
specification

work 664 245
remaining | 372 | [530 - 245 Activities Resource capacities

X1
X2 < Cp
X1 + X3 < Cyy
x3 +x <G,
—_—

SURF Variables Resource
Constraints

LSIMGR\D overview

The SIMDAG API

m Application is described as a task graph
m SD_TASK_CREATE(), SD_TASK_DEPENDENCY_ADD(), ...
m SD_TASK_SCHEDULE() (on a host)
m All types of API functions to get/set task
properties/parameters
m One call to SD_SIMULATE() launches the simulation:
m While there are ready tasks, run them
® Computation + communication
m Resolve dependencies
m Repeat
m A very simple API designed for users who don’t need the
full power of the CSP abstraction
m Looks a lot like SIMGRID v1.0

LSIMGR\D overview

The SMPI API

m Designed to simulate Message Passing Interface (MPI)
applications
m Standard way to implement communication in parallel
applications
m The (almost unmodified) application is compiled so that
MPI processes run as threads

m MPI calls are intercepted and passed to SIMGRID’s
simulation core
m "Tricks" are used to allow simulation on a single computer

m CPU burst durations are samples a few times and
"replayed" for free

m Arrays are shared among threads (wrong data-dependent
application behavior but small memory footprint)

LSIMGR\D overview

The MSG API

m This is the most commonly used API: basic CSP
abstraction

m [t has bindings in C, Java, Lua, Ruby
m Let’s go through a full (but simple) master-worker example
m The master process has tasks to send to workers

m Each worker "processes" the tasks until it receive a
termination signal

m Let's look at:

Master code

Worker code

Main function

XML platform description file

XML application deployment description file

LSIMGRID overview

Master

int master(int argc, ¢ v[]) {

int number_of tasks = atoi(argv[1]); double task_comp_size = atof (argv[2]);
double task_comm_size = atof (argv([3]); int workers_count = atoi(argv[4]);
char mailbox[80]; int i;

char buff[64];

msg_task_t task;

/= Dispatching tasks (dumb round—robin algorithm) =/
for (i = 0; i < number_of tasks; i++) {
sprintf (buff, "Task_%d", 1i);
task = MSG_task_create (buff, task _comp_size, task_comm_size, NULL);
sprintf (mailbox, "worker-%d",i % workers_count) ;
print ("Sending task %s to mailbox %s\n",buff, mailbox) ;
MSG_task_send (task, mailbox) ;
}
/x Send finalization message to workers */
for (i = 0; i < workers_count; i++) {
sprintf (mailbox, "worker-%1d",i % workers_count) ;
MSG_task_send (MSG_task_create ("finalize", 0, 0, 0), mailbox);
}

return 0;

LSIMGRID overview

Worker

int worker(int argc, ¢ argv[]) {

msg_task_t task; int errcode; int id = atoi(argv([l]);
char mailbox[80];
sprintf (mailbox, "worker-%d", id) ;
while (1) {

/+ Receive a task x/

errcode = MSG_task_receive (stask, mailbox) ;

if (errcode != MSG_OK) {

print("Error"); return errcode;

}

if (!strcmp (MSG_task_get name (task), "finalize")) {
MSG_task_destroy (task) ;
break;

}
print ("Processing %s", MSG_task get_name (task)) ;
MSG_task_execute (task) ;
print ("Task %s done", MSG_task_get name (task)) ;
MSG_task_destroy (task) ;

}

print ("Worker done!");

return 0;

}

LS|MGR\D overview

Main program

nt main(int argc, char v[]) {

char xplatform_file = "my_platform.xml";
char »deployment_file = "my_deployment.xml";

MSG _init (sargc, argv) ;
/= Declare all existing processes, binding names to functions x/
MSG_function_register ("master", smaster);

MSG_function_register ("worker", &worker);

/= Load a platform description */
MSG_create_environment (platform_file) ;

/= Load an application deployment description =/
MSG_launch_application (deployment_file) ;

/% Launch the simulation (until its terminates) x/
MSG_main () ;

print ("Simulated execution time %g seconds", MSG_get clock());

