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I —
© Introduction

© Modeling biological regulatory networks
@ Thomas' framework
@ From Thomas’ framework to discrete-event systems
@ From Thomas' framework to timed systems
@ Common limits of current models for biological analyses

© The Process Hitting: a framework well suited to concurrent systems
@ Definition
@ From biological models to Process Hitting and refining
@ Tool for analyzing Process Hitting: pint

@ Inferring information on the biological model thanks to the Process
Hitting
@ Interaction Graph Inference
@ Parametrization Inference

© Summary & Conclusion
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Introduction

Overview

@ Introduction
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Introduction

Motivations

Objective: formal verification of properties

@ Model the system S :
o Discrete models: finite state automata, Petri nets, ... = Lecture 1
o Timed models:

o Timed extensions of finite state automata: timed/hybrid automata =
Lecture 2
e Timed extensions of Petri nets: time/stopwatch Petri nets = Lecture 3

o Formalize the specification ¢ :

o Observers
e Temporal logics: LTL, CTL, ... = Lecture 1
e Timed extensions of temporals logics = Lectures 2 & 3

@ DoesSE¢ 7
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Introduction

Motivations

Objective: formal verification of properties

@ Model the system S :
o Discrete models: finite state automata, Petri nets, ... = Lecture 1
o Timed models:

o Timed extensions of finite state automata: timed/hybrid automata =
Lecture 2
e Timed extensions of Petri nets: time/stopwatch Petri nets = Lecture 3

o Formalize the specification ¢ :

o Observers
e Temporal logics: LTL, CTL, ... = Lecture 1
e Timed extensions of temporals logics = Lectures 2 & 3

@ DoesSE¢ 7

Model-checking algorithms
= State space exploration
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Introduction

Some major issues

Need for modeling tasks with suspending/resuming features

Expressivity /Decidability compromise to discuss = Lectures 2 & 3
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Introduction

Some major issues

Need for modeling tasks with suspending/resuming features

Expressivity /Decidability compromise to discuss = Lectures 2 & 3

State space combinatorial explosion

@ Need for symbolic approaches = Lectures 2 & 3

@ Need for new models and abstracted algorithms = Lecture 4
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Introduction

Context and Aims
MeForBio team: Algebraic modeling to study complex dynamical

biological systems
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Introduction

Context and Aims

MeForBio team: Algebraic modeling to study complex dynamical
biological systems

SYSTEMS

1) Two main models
e Historical model: Biological Regulatory Network (René Thomas)
e Recently designed model: Process Hitting

2) Allow efficient translation from one model to the other
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Introduction

Today's issue

Tricky question

How can we study complex dynamical biological systems, involving up to
1.000 interacting components?

Observation

@ Classical model-checking approaches suffer from state space explosion
o Leads:

e Taking profit for Process Algebra structure, based on a compact
representation of the interactions

e Develop static analysis approaches to verify some crucial properties,
e.g. stable states, reachability, key processes, ...
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Introduction

Contribution

Scientific challenge

How can we cope with the analysis of large-scale systems, involving up
to 1.000 interacting components?

Objectives of this talk

@ Introduce a Process Algebra inspired framework based on a compact
representation of the interactions

@ Develop efficient static analysis approaches to answer most
common problems

@ Apply the methodology to large-scale biological regulatory networks

Joint work with

e L. Paulevé (ETH Zurich), M. Folschette, O. Roux (IRCCyN)
e K. Inoue (NII)
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Modeling biological regulatory networks

Overview

© Modeling biological regulatory networks
@ Thomas' framework
@ From Thomas' framework to discrete-event systems
@ From Thomas' framework to timed systems
@ Common limits of current models for biological analyses
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Modeling biological regulatory networks Thomas’ framework

Short introduction to Biological Regulatory Networks

Principle of R. Thomas' discrete modeling [TGL76]
@ Activations and inhibitions between genes
@ Gene/protein couples
@ Genes expression is associated to a set of discrete logic levels
o Effective control beyond a given threshold; opposite effect below.

