
Computational approaches to analyze complex
dynamic systems: model-checking and its

applications.
Part 2: Model-checking of timed transitions systems

Morgan Magnin
morgan.magnin@irccyn.ec-nantes.fr

www.morganmagnin.net

NII - Inoue Laboratory
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Introduction

Motivations

Objective: formal verification of properties

Model the system S :

Discrete models: finite state automata, Petri nets, . . . ⇒ Lecture 1
Timed models:

timed extensions of finite state automata: timed/hybrid automata ⇒
Lecture 2
timed extensions of Petri nets: time/stopwatch Petri nets ⇒ Lecture 3

Formalize the specification ϕ :

Observers
Temporal logics: LTL, CTL, . . . ⇒ Lecture 1
Timed extensions of temporals logics: TCTL, . . . ⇒ Lectures 2 & 3

Does S |= ϕ ?

Model-checking algorithms

⇒ State space exploration
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Introduction

Some major issues

Need for modeling tasks with suspending/resuming features

Expressivity/Decidability compromise to discuss ⇒ Lectures 2 & 3

State space combinatorial explosion

Need for symbolic approaches ⇒ Lectures 2 & 3

Need for new models and abstracted algorithms ⇒ Lecture 4
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Introduction

Today’s and next week’s issue

Tricky question

Coming from France, why do I need an average 3-4 days period not to be
jet-lagged anymore in Tōkyō?

Observation

Discrete models do not encompass sufficient information to get a
thorough description of the gene regulation network behind the
circadian clock w.r.t. time

Some related issues:

Is it possible to determine the lower limit of the day/night period cycle
during which the circadian clock continues to stabilize?
Why does the body better support backward phase delay than advance
phase delay?

→ On-going modeling project with biologists and computer
scientists (CNRS PEPII funded project CirClock)
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Introduction

Contribution

Scientific challenge

How can we get information about the production and degradation
rates of a protein in a biological regulatory network?

Objectives of this talk and the forthcoming one

From discrete model to timed model → emphasize on the
progressive enrichment of model and its drawbacks

Focus on the introduction of quantitative timing information

Discuss the most appropriate time semantics adapted to the model

Apply the general methodology to practical examples coming from
biology

M. Magnin (IRCCyN-NII) Lecture Series - Lecture 2 / NII 2013/04/03 6 / 64



Introduction

Contribution

Scientific challenge

How can we get information about the production and degradation
rates of a protein in a biological regulatory network?

Objectives of this talk and the forthcoming one

From discrete model to timed model → emphasize on the
progressive enrichment of model and its drawbacks

Focus on the introduction of quantitative timing information

Discuss the most appropriate time semantics adapted to the model

Apply the general methodology to practical examples coming from
biology

M. Magnin (IRCCyN-NII) Lecture Series - Lecture 2 / NII 2013/04/03 6 / 64



Timed models

Overview

1 Timed models
Timed, Hybrid and Linear Hybrid Automata
Time Petri nets
Other timed models
State space abstractions

2 Formalizing specification through timed modal logics
Reminders about linear and branching-time logics
Timed extensions of linear logics
Timed extensions of branching-time logics

3 Biological application

4 An introduction to control of timed systems
Control of discrete-events systems
Control of timed systems
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Timed models

Discrete-event systems vs timed systems

Discrete-event systems

Focus on the sequence of observable events (chronology):
t1 t2 t3 t2 t1 t1 t1 . . .

Timed systems

Focus on dated observable events (chronometry):
(t1,d1) (t2,d2) (t3,d3) (t2,d4) (t1,d5) (t1,d6) (t1,d7) . . .
with:

d1: date at which the first t1 occurs

d2: date at which the first t2 occurs, . . .

