
Fast and accurate network simulation

Henri Casanova1,2

1Associate Professor
Department of Information and Computer Science

University of Hawai‘i at Manoa, U.S.A.
2Visiting Associate Professor

National Institute of Informatics, Japan

NII Seminar Series, October 2013

Introduction

Acknowledgments

This is joint work with
P. Velho, UFRGS, Brazil
L. Mello Schnorr, UFRGS, Brazil
A. Legrand, CNRS Grenoble, France

Introduction

Introduction

In the previous seminars we’ve seen theoretical results
Optimal alg., approx. alg., NP-completeness

Theory is key to understanding problems better
Theoretical results also provide motivation and inspiration
for developing non-guaranteed heuristics

e.g., when there is no optimal algorithm
e.g., non-guaranteed algorithms may achieve much better
average performance than approximation algorithms

Sadly, we rarely have theorems to compare heuristics
Typically, given 20 (reasonable) heuristics and 10,000
random problem instances, each heuristic could be best on
some of the instances
Question: How do we find out which heuristics are best?

Introduction

Unrealistic assumptions

In many cases the "view of the world" of the algorithm is
not the real world

Example: a heuristic is designed for homogeneous hosts in
a cluster, but in practice hosts are a bit heterogeneous
Example: network latencies would make the problem
NP-complete, an optimal algorithm is known when there
are no network latencies, and it can be applied in real-world
networks in which there are latencies
Example: network topologies are so complex that designing
algorithms that truly exploit them is too challenging.
Furthermore, in practice one often doesn’t know the
network topology!

Question: How do we find out how algorithms behave in
the real world?

Introduction

Experiment!

We can’t compare heuristics in theory, and in general we
don’t really know how they would behave in the real world

So we have to run empirical experiments
Create a set of problem instances in the real world
Run the heuristics for these instances
Do some statistics and try to obtain useful conclusions

Unfortunately, running experiments is not easy, especially
at large scale...

Introduction

The trouble with experiments (I)

Experiments are labor-intensive
To run an experiment on a real-world platform, we need a
full-fledge implementation of the studied application/system
We do not always have such an implementation!

e.g., we want to run simulations to decide how to implement
the application/system!
e.g., we want to answer research questions without
necessarily having a particular application at hand with all
the required input datasets, etc.

Developing a full implementation "just" to study scheduling
algorithms it not necessarily something one wants to do

Or at least not until much later

Introduction

The trouble with experiments (II)

Experiments can be costly in time, U, and Watts
As the target platform increases in scale (e.g., large
number of hosts) and/or the application increases in scale
(e.g., larger data, larger amounts of computations), so
does the time for each experiment
Longer experiments imply larger cost and larger power
consumption
To make matters worse, we typically need large numbers of
experiments to achieve reasonable statistical significance

Introduction

The trouble with experiments (III)

Experiments are limited in scope
The set of experimental scenarios is constrained by the
platform configurations at hand, and exploring a wide
range of configurations may not be possible
In fact, production platforms may not be available at all,
limiting experiments to limited testbeds
It it difficult to explore hypothetical "what if?" scenarios

"What if the network was twice as congested?", "What if
network paths were twice as long?", "What if all hosts were
16-core instead of 8-core?"
Enabled to some extent by emulation/virtualization
techniques, but not possible on all platforms

Introduction

The trouble with experiments (IV)

Experiments are not always perfectly repeatable
As soon as the target platform becomes large (e.g., several
large clusters interconnected over wide-area networks) it is
typically subject to external and/or unpredictable load
conditions

A shared network, perhaps even shared hosts
Unscheduled downtimes or performance bugs
Changing software configurations

As a result, the same experiment may lead to different
results on different days
The simple approach that consists in running experiments
"back-to-back" is not satisfying if each experiment takes a
long time

Introduction

Simulation

Given all these difficulties with real-world experiments, a
popular approach is simulation
Simulation: the use of a computer program that
implements mathematical and algorithmic models of the
behavior of an application running on a platform
The input to the simulation:

A specification of the platform’s characteristics
A specification of the application’s characteristics

The output of the simulation:
A time-stamped list of relevant events throughout
(simulated) time
From this list can be gathered statistics, visualizations

Introduction

The trouble with simulation

Every simulation introduces a bias, or error
The simulation is instantiated with unrealistic parameters
The simulation models’ implementation is buggy
The simulation models are implemented correctly but do
not correspond to the real world
The simulated application does not correspond to the
real-world application because not based on a real
implementation
The simulation ignores transient real-world behaviors
...