Interaction graph

@ Nodes = Genes

2—
@ Directed edges = Interactions ~ Y,
: . 1+ &
@ But what is the evolutionar @ @
. y 0..2/\/ 0.1
tendency of a when a is at level 1— -

1 and b at level 1?7 = Need for
parametrization
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Modeling biological regulatory networks Thomas’ framework

Biological Regulatory Network (Thomas' modeling)
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Proposed by René Thomas in 1973, several extensions since then

Historical bio-informatics model for studying genes interactions

Widely used and well-adapted to represent dynamic gene systems
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Modeling biological regulatory networks Thomas’ framework

Biological Regulatory Network (Thomas' modeling)
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Interaction Graph

Interaction Graph: structure of the system (genes & interactions)
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Modeling biological regulatory networks Thomas’ framework

Biological Regulatory Network (Thomas' modeling)
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Interaction Graph
Interaction Graph: structure of the system (genes & interactions)

Nodes: genes
eName a4, b, z
ePossible values (levels of expression) 0..1, 0..2
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Modeling biological regulatory networks Thomas’ framework

Biological Regulatory Network (Thomas' modeling)

Interaction Graph
Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

oName 4, b, z

ePossible values (levels of expression) 0..1, 0..2
Edges: interactions

oThreshold 1

eType (activation or inhibition) + / —
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Modeling biological regulatory networks Thomas’ framework

Biological Regulatory Network (Thomas' modeling)

Parametrization

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

— To any influences of predecessors w
— Corresponds a parameter  k,
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Modeling biological regulatory networks Thomas’ framework

Biological Regulatory Network (Thomas' modeling)

Parametrization

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

— To any influences of predecessors w
— Corresponds a parameter  k,

kz{atpt} =2 means: ztendsto 2 whena>1and b<1
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Modeling biological regulatory networks Thomas’ framework

Biological Regulatory Network (Thomas' modeling)

| —|—‘m‘€

A
@17 4| -

Biological Regulatory Network

— All needed information to run the model or study its dynamics:
o Build the State Graph
e Find reachability properties, fixed points, attractors
o Other properties...

— Strengths: well adapted for the study of biological systems
— Drawbacks: inherent complexity; needs the full
specification of cooperations
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Modeling biological regulatory networks Thomas’ framework

Limits of discrete modeling

(0

Figure: Motif inside biological segmentation networks (e.g. drosophila)

(Rmq.: boolean network)
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Modeling biological regulatory networks Thomas’ framework

Limits of discrete modeling

a ‘ 1 a ‘
Otar Oca- 0 I |
1
(e 0 c
5fc+
2
f | 1 f |
| 0 |

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NIl 2013/04/17 14 / 62



Modeling biological regulatory networks Thomas’ framework

Issues related to the synthesis of timed parameters

Problems

@ Infer the production and degradation rates

e Consider accumulation mechanisms (on/off oscillations)

| A\

Adaptation of the R. Thomas model

The logic interaction graph is enriched with two functions. These
functions give, for any discrete state of the network and for any gene:

@ The production delay of the gene, depending on its set of resources;

@ The degradation delay of the gene, depending on its set of resources.

~

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NIl 2013/04/17 15 / 62



Modeling biological regulatory networks Thomas’ framework

Increasing the models expressivity

Adapt the model to biological issues
@ Introduction of delays = timed transition systems

@ Need for modeling tasks with suspend / resume = introduce the
notion of stopwatches

@ Balance between expressivity and decidability
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Modeling biological regulatory networks Thomas’ framework

Problem

Choosing an appropriate time model for S
@ Dense time?

@ Discrete time?
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Modeling biological regulatory networks Thomas’ framework

Problem

Choosing an appropriate time model for S

@ Dense time?

@ Discrete time?

Inference and verification of quantitative temporal properties

= Efficient state-space exploration algorithms
= Compact data structures for storage and computation of the state

space
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Analysis of Biological Regulatory Networks

Motivation: apply modal logics

@ Compute state graph and check properties

@ Translate the model into a discrete-events (resp. timed) model, e.g.
(time) Petri nets, and check properties

Motivation: why Petri nets?

@ Mathematical and graphic formalism

Easy representation concurrence and parallelism
Structural properties (P-invariants, T-invariants, ...)

Dynamical properties (liveness, boundedness, reachability, ...)

