
Introduction to Scheduling Theory

Henri Casanova1,2

1Associate Professor
Department of Information and Computer Science

University of Hawai‘i at Manoa, U.S.A.
2Visiting Associate Professor

National Institute of Informatics, Japan

NII Seminar Series, October 2013

Introduction

Presentation and thanks

Thanks to NII for inviting me to teach this seminar series!

Introduction

Some of my research topics in last 5 years

Scheduling (in a broad sense)
Divisible Load Scheduling
Scheduling checkpoints for fault-tolerance
Resource allocation in virtualized environments
Scheduling mixed parallel applications
Scheduling applications on volatile resources
Scheduling for energy savings
...

Simulation of distributed systems
Simulation tools and methodologies (SIMGRID)
Models for network simulation

Random Network Topologies (with NII researchers)

Introduction

Seminar topics

Scheduling
A long-studied theoretical subject with practical applications
Comes in (too) many flavors

We’ll explore some of them in this seminar series

Simulation of distributed platforms and applications
Necessary for research on scheduling and other topics
Unclear and disappointing state-of-the-art
The SIMGRID project

Introduction

Seminar organization

Introduction to Scheduling Theory
Scheduling Case Study: Divisible Load Scheduling
Scheduling Case Study: Scheduling Checkpoints
Scheduling Case Study: Scheduling Sensor Data Retrieval
Fast and Accurate Network Simulations
Simulating Distributed Applications with SIMGRID

Introduction

Disclaimer on organization

There are many possible topics here, especially in the area
of scheduling

e.g., I picked 3 particular case studies but I’ll likely refer to
other scheduling domains as well

I may have too much material for some topics, in which
case I’ll skip part of it. But my slides will of course be
available to all

Scheduling on 2 processors

What is scheduling?

Scheduling is studied in Computer Science and Operations
Research
Broad definition: the temporal allocation of activities to
resources to achieve some desirable objective
Examples:

Assign workers to machines in an factory to increase
productivity
Pick classrooms for classes at a university to maximize the
number of free classrooms on Fridays
Assign users to a pay-per-hour telescope to maximize profit
Assign computation to processors and
communications to network links so as to minimize
application execution time

Scheduling on 2 processors

A simple scheduling problem

A Scheduling Problem is defined by three components:
1 A description of a set of resources
2 A description of a set of tasks
3 A description of a desired objective

Let us get started with a simple problem: INDEP(2)
1 Two identical processors, P1 and P2

Each processor can run only one task at a time
2 n compute tasks

Each task can run on either processor in a seconds
Tasks are independent: can be computed in any order

3 objective: minimize max(T1,T2)

Ti is the time at which processor Pi finishes computing

Scheduling on 2 processors

The easy case

If all tasks are identical, i.e., take the same amount of
compute time, then the solution is obvious: Assign dn/2e
tasks to P1 and bn/2c tasks to P2

Rule of thumb: try to have both processors finish at the
same time

The problem size is O(1), the “scheduling algorithm” is
O(1), therefore we have a polynomial time (in fact linear)
algorithm

For each task pick one of the two processors by comparing
the index of the task with n/2

We declare the problem “solved”

Scheduling on 2 processors

Gantt chart for INDEP(2) with 5 identical tasks

time

P1

P2

idle time

makespan = max(3a, 4a)

0 a 2a T2 = 3a T1 = 4a

Scheduling on 2 processors

Non-identical tasks

Task Ti, i = 1, . . . , n takes time ai ≥ 0
We say a problem is “easy” when we have a
polynomial-time (p-time) algorithm:

Number of elementary operations is O(f (n)), where f is a
polynomial and n is the problem size

P is the set of problems that can be solved with a p-time
algorithm
Question: is there a p-time algorithms to solve INDEP(2)?
Disclaimer: Some of you may be familiar with algorithms
and computational complexity, so bear with me while I
review some fundamental background

Scheduling on 2 processors

Decision vs. optimization problem

Complexity theory is for decision problems, i.e., problems
that have a yes/no answer
Scheduling problems are optimization problems
Decision version of INDEP(2): for an integer k is there a
schedule whose makespan is lower than k
If we have a p-time algorithm for the optimization problem,
then we have p-time algorithm for the decision problem