The larger the simulation error the less useful the
simulation
If the simulation error is not bounded/quantified, then the
simulation is even less useful

Introduction

Reducing simulation error (I)

A (widely accepted) way to reduce simulation error is to
have the simulation be highly detailed
More details can be achieved by making analytical models
more complex (i.e., more parameters)
Example:

compute_time = #inst/inst_per_second
compute_time = [#instload_store×(CPIload_store+cache_hit_rate×
cache_penalty) + #instother × CPIother]/clock_rate
Accounting for instruction-level parallelism...

Introduction

Reducing simulation error (II)

More details can be achieved by replacing analytical
simulation models by complex programmatic models
Example:

Don’t use a formula to estimate the compute time
Instead write a program that generates control signals in a
hypothetical micro-architecture, simulating what happens at
each clock cycles (register set, ALUs, caches, etc.)
The input is the actual list of instructions and operands
The output is a time-stamped trace of instruction
completions from which one can compute statistics
So-called cycle-accurate simulation

Introduction

The trouble with complex simulation

The notion that "more complex = better" is not without its
problems [Gibson et al., ASPLOS’00]

And more complex models may be poorly instantiated

But making models more complex/sophisticated/complete
is still the most common approach
One problem is: more complex is slower
The ratio of simulation time to simulated time grows and
can become very large (e.g., > 10, > 100)

Hardware is fast, (simulation) software is slow
If simulated scenarios are large/long, then simulation time
is prohibitively long

Remember that we may need to run thousands of
simulations to compare scheduling heuristics

Introduction

The sweet spot?

We want simulation to be fast and accurate

It would seem that simulation can be either
slow and accurate, or
fast and erroneous

The goal is to push the limits:
Improve the speed of "complex" simulation models
Improve the accuracy of "simple" simulation models
Improve the accuracy of "simple" simulation models

Introduction

Network simulation

In this seminar: network simulation
An important aspect of the execution of a parallel and
distributed application is the time spent doing network
activities

Sending messages
Waiting for messages

Many proposed scheduling algorithms attempt to carefully
schedule both computation and communication
But the "view of the network" of the algorithms is
notoriously different from the reality of deployed networks

Packet-level vs. flow-level models

Packet-level simulation

The network community, i.e., researchers concerned with
the design of network protocols, routing schemes, etc.,
typically use packet-level simulation
A packet-level simulator is a discrete-event simulator

packet emission/reception events
network protocol events

The life-cycle of every individual packet is simulated
e.g., from the TCP stack down the the IP level

Popular simulators: NS2, NS3, GTNetS, OMNet++, ...
Some use simplified protocol stacks (GTNeTS, NS2)
Some can use real TCP implementations (NS3)

In this seminar: simulation of wired TCP/IP networks

Packet-level vs. flow-level models

Packet-level simulation: accurate

Since packet-level simulation simulates every packet and
implements protocol stack, it is often accepted as accurate

Or at least, published packet-level simulation results are
typically trusted

It is outside the scope of this seminar to discuss to which
extent this is true

It turns out there not many validation studies
And the word "accurate" means different things to different
people

e.g., matching the spec of how we design the network
vs. matching what actually happens in a real-world
environment

We will simply assume that "packet-level = perfectly
accurate"

Packet-level vs. flow-level models

Packet-level simulation: slow

High simulation/simulated ratio
Using GTNetS, which is known for being reasonable fast
Simulating 200 communications each transferring 100MiB
between two random end-points in a random 200-node
topology
125 sec of simulated time, 1,500 sec of simulation time on
a 3.2GHz processor
The ratio can be made arbitrarily large by increasing the
number of communications

This is because each packet leads to many network events
to be simulated in software
Not usable to run (many) simulations in which there are
large numbers of communications that involve large
numbers of packets

Packet-level vs. flow-level models

An alternative to packet-level simulation

To make simulation fast, we must avoid simulating
individual packets
Simple idea: simulate flows, abstracting away packets, and
determine flow completion times via equations

flow: source + network path + destination + #bytes (S)
The simplest of flow models: T = latency + bandwidth/S

latency = end-to-end latency (sec)
bandwidth = bottleneck bandwidth (byte/sec)

There are, unfortunately, several problems with the above
Network protocol overhead?
Network protocol effects (e.g., congestion window)?
How do we find out the bottleneck bandwidth???