Mature tools : Snoopy, ginSIM, ROMEO, etc.
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri net - Reminder

Figure: A Petri net

{P17P27P4}
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri net - Reminder

Figure: A Petri net

(P, Py, P} B {Py, P3Py} 5 .
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri net - Reminder

t l t2 —_—

P3

Figure: An other Petri net

{P1, P2, P4}

NIN (IRCCyN-NII) Lecture Series - Lecture 4 / NIl 2013/04/17



Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri net - Reminder

P1 P2 P4

t t2 —_—

Figure: An other Petri net

{P1, Py, P} 3 {Ps, Py} ...
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri net with reset arcs - Reminder

t l lz ta

P3

t3

Figure: A Petri net with reset arcs

{P1,Py,5x Py} 3 ...
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri net with reset arcs - Reminder

P1? ?Pz Pa
t t2 ta

ts

Figure: A Petri net with reset arcs

{Pl, P275 X P4} g {Pl, P3} g .
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri nets with read arcs

P1 P2 P4

t t2 —_—

Figure: A Petri net with read arcs

{P1, P2, P4}
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

Petri nets with read arcs

P1 P2 P4

t t2 —_—

Figure: A Petri net with read arcs

{P1, Py, Py} 2 {Py1, P3, Py} ...
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

(Logic) Inhibitor Hyperarc Petri nets : AND inhibition

P1 P2 P4

t ta

Figure: An inhibitor hyperarc Petri net

{P17P2;P4}
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

(Logic) Inhibitor Hyperarc Petri nets : AND inhibition

Figure: An inhibitor hyperarc Petri net : t; inhibited iff (M(P3) > 1 and
M(Ps) > 1)

{P1, P>, P4} i {P1, Ps3, P4}
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

(Logic) Inhibitor Hyperarc Petri nets : AND inhibition

P1 P2 P4

t ta

Figure: An inhibitor hyperarc Petri net

{P17P27P4}g{P17P37P4}3{P17P4}g"'
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

From regulatory networks to Petri nets

@ One place per gene

@ Marking: discrete level of concentration

Sc—a, T

VR

c a

. Koy Kagey
Figure: A simple regulatory network

@ How to test the concentration level without decrementing it?

@ How to model an action that takes place only below a given
concentration?

— Use read and inhibitor (hyper)arcs
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

From regulatory networks to Petri nets

Lo (e}

Figure: Translation towards Petri nets
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Modeling biological regulatory networks From Thomas’ framework to discrete-event systems

From regulatory networks to Petri nets

@ Automated translation

@ Bounded networks — reduced cost of read and logic inhibitor
hyperarcs
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Modeling biological regulatory networks From Thomas’ framework to timed systems

From regulatory networks to time extensions of Petri nets

e Thinly discretize the concentration levels (thus thresholds) of each
gene

@ Associate the production and degradation delays to transitions
resulting from the discrete translation
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Modeling biological regulatory networks From Thomas’ framework to timed systems

From regulatory networks to time extensions of Petri nets
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Figure: Translation towards time Petri nets
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Modeling biological regulatory networks From Thomas’ framework to timed systems

From regulatory networks to time extensions of Petri nets

@ Allows the model-checking of (parametric) TCTL formulae
@ Possibility to infer the time parameters associated to a transition

@ Automate the translation and export to ROMEO software
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Modeling biological regulatory networks From Thomas’ framework to timed systems

Model validation

jective : formal verification of a model properties

@ Model the S system:
—> Petri nets, Time Petri nets, Stopwatch Petri nets, ...

@ Formalize the specification ¢ :
— observers, timed logics (LTL, CTL, TCTL),. ..

@ Does SE=¢ 7
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Modeling biological regulatory networks From Thomas’ framework to timed systems

Model validation

Objective : formal verification of a model properties

@ Model the S system:
—> Petri nets, Time Petri nets, Stopwatch Petri nets, ...

@ Formalize the specification ¢ :
— observers, timed logics (LTL, CTL, TCTL),. ..

@ Does SE=¢ 7

Algorithms implemented in ROMEO in both dense time and discrete-time
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Modeling biological regulatory networks From Thomas’ framework to timed systems

Application : p53-MdM2 network

2, -
p/_\D
2, + 1, -
1'\)j1’-
1, +

Figure: Network from [WAjKO09]
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Modeling biological regulatory networks From Thomas’ framework to timed systems

Application : p53-MdM2 network
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Modeling biological regulatory networks From Thomas’ framework to timed systems

Biological analysis

Model validation
o Verify properties (sustained oscillations, damped oscillations, .. .)
@ Model-checking of TCTL formulae

Delays inference

Model-checking of parametric TCTL formulae
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Modeling biological regulatory networks From Thomas’ framework to timed systems

Biological analysis

Limits
@ Undecidability of TCTL model-checking, even for bounded
parametric TPN [TLRO9]
@ State space combinatorial explosion

@ Limitation in the size of the nets and number of parameters

| \

Methodology
@ ldentification of relevant sub-problems

@ Progressive inference of time delays

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NII 2013/04/17 34 / 62



Modeling biological regulatory networks Common limits of current models for biological analyses