Run the optimization algorithm, and check whether the
makespan is lower than k

Scheduling on 2 processors

Decision vs. optimization problem

If the decision problem is in P, then there is often (not
always!) a p-time algorithm to solve the optimization
problem

Binary search for the lowest k (k ≤ n×maxi ai)
Adds a log(n×maxi ai) complexity factor, still p-time if the
ai’s are bounded (reasonable assumption)

Almost always the case in scheduling, and decision and
optimization problems are often thought of as
interchangeable

Scheduling on 2 processors

Problem size?

One has to be careful when defining the problem size
For INDEP(2):

We need to enumerate n integers (the ai’s), so the size is at
least polynomial in n
Each ai must be encoded (in binary) in dlog(ai)e bits
The data is O(f (n) +

∑n
i=1dlog(ai)e), where f is a polynomial

A problem is in P only if an algorithm exist that is
polynomial in the data size as defined above

Scheduling on 2 processors

Pseudo-polynomial algorithm

It is often possible to find algorithms polynomial in a
quantity that is exponential in the (real) problem size
For instance, to solve INDEP(2), one can resort to
dynamic programming to obtain and algorithm with
complexity O(n×

∑n
i=1 ai)

This is a polynomial algorithm if the ai are encoded in
unary, i.e., polynomial in the numerical value of the ai’s
But with the ai encoded in binary,

∑n
i=1 ai is exponential in

the problem size!
To a log, linear is exponential ,

We say that this algorithm is pseudopolynomial

Scheduling on 2 processors

So, is INDEP(2) difficult?

Nobody knows a p-time algorithm for solving INDEP(2)
We define a new complexity class, NP

Problems for which we can verify a certificate in p-time.
“Given a possible solution, can we check that the problem’s
answer is Yes in p-time?”

There are problems not in NP, but not frequent
Obviously P ⊆ NP

empty certificate, just solve the problem
Big question: is P 6= NP?

Most people believe so, but we have no proof
For all the follows, "unless P = NP" is implied

Scheduling on 2 processors

NP-complete problems

Some problems in NP are at least as difficult as all other
problems in NP
They are called NP-complete, and their set is NPC
Cook’s theorem: The SAT problems is in NPC

Satisfiability of a boolean conjunction of disjunctions
How to prove that a problem, P, is NP-complete:

Prove that P ∈ NP (typically easy)
Prove that P reduces to Q, where Q ∈ NPC (can be hard)

For an instance IQ construct in p-time an instance IP

Prove that IP has a solution if and only if IQ has a solution

By now we know many problems in NPC
Goal: pick Q ∈ NPC so that the reduction is easy

Scheduling on 2 processors

Well-known complexity classes

NP

P NPC

Scheduling on 2 processors

INDEP(2) is NP-complete

INDEP(2) (decision version) is in NP
Certificate: for each ai whether it is schedule on P1 or P2
In linear time, compute the makespan on both processors,
and compare to k to answer "Yes"

Let us consider an instance of 2-PARTITION ∈ NPC:
Given n integers xi, is there a subset I of {1, . . . , n} such
that

∑
i∈I xi =

∑
i/∈I xi?

Let us construct an instance of INDEP(2):
Let k = 1

2

∑
xi, let ai = xi

The proof is trivial
If k is non-integer, neither instance has a solution
Otherwise, each processor corresponds to one subset

In fact, INDEP(2) is essentially identical to 2-PARTITION

Scheduling on 2 processors

So what?

This NP-completeness proof is probably the most trivial in
the world ,

But now we are thus pretty sure that there is no p-time
algorithm to solve INDEP(2)

What we look for now are approximation algorithms...

