

Multimedia Information Retrieval

Prof Stefan Rüger Multimedia and Information Systems Knowledge Media Institute The Open University http://kmi.open.ac.uk/mmis

MANS Multimedia and Information Systems

Multimedia Information Retrieval

- 1. What are multimedia queries?
- 2. Fingerprinting
- 3. Metadata & piggy-back retrieval
- 4. Automated image annotation
- 5 Visual content-based retrieval I
- 6 Visual content-based retrieval II
- 7. Evaluation
- 8. Browsing, search and geography

Multimedia Information Retrieval

1. What are multimedia queries?

2. Fingerprinting

- Overview

KNOWLEDGE MEDIA

ITUT

- How Shazam works
- Subfingerprinting
- Locality sensitive hashing
- Min hash algorithm
- Sift image features
- Surf as alternative
- 3. Metadata & piggy-back retrieval
- 4. Automated image annotation
- 5. Visual content-based retrieval I

6. Visual content-based retrieval II

7. Evaluation

8. Browsing, search and geography

How does near-duplicate detection work?

Fingerprinting technique

- 1 Compute salient points
- 2 Extract "characteristics" from vincinity (feature)
- 3 Make invariant under rotation & scaling
- 4 Quantise: create visterms
- 5 Index as in text search engines
- 6 Check/enforce spatial constraints after retrieval

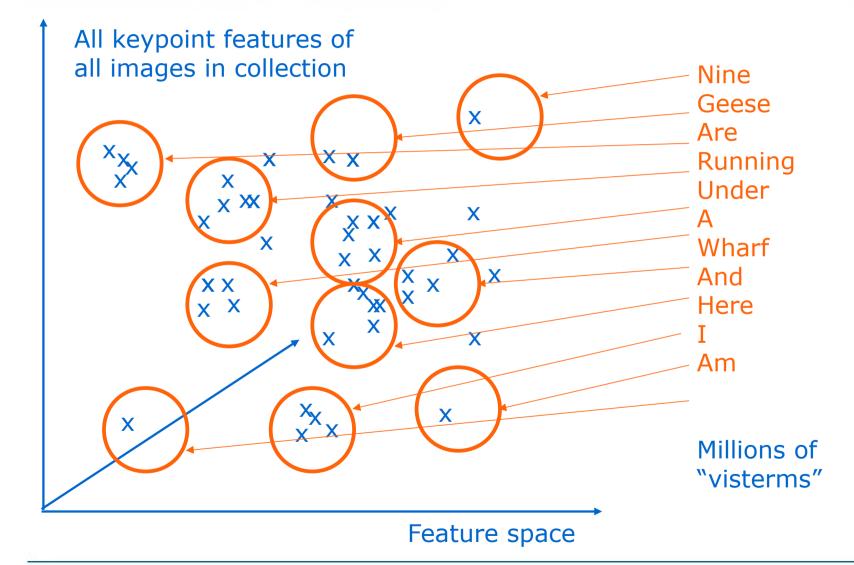
NDD: Compute salient points and features

KNOWLEDGE MEDIA

INSTITUT

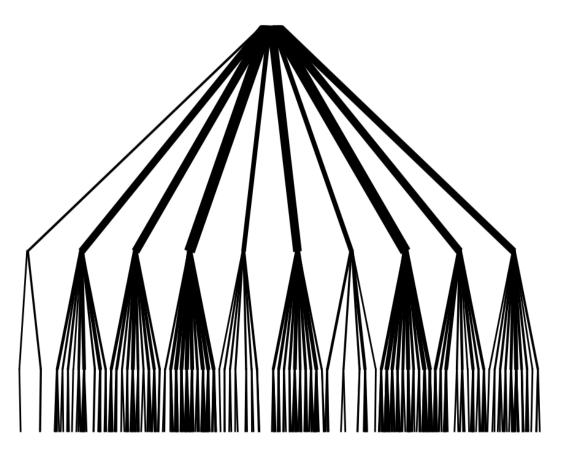
Eg, SIFT features: each salient point described by a feature vector of 128 numbers; the vector is invariant to scaling and rotation

NDD: Keypoint feature space clustering



KNOWLEDGE MEDIA

INSTITUTE



[Nister and Stewenius, CVPR 2006]

NDD: Encode all images with visterms

Jkjh Geese Bjlkj Wharf Ojkkjhhj Kssn Klkekjl Here Lkjkll Wjjkll Kkjlk Bnm Kllkgjg Lwoe Boerm ...