Tools for Interaction Graphs Study

Interaction Graphs [RCBO05]

@ No positive circuit = only 1 attractor

@ No negative circuit = no cyclic attractor
e Positive circuits = criterion for max. number of attractors
°

Temporal logics = check properties (needs State Graph)
— SM-BIONET [KCRBO09], ginSIM [CNT12], Biocham [CFS06]
— Translate models into discrete-event systems and run
model-checkers

@ Some recent works focus on boolean networks topological fixed
points: [PR10]
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Modeling biological regulatory networks Common limits of current models for biological analyses

Tools for Interaction Graphs Study

Interaction Graphs [RCBO05]

No positive circuit = only 1 attractor

No negative circuit = no cyclic attractor

Positive circuits = criterion for max. number of attractors

Temporal logics = check properties (needs State Graph)

— SM-BIONET [KCRBOQ9], ginSIM [CNT12], Biocham [CFS06]
— Translate models into discrete-event systems and run
model-checkers

Some recent works focus on boolean networks topological fixed
points: [PR10]

v

Combinatorial explosion when computing the State Graph
— Need for static analysis — introduction of the Process Hitting
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Process Hitting

Overview

© The Process Hitting: a framework well suited to concurrent systems
@ Definition
@ From biological models to Process Hitting and refining
@ Tool for analyzing Process Hitting: pint
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Process Hitting Definition

Intuitive principle of the Process Hitting framework

Process = component a at level i

Interaction = ' o
a at level / makes b at level j increase or

decrease to level k

denoted
aj — bj " by (hit and bounce)

Definition (Interaction and Retroaction)

Interaction (a; — b;j " bx), where a; is the level of a process a and b; # by,
Retroaction (a; — a; " ax): when a; = bj.
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Process Hitting Definition

The Process Hitting modeling

Sorts: components a, b, z
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Process Hitting Definition

The Process Hitting modeling

@)
1O
OQ 2
@ 1
1O 0
QO

Sorts: components a, b, z
Processes: local states / levels of expression  zy, z1, 2
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Process Hitting Definition

The Process Hitting modeling

@)
1O
ol @ 2
(b}
1 @ 0
ol O

Sorts: components a, b, z
Processes: local states / levels of expression  zy, z1, 2
States: sets of active processes (ag, b1, zo)
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Process Hitting Definition

The Process Hitting modeling

TORN

H A
0@ QQ
8 !
1 @ @ o
©

Sorts: components  a, b, z

Processes: local states / levels of expression  zy, z1, z»
States: sets of active processes (ao, b1, zp)

Actions: dynamics by — z9l z;, a0 > a a1, a1 —~ a0 2

2013/04/17
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Process Hitting Definition

The Process Hitting modeling

TORN

H O

0@ QQ
& M)
1 @ () |o
ol O

Sorts: components  a, b, z

Processes: local states / levels of expression  zy, z1, z»
States: sets of active processes (ag, b1, z1)

Actions: dynamics by — 29l z;, a0 > a a1, a1~ a0 2

2013/04/17
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Process Hitting Definition

The Process Hitting modeling

TORN

H®-
OCQ QQ
& M)
1 @ () |o
ol O

Sorts: components  a, b, z

Processes: local states / levels of expression  zy, z1, z»
States: sets of active processes (a1, b1, z1)

Actions: dynamics by — 29l z;, a0 > a a1, a1 —~ a0 2

2013/04/17
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Process Hitting Definition

The Process Hitting modeling
&)

1,\
OCQ ,2
8 o
1 @ () |o
©

Sorts: components a, b, z

Processes: local states / levels of expression  zy, z1, 2
States: sets of active processes (a1, b1, z2)

Actions: dynamics by — 2zl z;, a0 —agl a1, a1 —~ 210 2

2013/04/17
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Process Hitting Definition

Adding cooperations
[PMR12]

@
11O
OQ 2
B 1
1+ (O 0
QO

How to introduce some cooperation between sorts? ay Aby — 217 2
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Process Hitting Definition

Adding cooperations

[PMR12]
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How to introduce some cooperation between sorts? ay Aby — 217 2
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Process Hitting Definition

Adding cooperations

[PMR12]
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How to introduce some cooperation between sorts? ay Aby — 217 2
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Process Hitting Definition

Adding cooperations
[PMR12]

00

O @

1 g ()
— 10 () 1
(b)— ot ()