Scheduling on 2 processors

Approximation algorithms

Consider an optimization problem
A p-time algorithm is a λ-approximation algorithm if it
returns a solution that’s at most a factor λ from the optimal
solution (the closer λ to 1, the better)

λ is called the approximation ratio

Polynomial Time Approximation Scheme (PTAS): for any ε
there exists a (1 + ε)-approximation algorithm (may be
non-polynomial is 1/ε)
Fully Polynomial Time Approximation Scheme (FPTAS): for
any ε there exists a (1 + ε)-approximation algorithm
polynomial in 1/ε

Typical goal: find a FPTAS, if not find a PTAS, if not find a
λ-approximation for a low value of λ

Scheduling on 2 processors

Greedy algorithms

A greedy algorithm is one that builds a solution
step-by-step, via local incremental decisions
It turns out that several greedy scheduling algorithms are
approximation algorithms

Informally, they’re not as "bad" as one may think
Two natural greedy algorithms for INDEP(2):

greedy-online: take the tasks in arbitrary order and assign
each task to the least loaded processor

We don’t know which tasks are coming
greedy-offline: sort the tasks by decreasing ai, and assign
each task in that order to the least loaded processor

We know all the tasks ahead of time

Scheduling on 2 processors

Example with 6 tasks: Online

a1 = 2 a2 = 1 a3 = 3 a4 = 1

a5 = 3 a6 = 5

time

P1

P2

makespan = 9

Scheduling on 2 processors

Example with 6 tasks: Offline

a1 = 2 a2 = 1 a3 = 3 a4 = 1

a5 = 3 a6 = 5

time

P1

P2

makespan = 8

Scheduling on 2 processors

Greedy-online for INDEP(2)

Theorem

Greedy-online is a 3
2 -approximation

Proof:
Pi finishes computing at time Mi (M stands for makespan)
Let us assume M1 ≥ M2 (Mgreedy = M1)
Let Tj the last task to execute on P1
Since the greedy algorithm put Tj on P1, then M1 − aj ≤ M2
We have M1 + M2 =

∑
i ai = S

Mgreedy = M1 = 1
2 (M1 + (M1 − aj) + aj) ≤ 1

2 (M1 + M2 + aj) =
1
2 (S + aj)
but Mopt ≥ S/2 (ideal lower bound on optimal)
and Mopt ≥ aj (at least one task is executed)
Therefore: Mgreedy ≤ 1

2 (2Mopt + Mopt) =
3
2 Mopt 2

Scheduling on 2 processors

Greedy-offline for INDEP(2)

Theorem

Greedy-offline is a 7
6 -approximation

Proof:
If aj ≤ 1

3 Mopt, the previous proof can be used
Mgreedy ≤ 1

2 (2Mopt +
1
3 Mopt) =

7
6 Mopt

If aj >
1
3 Mopt, then j ≤ 4

if Tj was the 5th task, then, due to the task ordering, there
would be 5 tasks with ai >

1
3 Mopt

There would be at least 3 tasks on the same processor in
the optimal schedule
Therefore Mopt > 3 × 1

3 Mopt, a contradiction

One can check all possible scenarios for 4 tasks and show
optimality 2

Scheduling on 2 processors

Bounds are tight

Greedy-online:
ai’s = {1,1,2}
Mgreedy = 3; Mopt = 2
ratio = 3

2

Greedy-offline:
ai’s = {3, 3, 2, 2, 2}
Mgreedy = 7; Mopt = 6
ratio = 7

6

Scheduling on 2 processors

PTAS and FPTAS for INDEP(2)

Theorem

There is a PTAS ((1 + ε)-approximation) for INDEP(2)

Proof Sketch:
Classify tasks as either “small” or “large”

Very common technique

Replace all small tasks by same-size tasks
Compute an optimal schedule of the modified problem in
p-time (not polynomial in 1/ε)
Show that the cost is ≤ 1 + ε away from the optimal cost
The proof is a couple of pages, but not terribly difficult

Theorem

There is a FPTAS ((1 + ε)-approx pol. in 1/ε) for INDEP(2)

Scheduling on 2 processors

We know a lot about INDEP(2)

INDEP(2) is NP-complete
We have simple greedy algorithms with guarantees on
result quality
We have a simple PTAS
We even have a (less simple) FPTAS
INDEP(2) is basically "solved"

Sadly, not many scheduling problems are this
well-understood...