LSIMGRID overview

Platform and app deployment description

MSG SMPI SIMDAG
App. spec. as
App. spec. as concurrent code SIMIX (e
Concurrent
processes
} Condition
variables
m—— ¢
wort wsl |
remaining | 372 | [530 - 245 Activities Resource capacities
variable | ¢ | [¢ | | ¢ | [¢ | and interconnections
specification
X1 +x < Cp I
X2 < Cp ~—
X + X <Cp —
x3 +x <G, 1
—_—
SURF Variables Resource

Constraints

LS|MGR\D overview

Platform description file (XML)

platform.xml

<?xml version="1.0"?>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">
<AS id="mynetwork" routing="Full">

<host id="host1" />
/>
<host id="host3" power="1E6" />

<host id="host4" power="1E9" />

<link id="1ink1" bandwidth="1E4" latency="1E-3" />
<link id="1ink2" bandwidth="1E5" latency="1E-2" />
<link id="1ink3" bandwidth="1E6" latency="1E-2" />
<link id="1ink4" bandwidth="1E6" latency="1E-1" />

"linkl"/> <link id="1ink2"/> </route>
"link1"/> <link "1ink3"/> </route>
"link1"/> <link id="1ink4"/> </route>

<route src="hostl" dst="host2">
<route src="hostl" dst="host3">
<route src="hostl" dst="host4"> <link i
</AS>
</platform>

LSIMGR\D overview

Application deployment description file (XML

deplo nt.xml

<?xml version="1.0"?>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<!-- The master (with some arguments) -->

<process host="host1" function="master">
<argument value="6"/> <!-— Number of tasks ——>
<argument value="50000000"/> <!-- Computation size of tasks ——>
<argument value="1000000"/> <!-- Communication size of tasks ——>
<argument value="3"/> <!-- Number of workers ——>

</process>

<!-- The workers (argument: mailbox number to use) -->

<process host="host2" function="worker"><argument value="0"/></process>

<process host="host3" function="worker"><argument value="1"/></process>

<process host="host4" function="worker"><argument value="2"/></process>
</platform>

LSIMGRID overview

Simulation core

MSG

SMPI

App. spec. as concurrent code

SIMIX

Concurrent
processes

variables

} Condition
| |

SIMDAG

App. spec. as
task graph

variable

SURF

work
remaining

530
e | o]

Xy + Xy
X2
X1 ar X3
X3 W+ a5
Variables

Activities

—

Resource
Constraints

Resource capacities
and interconnections
specification

LSIMGR\D overview

Simulation core

m The SURF component implements all simulation models
m All application activities are called actions

m SURF keeps track of all actions:

m Work to do
m Work that remains to be done
m Link to a set of variables

m All action variables occur in constraints
m Capture the fact that actions use one of more resources

m SURF solves the a (modified) Max-min constrained
optimization problem betwen each simulation event

m See previous seminar for more details
m Let’s explain the example in the figure...

LSIMGRID overview

Simulation core

work | 435 530 664 245 o
remaining | 372 530 50 | - 245 Activities Resource capacities
variable | ¢ ° ? ? and interconnections
l specification
X1 ar < CL2
X2 < Cp
X1 + X3 < C iy
X3 + X < CLm
———
SURF Variables Resour.ce
Constraints

LSIMGRID overview

The SIMIX simcall interface

MSG SMPI SIMDAG
App. spec. as
App. spec. as concurrent code SIMIX T gy
Concurrent
processes
} Condition
Y i T T variables
work [435 wl|
remaining | 372 w245 actyities Resource capacities
variable | ¢ Le | [9| [¢ | and interconnections
specification
X +x, <Cy
X2 < Cp
X1 + X3 < Cp
x3 +x <G,
—_—