Remark: events are asynchronous, but dates di are authorized to be equal
to 0
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Timed models

Semantics of timed systems

Discrete-time semantics vs dense-time semantics

Discrete-time semantics: events occur at integer dates only

Dense-time semantics: events occur at any time

⇒ We will discuss the precise links between dense-time, discretization and
discrete-time in Lecture 3.
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Timed models Timed, Hybrid and Linear Hybrid Automata

Timed Automata

l0 l1

x < 1 x  2

x � 0

x � 1

x := 0a

b x := 0

Figure: A Timed Automaton (from
[CR08])

State of a TA = (Location, clock valuations)

The timed language L(A) of a TA A is the set of all words (traces)
accepted by A.

The behavioral semantics of a TA A is a timed transition system SA
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Timed models Timed, Hybrid and Linear Hybrid Automata

Timed Automata [AD91]

Definition

A finite set of locations l

A finite set of clocks v (over R or N)

An invariant function, mapping each location with a predicate over v

A finite set of transitions

A labelling function

An initial location
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Timed models Timed, Hybrid and Linear Hybrid Automata

Timed Automata [AD91]

About transition

A transition is composed of

a unique source location

a unique target location

a guard, i.e. an enabling condition (g := x ∼ c |g ∧ g , where
∼∈ {<,≤,=,≥, >}
a label (that can be used for synchronization)

a subset (potentially empty) of clocks to be reset
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Timed models Timed, Hybrid and Linear Hybrid Automata

Timed Automata [AD91]

l0 l1

x < 1 x  2

x � 0

x � 1

x := 0a

b x := 0

Figure: A Timed Automaton with its invariants, guards and clocks to reset
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Timed models Timed, Hybrid and Linear Hybrid Automata

Semantics of a timed automaton

Definition as a timed transition system

An action transition: (l , v)
a−→ (l ′, v ′) if there exists an a-labelled

transition from l to l ′ such that:

v satisfies the guard of the transition
v ′ = v [r ← 0], with r the set of clocks to be reset

A delay transition: (l , v)
δ(d)−→ (l , v + d), where (l , v) is a state of the

timed automaton, and d belongs to the time domain in (l , v)
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Timed models Timed, Hybrid and Linear Hybrid Automata

Hybrid automata [ACH+95]

Key idea

Every location is mapped with a set of ordinary differential equations
defining the evolution of the variables

Figure: Hybrid Automaton describing a thermostat (from [ACH+95])
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Timed models Timed, Hybrid and Linear Hybrid Automata

Hybrid automata

Definition

A finite set of locations l

A finite set of variables v over R
A finite set of initial states (couples (l , v))

A finite set of transitions

A flow function, mapping each location with with a predicate over v
and v̇

An invariant function, mapping each location with a predicate over v

A jump condition function, mapping each transition with a
predicate over v

An initialization condition, mapping the initial state with a predicate

A finite set of synchronization labels
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Timed models Timed, Hybrid and Linear Hybrid Automata

Linear Hybrid Automata [Hen96]

Key ideas

The invariant, flow and jump conditions are boolean combinations
of linear equalities.

Every location is mapped with a set of ordinary differential
equations

∑
ẋ ≤ k , with k ∈ R, defining the evolution of the

variables.

Figure: Linear Hybrid Automaton describing a leak in a gas-heating process
(from [Hen96])
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Timed models Time Petri nets

Petri net - Reminder

P1

t1 

P2

t2

P4

t4 

P3

t3

Figure: A Petri net

{P1,P2,P4}
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P1

t1 

P2

t2

P4

t4 

P3

t3

Figure: A Petri net

{P1,P2,P4} t2→ {P1,P3,P4} t1→ . . .
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Timed models Time Petri nets

Time Petri nets - Introduction

P1

t1 [5,6]

P2

t2 [0,1]

P4

t4 [2,4]

P3

t3 [1,2]

Figure: A time Petri net

{P1,P2,P4}
θ(t1) = 0
θ(t2) = 0
θ(t4) = 0

0.2→
{P1,P2,P4}
θ(t1) = 0.2
θ(t2) = 0.2
θ(t4) = 0.2
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Timed models Time Petri nets