1+ (O O 0
Q _—

How to introduce some cooperation between sorts? ay Aby — z1 7 2
Solution: a cooperative sort ab
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Process Hitting Definition

Adding cooperations
[PMR12]

[N

] (% [ab)
ot O Q 2
— 10@ 1
I

1+ (O ooé\O 0
OQ —

How to introduce some cooperation between sorts? ay Aby — z1 7 2
Solution: a cooperative sort ab
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Process Hitting Definition

Adding cooperations
[PMR12]

[N

1 O (ab)

0 O:/J’?O 2
1+ (O . C) 0
0 Q —

How to introduce some cooperation between sorts? ay Aby — z1 7 2
Solution: a cooperative sort ab
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Process Hitting Definition

Adding cooperations
[PMR12]

How to introduce some cooperation between sorts? ay Aby — z1 7 2
Solution: a cooperative sort ab
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Process Hitting Definition

Adding cooperations
[PMR12]

00

‘o [ab)

1 ; ()
— 10 () 1
(b)— ot ()

1O A 0
l _—

How to introduce some cooperation between sorts? ay Aby — z1 7 2
Solution: a cooperative sort ab
Constraint: each configuration is represented by one process

<31, b0>
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Process Hitting Definition

Adding cooperations
[PMR12]
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How to introduce some cooperation between sorts? ay Aby — z1 7 2
Solution: a cooperative sort ab
Constraint: each configuration is represented by one process

<31, b0>
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Process Hitting Definition

Adding cooperations
[PMR12]

How to introduce some cooperation between sorts? ay Aby — z1 7 2

Solution: a cooperative sort ab
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Process Hitting Definition

Adding cooperations

[PMR12]
@) &
1 ab
. 11 O
ot O 2
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1
(b} ot ()
1O 0
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How to introduce some cooperation between sorts? ay Aby — z1 7 2
Solution: a cooperative sort ab to express ai; A by

Constraint: each configuration is represented by one process

<31, b0> = ab10

Advantage: regular sort; drawbacks: complexity, temporal shift
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Process Hitting Definition

Static Analysis: Fixed Points
[PMR11a]

Fixed point = state where no action can be fired

— avoid couples of processes bounded by an action
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Process Hitting Definition

Static Analysis: Fixed Points
[PMR11a]

Fixed point = state where no action can be fired
— avoid couples of processes bounded by an action

— Hitless Graph — n-cliques = fixed points

Exponential complexity w.r.t. the number of sorts
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Process Hitting Definition

Static analysis: successive reachability
[PMR12]

Problem

Given an initial state of a Process Hitting, is it possible to reach
successively aj, then b;, then a, then ¢, ...?

= Combinatorial explosion of the dynamics to explore

Key idea

Instead of checking the successive reachability R, which is complex, we
will check:

@ an under-approximation P: if P is not satisfied, then R neither

@ an over-approximation Q: if Q is satisfied, then R too.
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Process Hitting Definition

Static analysis: successive reachability
[PMR12]

Successive reachability of processes:

Concretization of the objective = scenario
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Static analysis: successive reachability
[PMR12]
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@ Initial context
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@ Objectives
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[T do ]
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Process Hitting Definition

Over- and Under-approximations
[PMR12]

Static analysis by abstractions:
— Directly checking an objective sequence R is hard
— Rather check the approximations P and @, where P = R = Q:

Exact solution
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Process Hitting Definition

Over- and Under-approximations
[PMR12]

Static analysis by abstractions:
— Directly checking an objective sequence R is hard

— Rather check the approximations P and Q, where P = R = Q:

Over-Approximation

Under-Approximation

Linear w.r.t. the number of sorts and
exponential w.r.t. the number of processes in each sort

— Efficient for big models with few levels of expression
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Process Hitting Definition

Under-approximation

ot O b — New abstract structure
Sufficient condition:

boﬁ*bo%
2 ﬁblﬁ*bo% alﬁ*alw
do I'* dp =0
0 2 b1|—>*b1%0

bo P*blcl r*c —o
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Process Hitting Definition

Under-approximation

(@)
2% ol — New abstract structure

Sufficient condition:

@ no cycle

@ each objective has a solution

boﬁ*bow
2 ﬁblﬁ*boﬂo—>alr’*aleo
do I'* dp —C
R Y

bo P*blcl r* ¢y —0
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Under-approximation

ZP‘ , — New abstract structure
@ Sufficient condition:
1 ’ 1
& \ @ no cycle
@ each objective has a solution
CIOR X
0 1