SURF Variables Resource
Constraints

LSIMGR\D overview

The SIMIX simcall interface

m SIMIX: an "OS kernel" on top of the simulation core
m Each simulated processes is a "thread" (more on this later)

m These threads run in mutual exclusion, round-robin, as
controlled by SIMIX

m Each time a thread places an API call, translated to a
simcall (a simulated syscall), it blocks on a condition
variable in SIMIX

m When all threads are blocked in this way, SIMIX tells the
simulation core computes the simulation models

m Threads are then unblocked and proceed until they all
enter the SIMIX "kernel" again

m Total separation: application / synchronization / models

L SIMGRID and scalability

Scalability

m We have spent many years trying to increase scalability
m The first step was fast analytical resource modeling

m Solving a weighted Max-min problem as opposed to
packet-level, cycle-accurate simulation
m Implementing the solver with cache-efficient data structures

m Scalability issues in SIMGRID don’t come from the models!

m Four limits to scalability:

X Running the simulation models too often
X Too large platform descriptions

X Too many simulated processes

X Simulation limited to a single core

L SIMGRID and scalability

L Lazy updates

Running models too often

m SIMGRID was originally intended for simulating
tightly-coupled parallel apps on hierarchical networks
B e.g., a grid platforms with 3 clusters on a fast wide-area
network for running parallel scientific applications

m [n this setting, every simulated action can have an impact
on every other simulated action
m A data transfer completion frees up some bandwidth usable
by many other transfers
m A computation completion can lead to a message that will
unblock many other computations
m As aresult, SIMGRID was implemented in the typical loop:
m Run all simulation models
m Determining the next event (e.g., action completions)
m Update all actions remaining work amounts
m Advance the simulated time and repeat

L SIMGRID and scalability

L Lazy updates

Running models too often

m As SIMGRID gained popularity, we and users tried to apply
it to different domains
m One such domain: volunteer computing

m Donated compute cycles and disk space at the edge of the
network to contribute to public-interest projects
m e.g., SETI@Home, AIDS@Home, BOINC, etc.

m In this setting, many actions are independent

m There is little resource contention among participating hosts
m Computations are independent and long-running

m Yet there are many events (thousands of simulated hosts)

m Essentially, SIMGRID keeps decreasing the remaining work
amounts of all actions by ¢ over and over

m The result: sloooooow simulations at large-scale

L SIMGRID and scalability

L Lazy updates

Lazy action updates

m Modified "Lazy Updates" simulation loop:
m All actions are stored in a heap, sorted by their current
completion dates
m When a resource state is modified, we remove relevant
actions (those that use the resource) from the heap, we
update their remaining work amounts and completion
dates, and we re-insert them into the heap
m Removing/Inserting from/to a heap: O(logn)
m Finding the next action that completes: O(1)
m Not a revolutionary idea of course
m Large simulation literature on efficient future event sets
m But not seen in parallel/distributed computing simulators

m If the application is tightly coupled, then lazy updates are
slower because all actions are removed/inserted

m Lazy updates enabled by default but optional

L SIMGRID and scalability

L Lazy updates

Lazy updates in action

m Lazy updates for the motivating volunteer computing
scenario [Heien et al., 2008]

100000

L Initial design ——
10000 Lazy Updates *

1000 -

simulation time (s)
©

0.01 | . . -

L L L I L

0.001 —

. I
AN N - A R L
IR D RN Y

N
< O 2
X, 2y O
2 % %

number of simulated hosts

L SIMGRID and scalability

L Lazy updates

SIMGRID better than specialized simulator?

m Lazy updates are really effective
m Example: from 3h to 1min for a simulation with 2,560 hosts
on a 2.2GHz processor
m And in fact, SIMGRID, even though it implements more
sophisticated (network) models is ~25 times faster than
the SimBA volunteer computing simulator
m SimBA was optimized for scalability in a different way
m It uses finite automata to describe simulated processes

m And yet, a more versatile simulator can "out-scale" it
thanks to careful design

LSIMGR\D and scalability
LLazy updates

Four limits to SIMGRID’s scalability

v Running the simulation models too often
X Too large platform descriptions

X Too many simulated processes

X Simulation limited to a single core

L SIMGRID and scalability

LHierarchicaI platform description

Large platform descriptions

m Users who used SIMGRID for truly large-scale platform
simulations often found themselves stuck

m Long XML parse time
m Out-of-memory errors
m Long time to compute network routes, especially because
we need N x (N — 1) routes for N hosts!
m To enable large-scale simulation we must have hierarchical
platform descriptions
m A platform is an Autonomous System (AS), that can
contain interconnected ASes
m Each AS has its own routing scheme

m Full routing tables, Dijkstra, Floyd, no routing, routing based
on rules encoded as regular expressions