Time Petri nets - Introduction

P1

t1 [5,6]

P2

t2 [0,1]

P4

t4 [2,4]

P3

t3 [1,2]

Figure: A time Petri net

{P1,P2,P4}
θ(t1) = 0
θ(t2) = 0
θ(t4) = 0

0.2→
{P1,P2,P4}
θ(t1) = 0.2
θ(t2) = 0.2
θ(t4) = 0.2

t2→
{P1,P3,P4}
θ(t1) = 0.2
θ(t3) = 0
θ(t4) = 0.2

0.9→ . . .
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Timed models Time Petri nets

Time Petri nets: Definition [Mer74]

A Time Petri Net (TPN) is a tuple T = (P,T , •(), ()•,M0, a, b) where :

P = {p1, p2, . . . , pm} is a non-empty finite set of places;

T = {t1, t2, . . . , tn} is a non-empty finite set of transitions
(T ∩ P = ∅);
•() ∈ (NP)T is the backward incidence function; ()• ∈ (NP)T is the
forward incidence function;

M0 ∈ NP is the initial marking of the net;

a ∈ (Q+)T and b ∈ (Q+ ∪ {∞})T are functions giving for each
transition respectively its earliest and latest firing times (a ≤ b).
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Timed models Time Petri nets

(Un)decidability results

Problem [JLL77]

Reachability, liveness and boundedness problems are undecidable for time
Petri nets.

Berthomieu et al. proved [BM83]:

Theorem

Reachability and liveness problems are decidable for bounded time Petri
nets.
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Timed models Time Petri nets

About newly enabled transitions

Figure: A time Petri net

We fire t1
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Timed models Time Petri nets

About newly enabled transitions

Figure: A time Petri net

We fire t1

t1 and t2 are not enabled by M − •t1 (M represents the marking of the net)
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Timed models Time Petri nets

About newly enabled transitions

Figure: A time Petri net

We fire t1

t1 and t2 are not enabled by M − •t1

t1 and t2 are newly enabled
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Timed models Time Petri nets

About newly enabled transitions

Figure: A time Petri net

We fire t1
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Timed models Time Petri nets

About newly enabled transitions

Figure: A time Petri net

We fire t1

t1 and t2 are enabled by M − •t1 but t1 is the fired transition
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Timed models Time Petri nets

About newly enabled transitions

Figure: A time Petri net

We fire t1

t1 and t2 are enabled by M − •t1 but t1 is the fired transition
t2 remains enabled, t1 is newly enabled
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Timed models Other timed models

Other timed models

A large family of models

On the thin red line between decidability and undecidability

Variants of timed automata:

Stopwatch automata: clocks can be stopped in some locations
Updatable timed automata: not only clock resets, but also clock
updates x := c or x := y + c
Priced Timed Automata

Variants of time Petri nets:

TPNs with self modification
Different semantics w.r.t.:

time elapsing: strong, weak
transition firing: intermediate, atomic
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Timed models State space abstractions

Need for abstractions for timed models

Problem

The state space of a timed transition system is infinite (in general)

⇒ Group states into equivalence classes (abstraction)

Major challenge

What is a relevant abstraction for the model, that preserves desired
properties?

⇒ We will illustrate this abstraction-based approach on one example
targeting TPNs.
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Timed models State space abstractions

Abstractions for TPNs

Infinite state-space ⇒ Abstractions

TPNs: Zone-based simulation graph [GRR06]

TPNs: State class graph [BD91]
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Timed models State space abstractions

State Class

TPNs: Zone (encoded by a Difference Bound Matrix (DBM) [dij ]i ,j∈[0..n]):{
−d0i ≤ θi − 0 ≤ di0,
θi − θj ≤ dij
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Timed models State space abstractions

Basic Algorithm for state space computation

begin
Passed = ∅
Waiting = {C0}
while Waiting 6= ∅

C = pop(Waiting)
Passed = Passed ∪ C
for t firable from C

C ′ = AbstractSuccessor(C , t)
if C ′ 6∈ Passed

Waiting = Waiting ∪ C ′

end if
end for

end while
end
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Timed models State space abstractions

Computing the state class graph

Let C = (M,D) and D = (A.Θ ≤ B). We fire tf .