Scheduling on p processors

INDEP(P) is much harder

INDEP(P) is NP-complete by trivial reduction to
3-PARTITION:

Give 3n integers a1, . . . , a3n and an integer B, can we
partition the 3n integers into n sets, each of sum B?
(assuming that

∑
i ai = nB)

3-PARTITION is NP-complete “in the strong sense”,
unlike 2-PARTITION

Even when encoding the input in unary (i.e., no logarithmic
numbers of bits), one cannot find and algorithm polynomial
in the size of the input!
Informally, a problem is NP-complete “in the weak sense” if
it is hard only if the numbers in the input are unbounded

INDEP(P) is thus fundamentally harder than INDEP(2)

Scheduling on p processors

Approximation algorithm for INDEP(P)

Theorem

Greedy-online is a (2− 1
p)-approximation

Proof (usual reasoning):
Let Mgreedy = max1≤i≤p Mi, and j be such that Mj = Mgreedy

Let Tk be the last task assigned to processor Pj

∀i, Mi ≥ Mj − ak (greedy algorithm)
S =

∑p
i Mi = Mj +

∑
i 6=j Mi ≥ Mj + (p− 1)(Mj − ak) =

pMj + (p− 1)ak

Therefore, Mgreedy = Mj ≤ S
p + (1− 1

p)ak

But Mopt ≥ ak and Mopt ≥ S/p
So Mgreedy ≤ Mopt + (1− 1

p Mopt) 2

This ratio is “tight” (e.g., an instance with p(p− 1) tasks of
size 1 and one task of size p has this ratio)

Scheduling on p processors

Approximation algorithm for INDEP(P)

Theorem

Greedy-offline is a (4
3 −

1
3p)-approximation

The proof is more involved, but follows the spirit of the
proof for INDEP(2)
This ratio is tight

There is a PTAS for INDEP(P), a (1 + ε)-approximation
(massively exponential in 1/ε)
There is no known FPTAS, unlike for INDEP(2)

Scheduling Task Graphs

Task dependencies

In practice tasks often have
dependencies
A general model of computation is the
Acyclic Directed Graph (DAG),
G = (V,E)

Each task has a weight (i.e., execution
time in seconds), a parent, and children
The first task is the source, the last task
the sink
Topological (partial) order of the tasks

T1 : 2

T2 : 3 T3 : 2

T4 : 1

T5 : 0

Scheduling Task Graphs

Critical path

Assume that the DAG executes on p
processors
The longest path (in seconds) is called
the critical path
The length of the critical path (CP) is a
lower bound on Mopt, regardless of the
number of processors
In this example, the CP length is 6 (the
other path has length 4)

T1 : 2

T2 : 3 T3 : 2

T4 : 1

T5 : 0

Scheduling Task Graphs

Complexity

Unsurprisingly, DAG scheduling is NP-complete
Independent tasks is a special case of DAG scheduling

Typical greedy algorithm skeleton:
Maintain a list of ready tasks (with cleared dependencies)
Greedily assign a ready task to an available processor as
early as possible (don’t leave a processor idle
unnecessarily)
Update the list of ready tasks
Repeat until all tasks have been scheduled

This is called List Scheduling
Many list scheduling algorithms are possible

Depending on how to select the ready task to schedule next

Scheduling Task Graphs

List scheduling example

0

3
4

71 7
2

4

1

3 Processors

Makespan = 16; CP Length = 15

Idle Time = 1+5+5+8 = 19

Scheduling Task Graphs

List scheduling

Theorem (fundamental)

List scheduling is a (2− 1
p)-approximation

Doesn’t matter how the next ready task is selected

Let’s prove this theorem informally
Really simple proof if one doesn’t use the typical notations
for schedules
I never use these notations in public ,

Scheduling Task Graphs

Approximation ratio

Let’s consider a list-scheduling scheduleLet’s consider one of the tasks that finishes last
Why didn’t this task run during an earlier idle period?

Because a parent was not finished (list scheduling!)
Let’s look at a parent

Why didn’t this task run during an earlier idle period?

Because a parent was not finished (list scheduling!)
Let’s look at a parent

Why didn’t this task run during an earlier idle period?