Let’s look at some flow-level simulators

Packet-level vs. flow-level models

Some simulators

A research area in which non-packet-level network
simulation has been used for decades is “Grid computing”
(and lately “Cloud computing”)

Clusters federated via wide-area networks, many
processes, large data

Four well-known, and/or popular, and/or widely used
simulators that employ flow-level models

GridSim [Buyya et al., CCPE’02] (∼ 10 download/day)
OptorSim [Bell et al., IJHPCA’03]
GroudSim [Ostermann at al., Grid’10]
CloudSim [Calheiros et al., SPE’11]

These are MUCH faster than packet-level simulators
But are they accurate?

Packet-level vs. flow-level models

Invalidating experiments

It turns out these simulators are not accurate
In spite of perhaps convincing published results in some
cases

Very easy to come up with invalidating experiments
Let’s exhibit such experiments with the following visuals:

B = bandwidth

A flow receiving a bandwidth share of a link of bandwidth B

Packet-level vs. flow-level models

Invalidating OptorSim and GroudSim

B = 100 B = 100

B = 20

What a real network would do
(link utilization is maximized)

What OptorSim and GroudSim do
(links are shared 50% in spite of bottlenecks)

This "weakness" is document by the authors

Packet-level vs. flow-level models

Invalidating GridSim

B

What a real network would doWhat GridSim does
(first flow receives B, second B/2, etc.)

Likely a bug (which we reported)

Packet-level vs. flow-level models

Invalidating CloudSim

One flow starts ε seconds after the other
B

What a real network would do
What CloudSim does
(each flow receives B)

Packet-level vs. flow-level models

Invalidation is easy???

We took four well-known simulators
Suggested by our own experience and by inspecting the
code of those simulators, we came up with trivial
invalidating experiments
It is quite shocking how easy it was to perform the
invalidation
One may wonder: how is this possible?
Answer: validation studies are rare (and invalidation
studies are more rare)

Published results typically show "good cases"

Packet-level vs. flow-level models

Is there no hope then?

simulation speed

si
m

ul
at

io
n

ac
cu

ra
cy

flow-level

pa
ck

et
-le

ve
l

flow-level

flow-level

what we’ve been
trying to do

Steady-state flow-level bandwidth sharing models

The two main questions

Consider a network topology (end-points, routers, links),
latency and bandwidth values for the links, and a set of
flows each with some start time
The two questions we need to answer are:

1. What bandwidth is allocated to each flow throughout its
execution?

2. What is the completion time of each flow?

Question 1 can be answered (approximately) if we take a
steady-state simulation approach

Steady-state flow-level bandwidth sharing models

Steady-state bandwidths

We assume that each flow f present at time t run forever,
and that no new flow arrives in the system
Given these assumptions, we compute the constant
bandwidth allocated to each flow, Bf

In a real network the bandwidths would converge
reasonably quickly to pseudo-constant values

For each flow f , given Sf (remaining amount of data) and
Bf , we compute the flow’s hypothetical completion time tf
Say the next new flow arrives at time tnew

Between time t and time t′ = min(tnew,minf tf) the number
of flows is constant, and we know their bandwidths!
We "advance" the simulation to time t′, updating
Sf ← Sf − Bf /(t′ − t)

Steady-state flow-level bandwidth sharing models

Bandwidth constraints

With the steady-state approach, i.e., no notions of time and
flow sequencing, we can formalize the bandwidth
computation problem nicely

Problem (Constraints)

F a set of flows, L a set of links
Bl is the bandwidth of l ∈ L
ρf is the bandwidth allocated to f ∈ F

∀l ∈ L,
∑

f ∈ F going through l

ρf ≤ Bl

Objective: compute realistic ρf ’s

Steady-state flow-level bandwidth sharing models

Computing realistic bandwidths

The question of computing realistic bandwidths has been
studied in the context of TCP
Two main approaches have been developed