L SIMGRID and scalability

LHierarchicaI platform description

Platform description example

— —
Full Diik: ° o
] Ostrao / Empty | |

g—a")

J

[Rule-
AS5-38 based
AS5-2m Rule-
. | based

11 1111
e® - 0000

L SIMGRID and scalability

LHierarchicaI platform description

Recursive route computation

m Each AS declared gateways to other ASes, and that are
used to compute routes
m To determine a route between two hosts:

Search for the common ancestor AS
Search for the route between the two relevant AS children
Repeat until the full route is determined

m Let’s see this on a figure...

L SIMGRID and scalability

LHierarchicaI platform description

Recursive route computation

® SRC Asto R Astn AScommon
DST Asro Asrm AScommon
from = GWsrc to = GWpsT

@ get_route(ASt,,ASrm) links = Lo--Lk

Lo =+ Lk
(©) s ------------------------------------ T

@ get_route(SRC,GWsgrc) get_route(GWpsT,DST)

from = SRC to = GWsgrc from = GWpst to = DST
links = Lsg**+Lsx links = Ldg*-Ldz

L SIMGRID and scalability

LHierarchicaI platform description

Generating platform descriptions

m The SIMGRID user can either generate an XML file, or
used SIMGRID’s platform generation API

m The overhead of (recursively) computing the route is
negligible in our implementation

m The memory footprint of the platform description is small
m XML parsing is fast

m Example:

m The Grid’5000 testbed (10 sites, 40 clusters, 1,500 nodes)
m Described with 22KiB of XML, parsed in < 1s
m Previous SIMGRID versions: 520MiB, parsed in 20min

LSIMGR\D and scalability

LHierarchicaI platform description

Four limits to SIMGRID’s scalability

v Running the simulation models too often
v Too large platform descriptions

X Too many simulated processes

X Simulation limited to a single core

L SIMGRID and scalability

LFast and scalable "threads"

Too many threads

m SIMGRID allows users to described simulated apps as sets
of CSPs

m Great for flexibility and expressivity

m Not scalable if implemented as processes/threads:
m Thread creation/management overhead in the kernel
m Thread memory footprint in the kernel
m Thread synchronization overhead (locks + condvar)
m But in a SIMGRID simulation threads run in mutual
exclusion and in a round-robin fashion

m Therefore, we don’t need the full power/flexibility of kernel
threads since we do our own scheduling and our own
synchronization

L SIMGRID and scalability

LFast and scalable "threads"

Scalable CSPs (I)

m As opposed to having threads each with a bunch of locks
and condition variables we take a different approach
m A single "core context":

m Since simulation models are fast, a single thread does all
model computations (i.e., it run the SURF code)

m All simulated processes place SIMIX simcalls, and all these
simcalls are resolved by the core context: no shared state
among threads

B Two simulated processes waiting on each other don’t really
wait on each other

W i.e., no multi-step process-to-process interactions

B Instead, they place wait/notify-like simcalls to the core
context

L SIMGRID and scalability

LFast and scalable "threads"

Scalable CSPs (I)

m Lightweight "continuations":
m Since we don’t need full threads we can use cooperative,
light-weight, non-preemptive threads
m Known as continuations
m No actual context-switching by the kernel
m Windows: fibers
m Linux, Mac OSX: ucontexts
m We actually re-implemented them in assembly to avoid a
costly system call that is not needed for our purpose

L SIMGRID and scalability

LFast and scalable "threads"

How scalable is it?

m With all three scalability improvements so far, we can now
compare SIMGRID to "competitors”

m Case study #1: Grid computing

m Master-worker scenario

m Comparison to GridSim (implemented in Java)
m Case study #2: Peer-to-peer computing

m The Chord protocol [Stoica et al., 2003]
m Comparison to PeerSim and OverSim

L SIMGRID and scalability

LFast and scalable "threads"

Scalability case study #1

m One master, N workers, P tasks, round-robin scheduling
m Simulation on a 2.4GHz core and 8GiB of RAM

m GridSim:
m No network topology simulated (simply latency+bandwidth
communication costs)
m SimGrid:

m Grid’5000 topology simulated (with TCP flow-level
modeling, etc.)