M ′ = M − •tf + tf
•

D ′ is computed by:

for all enabled transitions ti , constrain by θf ≤ θi
for all enabled transitions ti , θ

′
i = θi − θf

eliminate variables for disabled transitions (e.g. using Fourier-Motzkin
method)
add new variables for newly enabled transitions ti :

α(ti ) ≤ θi ≤ β(ti )
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Timed models State space abstractions

State class graph computation: an example

TPN

P1

t1 [5,6]

P2

t2 [0,1]

P4

t4 [2,4]

P3

t3 [1,2]

State class graph
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Formalizing specification through timed modal logics

Overview

1 Timed models
Timed, Hybrid and Linear Hybrid Automata
Time Petri nets
Other timed models
State space abstractions

2 Formalizing specification through timed modal logics
Reminders about linear and branching-time logics
Timed extensions of linear logics
Timed extensions of branching-time logics

3 Biological application

4 An introduction to control of timed systems
Control of discrete-events systems
Control of timed systems
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Computation paths vs computation tree - Reminder

VS

Figure: Execution can be seen as a set of execution paths or as an execution tree
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking formal properties - Reminder

Qualitative properties

LTL (linear-time properties): on a given path, Xϕ, ϕUψ + Gϕ, Fϕ

CTL (branching-time properties): in a given state,

EXϕ, EϕUψ + EGϕ, EFϕ
AXϕ; AϕUψ + AGϕ, AFϕ

CTL∗ (superset including, but not equal, to the union of LTL and
CTL)
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of LTL properties - Reminder

p

s0

Figure: s0 |= Xp
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of LTL properties - Reminder

p p p p p q

s0

Figure: s0 |= pUq
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of LTL properties - Reminder

p p p p p p p

s0

Figure: s0 |= Gp
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of LTL properties - Reminder

p

s0

Figure: s0 |= Fp
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of CTL properties - Reminder

p p p

p

p

p

p

p

p

p

p

p

p

p

p

p p

p

p

p

p

s0

Figure: s0 |= AG p
M. Magnin (IRCCyN-NII) Lecture Series - Lecture 2 / NII 2013/04/03 32 / 64



Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of CTL properties - Reminder

p

p p p

p

s0

Figure: s0 |= EG p
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of CTL properties - Reminder

p

s0

Figure: s0 |= EF p
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of CTL properties - Reminder

p

p p p

qs0

Figure: s0 |= pEUq
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Model-checking of CTL properties - Reminder

p p q

p

p

p

q

q

p

p

p

p p

q

p

p

p

s0

Figure: s0 |=pAUq
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Formalizing specification through timed modal logics Reminders about linear and branching-time logics

Need for timed extensions of modal logics

Quantitative timing properties

How can we formalize a sentence like: “any problem is followed by an
alarm in at most 5 time units”?

Enrich temporal logics

“Any problem is followed by an alarm”: AG (problem→ AF alarm)

Extend temporal logics:

Add subscripts to temporal operators, e.g. AG (problem→ AF≤5alarm)
Use real clocks to assert timed constraints, e.g.
AG (problem→ x ∈ (x ≤ 5 ∧ AF alarm))

⇒ Timed temporal logics
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Formalizing specification through timed modal logics Timed extensions of linear logics

Timed temporal logics: From a path point of view

Extensions of Linear Temporal Logics

Metric Temporal Logic (MTL) [Koy90]

Add subscripts to temporal operators
Example: G (problem→ F≤5alarm)

Timed Propositional Temporal Logic (TPTL) [AH94]

Add real clocks to formulae
Example: G (problem→ x .F ∈ (x ≤ 5 ∧ alarm)), where x .ϕ means that
clock x is reset at the current position (i.e. before evaluating ϕ).