1 Bottom-up:
Reason on the microscopic behavior of TCP
Infer its macroscopic behavior

2 Top-down:
Propose a reasonable model of macroscopic behavior
Instantiate it based on (in)validation experiments

Steady-state flow-level bandwidth sharing models

Bottom-up modeling

A bottom-up model

TCP uses a congestion window that bounds the number of
in-flight packets for a flow, so as to perform congestion
control at the end-points
The window size is tuned via additive increase and
multiplicative decrease

Ramp up slowly, back down fast
Several authors have proposed bottom-up “bandwidth
sharing” models by reasoning on window size dynamics

Mo et al. [INFOCOM’99], [IEEE TN 2000]
Yaïche et al. [IEEE TN 2010]
Low et al. [J. ACM 2002], [IEEE TN 2003]
Low et al. [J. ACM 2002], [IEEE TN 2003]

Steady-state flow-level bandwidth sharing models

Bottom-up modeling

The bottom-up model by Low et al.

wf (t): the window size for flow f ∈ F at time t

df : the equilibrium RTT (propagation plus equilibrium
queuing delay) of f , which is assumed to be constant
f ’s instantaneous data transfer rate in packets per time unit
is ρf (t) = wf (t)/df

qf (t): the packet loss probability for flow f at time t

At time t, f ’s emitter transmits ρf (t) packets per time units
For these packets it receives ρf (t)(1− qf (t)) positive acks
and ρf (t)qf (t) negative acks
Additive increase: the window increased by 1/wf (t)

wf (t) is increased by 1 for each wf (t) packets sent

Multiplicative decrease: the window is halved

Steady-state flow-level bandwidth sharing models

Bottom-up modeling

The bottom-up model by Low et al.

The net change in window size per time unit is:

wf (t + 1)− wf (t) = ρf (t)
1

wf (t)
(1− qf (t))− ρf (t)

wf (t)
2

qf (t)

Since wf (t) = ρf (t)× df , we obtain

ρf (t + 1)− ρf (t) =
1
d2

f
(1− qf (t))−

1
2
ρf (t)2qf (t)

As an approximation we obtain a differential equation:
∂ρf

∂t
(t) =

1
d2

f
(1− qf (t))−

1
2
ρf (t)2qf (t)

Steady-state flow-level bandwidth sharing models

Bottom-up modeling

The bottom-up model by Low et al.

Given the differential equation, it is possible to prove (via a
Lyapunov function) that the bandwidths satisfy the
following constrained optimization problem

Problem

maximize
∑
f∈F

√
2

df
arctan

(
dfρf√

2

)
subject to ∀l ∈ L,

∑
f ∈ F going through l

ρf ≤ Bl

Steady-state flow-level bandwidth sharing models

Bottom-up modeling

The bottom-up model by Low et al.

The previous model is in fact for TCP Reno with RED
With TCP Vegas and Droptail, Low et al. obtain instead

Problem

maximize
∑
f∈F

df log(ρf)

subject to ∀l ∈ L,
∑

f ∈ F going through l

ρf ≤ Bl

Steady-state flow-level bandwidth sharing models

Bottom-up modeling

Bottom-up simulation models?

These models come from the network protocol community
They’re elegant and meant to enlighten us about the
fundamental properties of network protocols
Nowhere in the articles by Low et al. is it suggested to use
these models for simulation
Some parameters may be hard to instantiate for simulation,
since users see/care only about the macroscopic behavior
And in fact, there is a problem with the df parameter:
equilibrium RTT...

Steady-state flow-level bandwidth sharing models

Bottom-up modeling

Equilibrium RTT???

The assumption by Low et al. is that df is constant
What this means is that df is constant for a given traffic,
i.e., a set of flows and their transfer rates
But if the transfer rates are computed according to the
model (for simulation purposes), then we have a circular
dependency

df tells us what the traffic looks like
The traffic defines the value of df

Question: how can we pick df for simulation purposes?
Our best guess: df =

∑
l ∈ L traversed by l Ll

Ll: latency of link l
We can guess, we’re not network protocol people ,

Steady-state flow-level bandwidth sharing models

Top-down modeling

A top-down bandwidth sharing model

With top-down modeling one hypothesizes a bandwidth
sharing model that seems reasonable, and then one
attempts to prove it is valid
Such a model is Max-Min fairness:

Problem

maximize min
f∈F

ρf

subject to ∀l ∈ L,
∑

f ∈ F going through l

ρf ≤ Bl

Makes the least happy flow as happy as possible

Steady-state flow-level bandwidth sharing models

Top-down modeling

Max-min fairness

Max-min fairness is convenient and makes sense
what a network should do to be "as fair as possible"
Easily computed via a recursive simple algorithm

Problem: TCP is RTT-unfair

RTT = 5

RTT = 3 RTT = 3 RTT = 3

On each shared bottleneck link: 3/7, 5/7

Steady-state flow-level bandwidth sharing models

Top-down modeling

RTT-unfair Max-min fairness

Weighted Max-Min fairness to account for RTT-unfairness

Problem

maximize min
f∈F

Lf ρf

subject to:
∀f ∈ F , Lf =

∑
l traversed by f

Ll

∀l ∈ L,
∑

f going through l

ρf ≤ Bl

Steady-state flow-level bandwidth sharing models

Top-down modeling

RTT-unfair, windowed Max-min fairness

TCP uses a congestion window, W, that bounds the
number of in-flight bytes

Problem

maximize min
f∈F

Lf ρf

subject to:
∀f ∈ F , Lf =

∑
l traversed by f

Ll

∀l ∈ L,
∑

f going through l

ρf ≤ Bl

∀f ∈ F , ρf ≤ W/(2Lf)

Steady-state flow-level bandwidth sharing models

Top-down modeling

Validity of the top-down model

It is known that TCP does not implement (RTT-unfair)
Max-min fairness
But authors have argued it’s a reasonable approximation in
some cases

[Chiu, 1999], [Casanova and Marchal, 2002]

The big question: is it good enough to be use as a
simulation model?
In [Fujiwara and Casanova, 2007] some good results are
presented for a set of topology/flow scenarios

But the validity limits are not explored much
They do report that for transfers < 100 MiB results are poor
(more on this in the next few slides)

Velho and Legrand went further...

Steady-state flow-level bandwidth sharing models

Top-down modeling

Parameterizing the model

In [Velho and Legrand, Simutools’09], the authors have
evolved this basic model by adding several parameters
Their approach:

Generate a bunch of test topologies
Dumbbell topologies with 4 endpoints and 2 routers (>-<)
Random with 50 or 200 end-points generated with BRITE
Random latencies or latencies computed by BRITE
Random bandwidths in various ranges

Generate a bunch of flows between random end-points
Compare flow-level results to packet-level results
Gain insight into what tuning parameters should be added
Estimate parameter values of maximum likelihood

Let’s review their findings...

Steady-state flow-level bandwidth sharing models

Top-down modeling

High congestion and RTT-unfairness

In highly congested scenarios, the RTT is impacted by
bandwidth
New parameter: γ

∀f ∈ F , Lf =
∑

l traversed by f

Ll +
γ

Bl

Velho and Legrand find that good results are achieved by
γ ≈ 8775 or γ ≈ 20537 depending on the TCP version

Steady-state flow-level bandwidth sharing models

Top-down modeling

Protocol overhead

When using a network protocol, not every transferred byte
is a byte of useful data
Every protocol has an overhead, which decreases the
achievable data transfer rate on a link of given bandwidth
New parameter: β

∀l ∈ L,
∑

f going through l

ρf ≤ β × Bl

Velho and Legrand find that good results are achieved by
γ ≈ 0.92 or γ ≈ 0.97 depending on the TCP version
(corresponds to the fraction of useful payload)

Steady-state flow-level bandwidth sharing models

Top-down modeling

Simulating finite flows

Regardless of the steady-state bandwidth sharing model,
we want to simulate finite flows
We must compute for each flow its execution time tf

to advance the simulated time to t′ = min(tnew,minf tf)

A simple model:

tf = Lf + Sf /ρf

Problem: TCP’s slow start behavior!
Due to additive increase, the steady-state bandwidth is not
reached immediately, even when there is no congestion

Steady-state flow-level bandwidth sharing models

Top-down modeling

Simulating slow-start

Because of slow-start, a simulation could only be realistic
for large transfer sizes (i.e., ≈ 10 MiB)

See the results by Fujiwara and Casanova

In [Velho et al., 2009] the authors propose a simple
modification with a new parameter α:

tf = α Lf + Sf /ρf

The author find that α ≈ 10.40 or α ≈ 13.01 leads to good
results depending on the TCP version
This makes the simulations reasonably accurate down to
∼ 100 KiB data sizes
For smaller transfers: forget flow-level models and go back
to packet-level since each flow is only a few packets!