R is true

bop*boﬂO
2 Eblﬁ*bo%alﬁ*alﬂo
do I dp =0
R P
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Process Hitting Definition

Under-approximation

, , — New abstract structure
@ Sufficient condition:
1 Q 3 1
D
' | o ne-eyele
o I cctive t b
O
v Inconclusive
bo P*bg —0 ai r’*al —0

B
bO b1 ﬁ*bo %—> ap r*a
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Process Hitting Definition

Over-approximation

Necessary condition:
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Process Hitting Definition

Over-approximation

Necessary condition:

There exists a traversal with no cycle

@ objective — follow one solution

@ solution — follow all processes

@ process — follow all objectives
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Process Hitting Definition

Over-approximation

Necessary condition:

Fhere-exists—a—traversal with no cycle
o obiect: ‘ .

@ solution — follow all processes

@ process — follow all objectives

b I by ~0——{ dy | dy P* dy =0

Co r*cy aiMag |
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Process Hitting Definition

Over-approximation

Necessary condition:

Fhere-exists—a—traversal with no cycle
o obiecti : :

@ solution — follow all processes

@ process — follow all objectives

R is false
bo 1 by ~o——{ dy | ch P* dy 0

bo P* by o * el ap M agl
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@ objective — follow one solution
@ solution — follow all processes
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Over-approximation

Necessary condition:

There exists a traversal with no cycle

@ objective — follow one solution
@ solution — follow all processes

@ process — follow all objectives

Inconclusive
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Process Hitting Definition

Over-approximation

Necessary condition:

There exists a traversal with no cycle

@ objective — follow one solution

@ solution — follow all processes

@ process — follow all objectives

Inconclusive

E do * dy

1 |—>*b0*>0—>

by} by P by 0

bapM*a; —o
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Process Hitting Definition

Stochastic Features
[PMR11b]

@ Introduces time features

e Parameters: either (r,sa), or the firing interval [d; D].
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@ Introduces time features
e Parameters: either (r,sa), or the firing interval [d; D].

d % D

msssssssm action duration
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Process Hitting Definition

Stochastic Features
[PMR11b]

@ Introduces time features

e Parameters: either (r,sa), or the firing interv

' d - D. 1
fh‘—»
0 t 0
d ¢ D
e S 20— bo T by
t
0 t
d: %‘ D ap — 4o r ai
0 t — by reached with a very low
mssssssm  action duration

probability.
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Process Hitting Definition

Stochastic Features
[PMR11b]

@ Introduces time features

e Parameters: either (r,sa), or the firing interv

' d - D. 1
fh‘—»
0 t 0
d ¢ D
e S 20— bo T by
t
0 t
d: %‘ D ap — 4o r ai
0 t — by reached with a very low
mssssssm  action duration

probability.

— Tests by simulation and model-checking
M. MAGNIN (IRCCyN-NII)
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Process Hitting From biological models to Process Hitting and refining

Translation of the Generalized Dynamics

Positive interaction: (®)
(a) 2
+1 1
/ﬂ 1
OO
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Process Hitting From biological models to Process Hitting and refining

Refining with Actions Removal

Prevent behaviors by deleting unrealistic actions

Gy

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NIl 2013/04/17



Process Hitting From biological models to Process Hitting and refining

Refining with Actions Removal

Prevent behaviors by deleting unrealistic actions

(T

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NIl 2013/04/17



Process Hitting From biological models to Process Hitting and refining

Refining with Actions Removal

Prevent behaviors by deleting unrealistic actions
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Process Hitting From biological models to Process Hitting and refining

Refining with Cooperation

Allow cooperation between two genes

@ How to express (a3 A b1) — 2z [ z1?

— Add a cooperative sort reflecting the state of a and b

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NIl 2013/04/17
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Refining with Cooperation

Allow cooperation between two genes

@ How to express (a3 A b1) — 2z [ z1?

— Add a cooperative sort reflecting the state of a and b

(a)
1 ~(ab]
1

0 O

(O fw0 1
(b) (O o 0
1

() | oo
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Process Hitting From biological models to Process Hitting and refining

Refining with Cooperation

Allow cooperation between two genes

@ How to express (a3 A b1) — 2z [ z1?