Remark: next (X) operator from LTL is removed (no meaning in
dense-time semantics)
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Formalizing specification through timed modal logics Timed extensions of linear logics

Model-checking of MTL properties: An example

p

1 2 3 4 5 60s0

p q

Figure: s0 |=pU[2;4]q
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Formalizing specification through timed modal logics Timed extensions of branching-time logics

Timed temporal logics: From a branching-time point of
view [ACD93]

Extensions of CTL∗

TCTL with subscripts, e.g. AG (problem→ AF≤5alarm)

TCTL with explicit clocks added to formulae, e.g.
AG (problem→ x ∈ (x ≤ 5 ∧ AF alarm))

Remark: next (X) operator from CTL∗ is removed (no meaning in
dense-time semantics)
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Formalizing specification through timed modal logics Timed extensions of branching-time logics

Model-checking of TCTL properties: An example

p

1 2 3 4 5 60s0

p q

Figure: s0 |= E (pU[2;4]q)
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Formalizing specification through timed modal logics Timed extensions of branching-time logics

Timed temporal logics: Expressiveness results [BCM05]

Subscripts vs explicit clocks

TPTL has been proven to be strictly more expressive than MTL
(e.g. x .F (a ∧ x ≤ 1 ∧ G (x ≤ 1⇒ ¬b)))

TCTL with explicit clocks has been proven to be strictly more
expressive than TCTL with subscripts.
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Formalizing specification through timed modal logics Timed extensions of branching-time logics

Timed temporal logics

Quantitative timing properties

A TCTL formula:

ϕ := ap | ¬ap | ϕ ∧ ϕ | ϕ ∨ ϕ | AϕUIϕ | EϕUIϕ

with:

ap an atomic assertion

I an interval from R+ with integer bounds s.t. [n,m], [n,m[, ]n,m],
]n,m[, or [m,∞[, n,m ∈ N
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Formalizing specification through timed modal logics Timed extensions of branching-time logics

Some additional TCTL examples

Bounded liveness/response [DT98]

“Whenever a property p becomes true, q must be true within n
seconds”(n ∈ N)

AG (p ⇒ AF[0,n]q)

Denoted p →[0,n] q in most model-checkers
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Formalizing specification through timed modal logics Timed extensions of branching-time logics

Decidability results w.r.t. model-checking [Alu99]

Following problems are undecidable

Model-checking of timed automata for MTL properties

Model-checking of TPNs for TCTL properties

Satisfaction problem for TCTL (TA/TPN)

Following problems are decidable

Model-checking of timed automata for TCTL properties

Model-checking of bounded TPNs for a subset (no nesting) of TCTL
with subscripts
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Biological application

Overview

1 Timed models
Timed, Hybrid and Linear Hybrid Automata
Time Petri nets
Other timed models
State space abstractions

2 Formalizing specification through timed modal logics
Reminders about linear and branching-time logics
Timed extensions of linear logics
Timed extensions of branching-time logics

3 Biological application

4 An introduction to control of timed systems
Control of discrete-events systems
Control of timed systems

M. Magnin (IRCCyN-NII) Lecture Series - Lecture 2 / NII 2013/04/03 42 / 64



Biological application

Biological application (from [AR10])

Figure: Integrating delays in the modeling framework
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Biological application

Biological application (from [AR10])

Figure: Linear Hybrid Automaton modeling Pseudomonas Aeruginas
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Biological application

Biological application (from [AR10])

Aim

Identify cycles and attractors

Methodogy

Use a model-checker on hybrid automata (e.g. HyTech, PHAVer,
. . .)