Steady-state flow-level bandwidth sharing models

Top-down modeling

The full model in [Velho and Legrand, Simutools’09]

Problem

maximize min
f∈F

Lf ρf

subject to:
∀f ∈ F , Lf =

∑
l traversed by f

Ll +
γ

Bl

∀l ∈ L,
∑

f going through l

ρf ≤ β × Bl

∀f ∈ F , ρf ≤ W / (2Lf)

tf = α Lf + Sf / ρf

Steady-state flow-level bandwidth sharing models

Top-down modeling

The results in [Velho and Legrand, Simutools’09]

Drastic improvements are demonstrated over the basic
Max-Min

The addition of each parameter helps in its own way

Low discrepancy with packet-level simulation shown on
hundreds of test cases
So overall, a very convincing paper with convincing results

And yet, occasionally, some flow in some test case will
experience a discrepancy by up to a factor 20!
Question: To which extent is the (modified) Max-Min
fairness model valid?

On the (top-down) invalidation path

The critical method

By contrast with bottom-up modeling, top-down modeling
is much more of an empirical science

(Re)formulate a model as an hypothesis
Try to invalidate it via experiments
Repeat

This is the critical method [Karl Popper, philosopher]
Don’t keep showing "good" cases in which the model works
(although it’s the typically publication strategy!)
Instead keep looking for "bad" cases to evolve the models
These bad cases are called crucial experiments (i.e.,
invalidation experiments)

Invalidation should be at the core of the modeling activity

On the (top-down) invalidation path

Invalidation

Let us follow the critical method to invalidate the flow-level
model in [Velho and Legrand, 2009]
Essentially, we try to break the model
So that we can either:

Improve it, or
Quantify validity limits

All results are for TCP Reno + RED
Some results are discussed with TCP Vegas + Droptail in
our recent paper in IEEE TOMACS

On the (top-down) invalidation path

Experimental procedure in [Velho and Legrand]

The results in [Velho and Legrand] are for 4 sets of 10
topologies generated with BRITE, using the Waxman
model

Number of nodes: 50 or 200
Link bandwidths: uniformly distributed in [100, 128] MiB/s or
[10, 128] MiB/s
Link latencies: computed by BRITE based on Euclidian
distance

For each of the topologies:
100 flows are generated between random end-points
Each flow transfers 100 MiB of data
TCP congestion window is set to 60 KiB

In total: 160 experimental scenarios (4× 40)

On the (top-down) invalidation path

Accuracy metric

MeanLogErr =
1
|F|

∑
f∈F

∣∣∣log
(
ρflow

f

)
− log

(
ρpacket

f

)∣∣∣ ,and

MaxLogErr = max
f∈F

∣∣∣log
(
ρflow

f

)
− log

(
ρpacket

f

)∣∣∣ .
The smaller the error, the better
The logarithms are used for symmetry (doesn’t matter
whether the "reference" is the smaller or the larger value)
Computed over the time window from t = 0 up to the
completion of the first flow

On the (top-down) invalidation path

Initial results

               











               













A few scenarios show high error
Many show low error: they’re not "crucial experiments"

On the (top-down) invalidation path

Making scenarios more crucial

Inspecting the results, we find that many of the low-error
scenarios have mostly RTT-bound flows
They are governed by the ρf ≤ W/(2Lf) constraint

The "real" bandwidth sharing model is bypassed

They are easy cases for our flow-level model, hence the
low error
We can see this trend easily if we plot % of RTT-bounded
flow vs. MaxError...

On the (top-down) invalidation path

More RTT-bounded flow, less crucial

0

50

100

20 40 60 80 100 120 140 160R
T

T
 b

o
u

n
d

ed

Experiments

0

1

2

M
ax

 E
rr

o
r

On the (top-down) invalidation path

Making experiments more critical

We sample bandwidths in [10, 12.8] MiB/s
Likely rare in practice, but we use the critical method

We no longer use BRITE, but instead use Tiers

⇒

On the (top-down) invalidation path

New crucial workload

               











               













           


























           





On the (top-down) invalidation path

Finding sources of error

Now we have a lot of bad results, which is great because
now it’s easier to try to understand what’s wrong with the
model
We pick a particularly bad workload and visualize flow
completion time in flow-level simulation and packet-level
simulation...