— Add a cooperative sort reflecting the state of a and b
1 ()\
ol O
(b)

11

10 1

01 0

00

[efe)e)e"
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Refining with Cooperation
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@ How to express (a3 A b1) — 2z [ z1?
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Process Hitting From biological models to Process Hitting and refining

Refining with Cooperation

Allow cooperation between two genes

@ How to express (a3 A b1) — 2z [ z1?

— Add a cooperative sort reflecting the state of a and b
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Process Hitting From biological models to Process Hitting and refining

Refining with Cooperation

Allow cooperation between two genes

@ How to express (a1 A b1) — 2z [ z1?

— Add a cooperative sort reflecting the state of a and b

11

N

10

O
01 () fo

1

00

O 00 Op

0 0P [0 OF

— Introduces a temporal shift (over-approximation)
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Process Hitting From biological models to Process Hitting and refining

Using Process Hitting for
Interaction Graphs Study

@ Interaction Graph is the historical discrete model (suitable and
widespread in biological research)

@ Several tools exist of the analysis of interaction graphs, but the state
graph is needed for some results = combinatorial explosion

Contribution: Process Hitting to study large Biological Regulatory

Networks

@ Translation from Interaction Graphs + Refining

o Efficient static analysis
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Process Hitting From biological models to Process Hitting and refining

The Process Hitting modeling

Key features
@ Dynamic modeling with an atomistic point of view

— Independent actions
— Cooperation modeled with cooperative sorts

o Efficient static analysis

— Reachability of a process can be computed in linear time
in the number of sorts

@ Useful for the study of large biological models
— Up to hundreds of sorts

\

(Future) extensions
@ Actions with stochasticity
@ Actions with priorities

@ Continuous time with clocks?

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NII 2013/04/17 51 / 62



Process Hitting Tool for analyzing Process Hitting: pint

The Pint Tool

Features

o Free software (API available for future developments)

e Textual language to describe a Process Hitting (GUI currently under
development)

o Implemented tools:

e Translations from and to various other models
e Fixed points research
e Stochastic simulation
e Reachability checker
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Process Hitting Tool for analyzing Process Hitting: pint

The Pint Tool

Results and performance (reachability analysis):
Model || sorts | procs | actions | states || Biocham® libddd? PINT
egfr20 || 35 196 670 264 [3s-KO] | [1s-150s] | 0.007s
tcrsigd0 || 54 156 301 273 [1s-KO] | [0.6s-KO] | 0.004s

tcrsigd4 || 133 | 448 | 1124 | 219 KO KO 0.030s
egfr104 || 193 | 748 | 2356 | 23%° KO KO 0.050s
! [Inria Paris-Rocquencourt/Contraintes]

2 [LIP6/Move]
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Process Hitting Tool for analyzing Process Hitting: pint

The Mobyle portal

Presentation

o Web application unifying tools for systems biology analysis
@ Powered by the Mobyle framework
@ Project led in the context of the French ANR “BIOTempo” project

Figure: General architecture of the BIOtempo Mobyle server
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Process Hitting Tool for analyzing Process Hitting: pint

The Mobyle portal

Presentation

o Web application unifying tools for systems biology analysis
@ Powered by the Mobyle framework

@ Project led in the context of the French ANR “BIOTempo” project

B I @ tem PO o s i 27

mobyle server

PINT 2012-11-02: ph-reach

Checks the reachability of a
processes

Screenshot from the BIOtempo Mobyle server:

cardioserve.nantes.inserm. fr/cgi—bin/mobyle/portal .py
M. MAGNIN (IRCCyN-NII)
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Information inference

Overview

@ Inferring information on the biological model thanks to the Process
Hitting
@ Interaction Graph Inference
@ Parametrization Inference
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Information inference

Inferring a BRN with Thomas' parameters
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Information inference Interaction Graph Inference

Inferring the Interaction Graph
[FPI*12]

OO [CoP

.
®

S

OO0

&
O,

B
5
©

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NII 2013/04/17 56 / 62



Information inference Interaction Graph Inference

Inferring the Interaction Graph
[FPI*12]

OO [CoP

P
©

S

OO0

\

.
=
®

M. MAGNIN (IRCCyN-NII) Lecture Series - Lecture 4 / NII 2013/04/17



Information inference Interaction Graph Inference

Inferring the Interaction Graph
[FPI*12]

— Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others
[bo].