Interpret results thanks to a parameterized polyhedra library (e.g.
PolyLib)
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An introduction to control of timed systems

Overview

1 Timed models
Timed, Hybrid and Linear Hybrid Automata
Time Petri nets
Other timed models
State space abstractions

2 Formalizing specification through timed modal logics
Reminders about linear and branching-time logics
Timed extensions of linear logics
Timed extensions of branching-time logics

3 Biological application

4 An introduction to control of timed systems
Control of discrete-events systems
Control of timed systems
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An introduction to control of timed systems Control of discrete-events systems

The control problem

Real-life system

Uncontrollable events

Controllable events

To be discussed: Observability ⇒ full observability vs partial
observability
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An introduction to control of timed systems Control of discrete-events systems

The control problem

Control problem

Does there exist a controller C that guarantees the given properties ϕ
such that S ‖ C |= ϕ?

Controller synthesis problem

Can we build a controller C that guarantees the given properties ϕ ⇒
∃C , S ‖ C |= ϕ?

Process

Control or 
supervisory system

eventsmeasures control

Figure: The control problem
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An introduction to control of timed systems Control of discrete-events systems

A first approach to control problem

B

B

s0

Figure: Branching execution of a model: blue actions stand for controllable
actions; red actions stand for uncontrollable ones; B stands for bad states that
should be avoided
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An introduction to control of timed systems Control of discrete-events systems

A first approach to control problem

B

B

s0

a a

a

a

a

b

b

b

b

c

c

c

c

cb

b

e
a

a

a
c
e

Figure: Blue actions = controllable ones; red actions = uncontrollable ones; B =
bad states
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An introduction to control of timed systems Control of discrete-events systems

A first approach to control problem
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An introduction to control of timed systems Control of discrete-events systems

A first approach to control problem

b b

l0 l1 l2

Figure: Supervisor automaton to avoid that the system reach bad states
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An introduction to control of timed systems Control of discrete-events systems

A first approach to control problem

B

B

s0

a a

a

a

a

b

b

b

b

c

c

c

c

cb

b

e
a

a

a
c
e

Eliminating this branch is a rough
over-approximation, but. . .

Figure: Blue actions = controllable ones; red actions = uncontrollable ones; B =
bad states
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An introduction to control of timed systems Control of discrete-events systems

A first approach to control problem

B

B

s0

a a

a

a

a

b

b

b

b

c

c

c

c

cb

b

e
a

a

a
c
e

Eliminating this branch is a rough
over-approximation, but. . .

. . . here lies a sequence of two uncontrollable
events leading to a bad state.

Figure: Blue actions = controllable ones; red actions = uncontrollable ones; B =
bad states
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An introduction to control of timed systems Control of discrete-events systems

Supervisory control theory

Ramadge-Wonham framework [RW89]

Discrete-events system, modeled as a finite automaton with:

Uncontrollable events
Controllable events

Specification
E.g.: Avoid any sequences leading to a state where the property bad is
satisfied
⇒ specifications as a language

Principle: Supervisor, described as a synchronous automaton,
observes the events generated by the system and might prevent it
from generating a subset of the controllable events
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An introduction to control of timed systems Control of discrete-events systems

Solving a control problem

b

bl0

l1

l2

a

a

Figure: System S (both a and b are controllable). We would like that only one
execution a.b can occur (specification ϕ). Does there exist a controller C such
that S ‖ C |= ϕ ?
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An introduction to control of timed systems Control of discrete-events systems

Solving a control problem

b

bl0

l1

l2

a

a ba

S C

c0 c1 c2

k
Figure: System S with its supervisor C so that only one execution a.b can occur.
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An introduction to control of timed systems Control of discrete-events systems

Solving a control problem: key idea

b
sp1

s

a

sp2 u

Figure: Basic idea behind the notion of controllable predecessors: lp1 and lp2

might be in the set of controllable predecessors of l
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An introduction to control of timed systems Control of discrete-events systems

Solving a control problem: key idea

Controllable predecessors technique

Let:

S be the “safe”states, i.e. the ones meeting the specification ϕ

π(X ) is the set of controllable predecessors of a given state X
[MPS95]: π(X ) is computed as the greatest fix-point of
π(X ) = π(X ) ∩ S

b
sp1

s

a

sp2 u

Figure: Basic idea behind the notion of controllable predecessors: lp1 and lp2

might be in the set of controllable predecessors of l
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An introduction to control of timed systems Control of discrete-events systems

Solving a control problem: key idea

Controllable predecessors technique

Let:

S be the “safe”states, i.e. the ones meeting the specification ϕ

π(X ) is the set of controllable predecessors of a given state X
[MPS95]: π(X ) is computed as the greatest fix-point of
π(X ) = π(X ) ∩ S

Control

If the initial state of the automaton belongs to π(S), then there exists a
supervisor satisfying the specification ϕ.
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An introduction to control of timed systems Control of discrete-events systems

Solving a control problem: controllable predecessors

Theorems

For finite automata, the semi-algorithm that computes the set of
controllable predecessors terminates (because of the finite number of
discrete states)

For Petri nets, the semi-algorithm that computes the set of
controllable predecessors may not terminate.

P1

t1

Figure: Example of Petri net for which the computation of the set of
controllable predecessors will not terminate.
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An introduction to control of timed systems Control of discrete-events systems

Control as a game (from [CM07])

Definition of the problem

Open-system = game with two players:

Environment plays uncontrollable events
Controller plays controllable events

Control objective = Winning condition (e.g. avoid bad states)

Control problem: find a strategy (a controller) to win the game

b

bl0

l1

l2

a

a
B

c

a

u

u

l3

l4

Figure: Game between the environment and the controller: bad state must be
avoided (blue actions are controllable; red ones are uncontrollable)
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An introduction to control of timed systems Control of discrete-events systems

Control as a game (from [CM07])

Related concepts

Strategy: gives, for each finite run, the controllable action to perform

Winning strategy: strategy which generates only runs that leads to
a set of states S meeting the specification ϕ

Winning states: set of states s in which there exists a winning
strategy from s (i.e. π(S))

b

bl0

l1

l2

a

a
B

c

a

u

u

l3

l4

Figure: Game between the environment and the controller: bad state must be
avoided (blue actions are controllable; red ones are uncontrollable)
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An introduction to control of timed systems Control of discrete-events systems

Key issues w.r.t. control as a game problem

Criteria needed to the correct definition of the problem

Observability, again: full observability vs partial observability

Type of games:

Concurrent games: each opponent can play at any turn
Turn-based games: each opponent plays alternatively
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An introduction to control of timed systems Control of timed systems

Introduction to timed control

Control for timed systems

Natural extension of the control of discrete-events systems

A run = a succession of discrete and time elapsing steps

Extension of the controllable predecessors algorithm

Application to the control problem for timed automata

Control is viewed as a Timed Game Automaton [AMPS98]
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An introduction to control of timed systems Control of timed systems

Control of timed automata

Principle

Full observability: the controller observes both discrete and
time-elapsing steps

Two options for the controller:

Delay action
Perform a controllable action (among the possible ones)

Define a strategy
“Wait as long as the system permits”
Build the most permissive controller (i.e. the one that restricts the
behavior of the environment as little as possible)
Towards optimal control

Extension of the controllable predecessors algorithm

Remark: the controller can prevent time to elapse by taking only
controllable moves ⇒ zeno-controllers (which are usually excluded)
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An introduction to control of timed systems Control of timed systems

Control of timed automata

l0 l1

x < 1

x  3x � 1

u

c

x := 0

l2

l3

a

y := 0

y � 5

l4

u

y < 3b

y � 6

x � 2

Figure: Timed automaton with controllable and uncontrollable actions
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An introduction to control of timed systems Control of timed systems

Extension of the controllable predecessors algorithm

Key ideas

A state sp is a time controllable predecessor of state s iff, on the time
elapsing path between sp and s, there is no uncontrollable discrete
step leading to a bad state sb