On the (top-down) invalidation path

Visualization of completion times
Max-min based Flow Model

GTNetS

Many almost vertical lines (light)
Several really non-vertical lines (dark)
Flow-level simulation almost always underestimates
completion times

We have no idea how to explain the one odd flow that is
faster with packet-level simulation

We now use another visualization to inspect the "bad" flows

On the (top-down) invalidation path

Visualization of link usage

GTNetsMax-min based Flow Model

A B

A B

Flow
direction

Full link
utilization

Low link
utilization

Flow
direction

Flow
direction

There is no hope for our flow-level model to capture the
underutilization of that link...

On the (top-down) invalidation path

Link underutilization explained

Underutilization is due to
reverse traffic
One explanation: Network
compression [Zhang 1991]

Ack packets are queued with
the data packets of reverse
flows

Another: Ack-clocking
[Heusse, 2011]

Data and ack segments
alternatively fill only one link
buffer

We modify our problem...

On the (top-down) invalidation path

Accounting for reverse traffic in our model

Problem

maximize min
f∈F

Lf ρf

subject to:
∀f ∈ F , Lf =

∑
l traversed by f

Ll +
γ

Bl

∀l ∈ L,
∑

f going through l

ρf + ε

 ∑
f ’s ack going through l

ρf

 ≤ β × Bl

∀f ∈ F , ρf ≤ W / (2Lf)

tf = α Lf + Sf / ρf

On the (top-down) invalidation path

Improved results

           






























           





On the (top-down) invalidation path

Comparison to bottom-up model

20 40 60 80 100 120 140 160 180 200 220 240

scenario

0

1

2

3

4

5

7
bottom-up model

reverse-traffic maxmin

0.5

1.0

1.5
bottom-up model

reverse-traffic maxmin

0.0
20 40 60 80 100 120 140 160 180 200 220 240

scenario

6

On the (top-down) invalidation path

Could bottom-up be improved?

The model by Low et al. does not account for reverse traffic
Since the work by Low et al., new advances have been
made

Differential Algebraic Equation (DAE) model in [Tang et al.,
2008, 20010]
Ack-clocking dynamics in [Jacobsson et al., 2009]

These models are not designed for use in simulation
They require solving complex differential equations
Models not yet validated for more than three flows and
three nodes

Conclusion: At this point, our top-down modified Max-Min
model looks pretty good

On the (top-down) invalidation path

Some things, we just can’t do...

Some flow just experience data rates that cannot be
modeled by a flow-level model

Flow 66

0 200 400 600 800 1000 1200

d
a
ta

 r
a
te

(M
b
it

/s
)

Time (seconds)

data rate
of flow 66

7e+06

5e+06

3e+06
1e+06

GTNetS timeline

This flows stalls for 380 seconds!
Results reproduced with NS-3 and GTNetS

This is for a very (unlikely) high-contention scenario

Conclusion

What we found out

Flow-level models used in state-of-the-art grid/cloud
simulators can be vastly improved upon
Results are close to packet-level results unless

Transferred data sizes are small (a few KiB)
Congestion is really high

Using the critical method was key to obtained
improvements in the model
We feel that we have reached the limits of what we can do
All our work is implemented in the SIMGRID simulator

See next seminar

Conclusion

Sources and acknowledgments

A Duality Model of TCP and Queue Management
Algorithms, [IEEE TN, 2003]
S. H. Low
Accuracy Study and Improvement of Network Simulation in
the SimGrid Framework, [Simutools 2009]
P. Velho, A. Legrand
On the Validity of Flow-level TCP Network Models for Grid
and Cloud Simulations [IEEE TOMACS 2013]
P. Velho, L. Mello Schnorr, H. Casanova, A. Legrand

	Packet-level vs. flow-level models
	Steady-state flow-level bandwidth sharing models
	Bottom-up modeling
	Top-down modeling

	On the (top-down) invalidation path
	Conclusion