2. Change the active process of this regulator [ag, a1] and watch the focal
processes.
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Information inference Interaction Graph Inference

Inferring the Interaction Graph

[FPIT12]
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— Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others
[bo]-

2. Change the active process of this regulator [ag, a1] and watch the focal
processes.

3. Conclude locally: (ag " a1 = 20 " 22)
= activation (+) & threshold = 1.
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1. Pick one regulator [a], and choose an active process for all the others
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Information inference Interaction Graph Inference

Inferring the Interaction Graph

[FPI*12]
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— Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others
[bo]-

2. Change the active process of this regulator [ag, a1] and watch the focal
processes.

3. Conclude locally: (ag " a1 = 20 T 22)
= activation (+) & threshold = 1.

4. lterate and conclude globally.
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Information inference Interaction Graph Inference

Inferring the Interaction Graph

[FPIT12]
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8

Problematic cases:
— No focal processes (cycle)
— Opposite influences (+ & —)

{b=1} =

@ {b=0}= -i—1Jr
\@

} = Unsigned edge
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Inferring Parameters
[FPI*12]
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1. For each configuration of resources [w = {a™, b }]
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1. For each configuration of resources [w = {a™, b }]
find the focal processes.
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Information inference Parametrization Inference

Inferring Parameters
[FPI*12]

1. For each configuration of resources [w = {a™, b }]
find the focal processes. If possible, conclude. [k, {3+ -} = 1]
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Information inference Parametrization Inference

Inferring Parameters

[FPIT12]
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1. For each configuration of resources [w = {a™, b }]
find the focal processes. If possible, conclude. [k, {3+ -} = 1]
Inconclusive cases:

— Behavior cannot be represented as a BRN
— Lack of cooperation (no focal processes)
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Information inference Parametrization Inference

Inferring Parameters

1. For each configuration of resources [w = {a™, b }]
find the focal processes. If possible, conclude. [k, {5+ -} = 1]
Inconclusive cases:

— Behavior cannot be represented as a BRN
— Lack of cooperation (no focal processes)

2. If some parameters could not be inferred, enumerate all admissible
parametrizations, regarding biological constraints and the dynamics
of the Process Hitting = k, (,+ p-1 € {0;1;2}; k, (- pry € {0;1;2}
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Summary & Conclusion

Overview

© Summary & Conclusion
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Summary & Conclusion

Implementation

Workflow:

@ Read and translate the models with OCaml
— Uses the existing free library Pint
— Documentation + examples:
http://processhitting.wordpress.com/

@ Express the problem in ASP (logic programming)
— Solve with Clingo (Gringo + Clasp)
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Summary & Conclusion

Implementation

Workflow:

@ Read and translate the models with OCaml
— Uses the existing free library Pint
— Documentation + examples:
http://processhitting.wordpress.com/

@ Express the problem in ASP (logic programming)
— Solve with Clingo (Gringo + Clasp)

Model specifications IG inference Parameters inferenc

Name S+CS P A At | Edges At Paramet
[EGFR20] 20+22 | 152 | 399 || 1s 50 1s 101
[TCRSIG40] 40+14 | 156 | 301 1s 54 1s 143
[TCRSIGO4] || 94139 | 448 | 1124 || 13s | 169 o0 2.10°

[EGFR104] || 104+89 | 748 | 2356 || 4min | 241 [ 1min 30s | 1.10°/2.

S = Sorts CS = Cooperative sorts P = Processes A = Actions

[EGFR20]: Epidermal Growth Factor Receptor, by Ozgiir Sahin et al.

[EGFR104]: Epidermal Growth Factor Receptor, by-Regina Samaga=et al.
60 / 62
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Summary & Conclusion

Summary

Process Hitting and ASP
@ Inference of the complete Interaction Graph

@ Inference of the possibly partial Parametrization

@ Enumerate all full & admissible Parametrizations

— Exhaustive approaches

Complexity: linear in the number of genes, exponential in the number of
regulators of one gene
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Summary & Conclusion

Summary

Contribution: new translation Process Hitting ~» René Thomas
— New formal link between the two models
— More visibility to the Process Hitting

— Inference approach that takes benefit from both the Process Hitting
compact structure and the power of ASP
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Summary & Conclusion

Further work

Models and algorithms

@ Add priorities in the Process Hitting framework and adapt the static
analyses approaches for this enriched model (= paper currently
submitted at CS2Bio'13)

@ From priorities to quantitative timing information

@ Connect Process Hitting compact structure with decomposition
techniques in continuous approaches [ACC12]| (= paper currently
submitted at CMSB'13)

Application
@ Use the approach for the analysis of larger biological networks

@ Contribute to the discovery of biological regulatory networks based
on biological data

e Study key properties (e.g. concept of resilience)
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