A symbolic version of π(X ), the set of controllable predecessors
of a given state X , can be defined [AMPS98]

sb

sp u
s

�0 � � �0

Figure: Time controllable predecessor(s)
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An introduction to control of timed systems Control of timed systems

Verification vs Optimization

Verification

Checks logical properties

Implementation: consider the whole state-space of the model

Optimization

Find optimal solutions w.r.t. a set of criteria

Implementation: cut techniques to avoid non-optimal parts of the
state space

Introduction to optimal control

Given a logical property, does there exist an optimal controller that
guarantees the property, i.e. a controller that guarantees the property and
optimizes a set of criteria?
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An introduction to control of timed systems Control of timed systems

Introduction to Optimal Timed Games [BCFL04]

l0 l1

x < 1

x  3x � 1

u

c

x := 0

l2

l3

a

y := 0

y � 5

l4

u

y < 3b

d(cost(l0))

dt
= 3 d(cost(l1))

dt
= 2

d(cost(l4))

dt
= 0

d(cost(l3))

dt
= 12

d(cost(l2))

dt
= 5

cost := cost + 1

cost := cost + 6

Figure: Game between the environment and the controller: blue actions are
controllable; red ones are uncontrollable
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An introduction to control of timed systems Control of timed systems

Introduction to Optimal Timed Games [BCFL04]

Principle of a reachability timed game

Does a best cost whatever the environment does exist? If yes, what
is its value?

Is there a strategy to achieve this optimal cost?

Is this strategy computable?

l0 l1

x < 1

x  3x � 1

u

c

x := 0

l2

l3

a

y := 0

y � 5

l4

u

y < 3b

d(cost(l0))

dt
= 3 d(cost(l1))

dt
= 2

d(cost(l4))

dt
= 0

d(cost(l3))

dt
= 12

d(cost(l2))

dt
= 5

cost := cost + 1

cost := cost + 6

Figure: Priced timed game automaton between the environment and the
controller: blue actions are controllable; red ones are uncontrollable
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An introduction to control of timed systems Control of timed systems

Optimal Timed Games [BCFL04]

l0 l1
y = 0

x � 5
u

c
y := 0

l2

l3

a x  5

l4

u x � 5bd(cost(l0))

dt
= 3

d(cost(l4))

dt
= 0

d(cost(l3))

dt
= 12

d(cost(l2))

dt
= 5

cost := cost + 1

cost := cost + 6

Figure: Priced timed game automaton between the environment and the
controller: blue actions are controllable; red ones are uncontrollable

Basic illustration of a reachability timed game

Best cost to reach l4 whatever the environment does:
inf

0≤t≤5
max(3t + 5(5− t) + 6; 3t + 12(5− t) + 1) = 11

9 , where t

represents the time to remain in l0

Strategy to achieve this optimal cost: wait in l0 till t = 11
9 , then fire

a
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An introduction to control of timed systems Control of timed systems

Optimal Timed Games [BCFL04]

Problem

Priced Timed Game Automaton (PTGA) = Timed Automaton +
cost function which associates to each location a cost rate and to
each discrete transition a cost

Usual assumptions on PTGA:

Deterministic w.r.t. controllable actions
Time-deterministic: let s, s1 and s2 be three states of a timed

transition system and d ∈ R. If s
d−→ s1 and s

d−→ s2, then s1 = s2

Link between optimal control for a PTGA and reachability control
for a Linear Hybrid Game Automaton

Application to scheduling [BLR04]

Aircraft landing

Job shop scheduling
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Conclusion

Adding timed informations to models

Key factors

Expressivity: clocks vs stopwatches vs variables with more
complex dynamics

Asynchronous events vs synchronous events

Zenoness
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Conclusion

Timed and hybrid models

Summary

A wide range of models

Gaining expressively often leads to undecidability

But undecidability is not always incompatible with practical problems

Further work

Discuss the quantitative time semantics

Discuss the respective expressivity of models (timed extensions of
automata vs timed extensions of Petri nets)

Application to practical biological problems
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