L SIMGRID and scalability

LFast and scalable "threads"

Scalability case study #1

m Polynomial fits based on measured values

Simulation Time (s)

Peak Memory Footprint (byte)

GridSim

5.599 x 10~2P 4 1.405 x 10~8N?

2.457 x 10% + 226.6P + 3.1IN

SIMGRID

1.021 x 10~*P +2.588 x 10—°N

5188 + 79.9P

m Example: N = 2,000, P = 500, 000
m GridSim: 4.4GiB of RAM, > 1hour
m SIMGRID: 165MiB of RAM, < 14s

m And SIMGRID uses more sophisticated models!

L SIMGRID and scalability

LFast and scalable "threads"

Scalability case study #2

m Implementation of the Chord protocol for N hosts

m Simulations on a 1.7Ghz core with 48GiB of RAM
m SIMGRID

m TCP flow-level modeling on a full topology
m OverSim [Baumgart et al., 2007]

m Communication delays based on Euclidian distance
between peers
m Implemented in C++

m PeerSim [Montresor et al., 2009]

m Constant communication delays
m Implemented in Java

LSIMGR\D and scalability

LFast and scalable "threads"

Scalability case study #2

40000 T T T T
PeerSim —H—
OverSim —6—
SimGrid —<—

30000

20000

10000

Running time in seconds

0 L L L L
0 500000 le+06 1.5e+06 2e+06

Number of nodes

m PeerSim: 100,000 peers in 4h36min
m OverSim: 200,000 peers in 10h
® SIMGRID: 2,000,000 peers in 32min

L SIMGRID and scalability

LFast and scalable "threads"

Scalability results

m We have shown SIMGRID to be faster than specialized
simulators, even when it uses more sophisticated network
simulation models!

m Some of these simulators were designed specifically for
scalability (especially p2p simulators)

m Of course, they may suffer from implementation
inefficiencies, while we have spent hours trying to optimize
our implementation

m Nevertheless, we claim that it is not necessary to be
specialized to be scalable, at least for parallel/distributed
computing simulations

m Can we go further?

LSIMGR\D and scalability

LFast and scalable "threads"

Four limits to SIMGRID’s scalability

v Running the simulation models too often
v Too large platform descriptions

v Too many simulated processes

X Simulation limited to a single core

L SIMGRID and scalability

LParallel simulation

Parallelizing SIMGRID

m Because of all the optimizations we’ve talked about, often
most of the compute time is spent in user code!

m What simulated processes do outside of SIMGRID
m There is thus no need to parallelize SIMGRID’s internals
m Which would be very difficult anyway since Parallel Discrete
Event Simulation is difficult
m We are thus able to run concurrent user processes easily
on multiple cores
m Experiments for "difficult cases" (e.g., peer-to-peer Chord)
show that achieved speedup is minimal (13%) but non-zero
m Experiments for "easy cases" (e.g., simulated processes
that do complex logic in between calls to SIMGRID) show
that achieved speedup up is large

LConclusion

The SIMGRID community

m SIMGRID is both a usable simulator and a research vehicle

m Research papers with results obtained with SIMGRID
m Research papers about SIMGRID itself

m SIMGRID has a large user community and a large
development team

m SIMGRID is well-funded for the upcoming years

m SIMGRID welcomes collaborators, patches, comments,
typo fixes in the documentation ®

LConclusion

Where to find out more information

http://simgrid.gforge.inria.fr

http://simgrid.gforge.inria.fr

The End

This concludes this 6-seminar series
Thanks again to NIl for the invitation

| am always available for questions
henric@hawaii.edu

	State of the art
	SimGrid overview
	SimGrid and scalability
	Conclusion