Because a parent was not finished (list scheduling!)
Let’s look at a parentAnd so on...At any point in time either a task on the red path is running
or no processor is idle

Scheduling Task Graphs

Approximation ratio

Let L be the length of the red path (in seconds), p the
number of processors, I the total idle time, M the
makespan, and S the sum of all task weights
I ≤ (p− 1)L

processors can be idle only when a red task is running
L ≤ Mopt

The optimal makespan is longer than any path in the DAG
Mopt ≥ S/p

S/p is the makespan with zero idle time
p×M = I + S

rectangle’s area = white boxes + non-white boxes

⇒ p×M ≤ (p− 1)Mopt + pMopt ⇒ M ≤ (2− 1
p)Mopt 2

Scheduling Task Graphs

Good list scheduling?

All list scheduling algorithms thus have the same
approximation ratio
But there are many options for list scheduling

Many ways of sorting the ready tasks...

In practice, some may be better than others
One well-known option, Critical path scheduling

Scheduling Task Graphs

Critical path scheduling

When given a set of ready tasks, which one do we pick to
schedule?
Idea: pick a task on the CP

If we prioritize tasks on the CP, then the CP length is
reduced
The CP length is a lower bound on the makespan
So intuitively it’s good for it to be low

For each (ready) task, compute its bottom level, the length
of the path from the task to the sink
Pick the task with the largest bottom level

The great scheduling zoo

Graham’s notation

There are SO many variations on the scheduling problem
that Graham has proposed a standard notation: α|β|γ

alpha: processors
beta: tasks
gamma: objective function

Let’s see some examples for each

The great scheduling zoo

α: processors

1: one processor
Pn: n identical processors (if n not fixed, not given)
Qn: n uniform processors (if n not fixed, not given)

Each processor has a (different) compute speed
Rn: n unrelated processors (if n not fixed, not given)

Each processor has a (different) compute speed for each
(different) task (e.g., P1 can be faster than P2 for T1, but
slower for T2)

The great scheduling zoo

β: tasks

rj: tasks have release dates
dj: tasks have deadlines
pj = x: all tasks have weight x
prec: general precedence constraints (DAG)
tree: tree precedence constraints
chains: chains precedence constraints (multiple
independent paths)
pmtn: tasks can be preempted and restarted (on other
processors)

Makes scheduling easier, and can often be done in practice

. . .

The great scheduling zoo

γ: objective function

Cmax: makespan∑
Ci: mean flow-time (completion time minus release date

if any)∑
wiCi: average weighted flow-time

Lmax: maximum lateness (max(0,Ci − di))
. . .

The great scheduling zoo

Example scheduling problems

The classification is not perfect and variations among
authors are common
Some examples:

P2||Cmax, which we called INDEP(2)
P||Cmax, which we called INDEP(P)
P|prec|Cmax, which we called DAG scheduling
R2|chains|

∑
Ci

Two related processors, chains, minimize sum-flow
P|rj; pj ∈ {1, 2}; dj; pmtn|Lmax

Identical processors, tasks with release dates and deadlines,
task weights either 1 or 2, preemption, minimize maximum
lateness

The great scheduling zoo

Where to find known results

Luckily, the body of knowledge is well-documented (and
Graham’s notation widely used)
Several books on scheduling that list known results

Handbook of Scheduling, Leung and Anderson
Scheduling Algorithms, Brucker
Scheduling: Theory, Algorithms, and Systems, Pinedo
. . .

Many published survey articles

The great scheduling zoo

Example list of known results

Excerpt from
Scheduling
Algorithm, P.
Brucker

Take-away

Conclusion

Scheduling problems are diverse and often difficult
Relevant theoretical questions:

Is it in P?
Is it NP-complete?

Are there approximation algorithms?
Are there PTAS or FTPAS?
Are there are least decent non-guaranteed heuristics?

Luckily, scheduling problems have been studied a lot
Come up with the Graham notation for your problem and
check what is known about it!

Take-away

Sources and acknowledgments

Y. Robert H. Casanova A. Benoit
F. Vivien A. Legrand Y. Robert

Y. Robert F. Vivien

	Scheduling on 2 processors
	Scheduling on p processors
	Scheduling Task Graphs
	The great scheduling zoo
	Take-away