At query time compute salient points, keypoint features and visterms

Query against database of images represented as bag of vistems

[with Suzanne Little]

NDD: Check spatial constraints

The Open University

[with Suzanne Little, SocialLearn project]

KNOWLEDGE MEDIA

INSTITUT

How does near-duplicate detection work?

Fingerprinting technique

- 1 Compute salient points
- 2 Extract "characteristics" from vincinity (feature)
- 3 Make invariant under rotation & scaling
- 4 Quantise: create visterms
- 5 Index as in text search engines
- 6 Check/enforce spatial constraints after retrieval

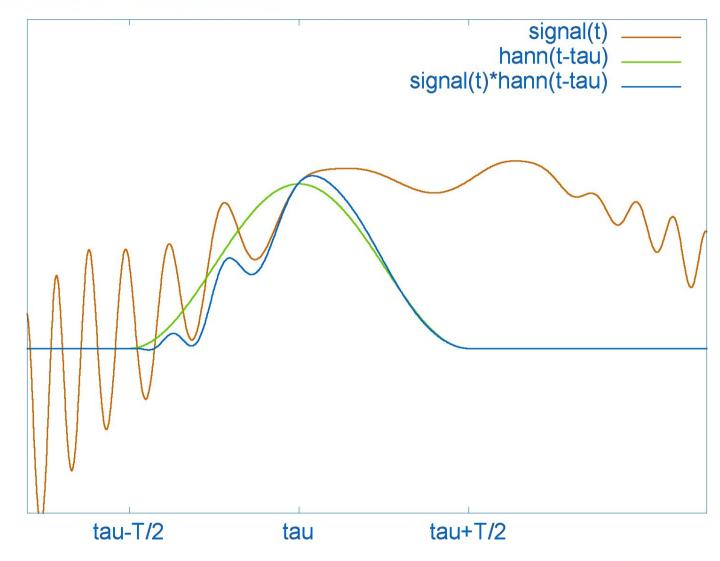
How Shazam works - Spectrogram

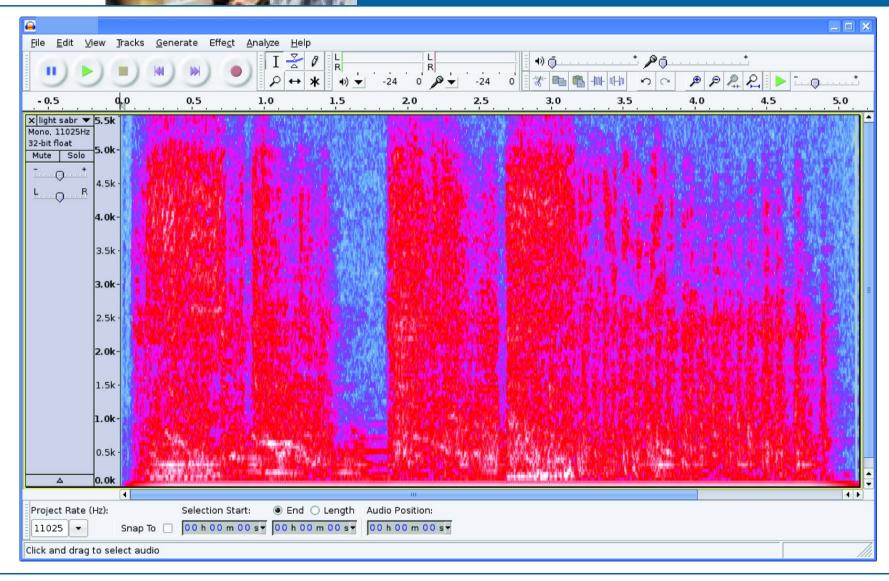
Compute energy for all (frequency,time) pairs using a Fourier transform under a Hann window w

$$\operatorname{spectrogram}(\mathbf{f},\tau) = \left| \int_{-\infty}^{\infty} \mathbf{s}(\mathbf{t}) \mathbf{w}(\mathbf{t}-\tau) \mathbf{e}^{\mathsf{jft}} \mathsf{dt} \right|^2$$

 $w(t) = \begin{cases} \frac{1}{2} + \frac{1}{2} \cos(\frac{2\pi t}{T}) & \text{if } t \in [-T/2, T/2] \\ 0 & \text{otherwise} \end{cases}$

Hann window application



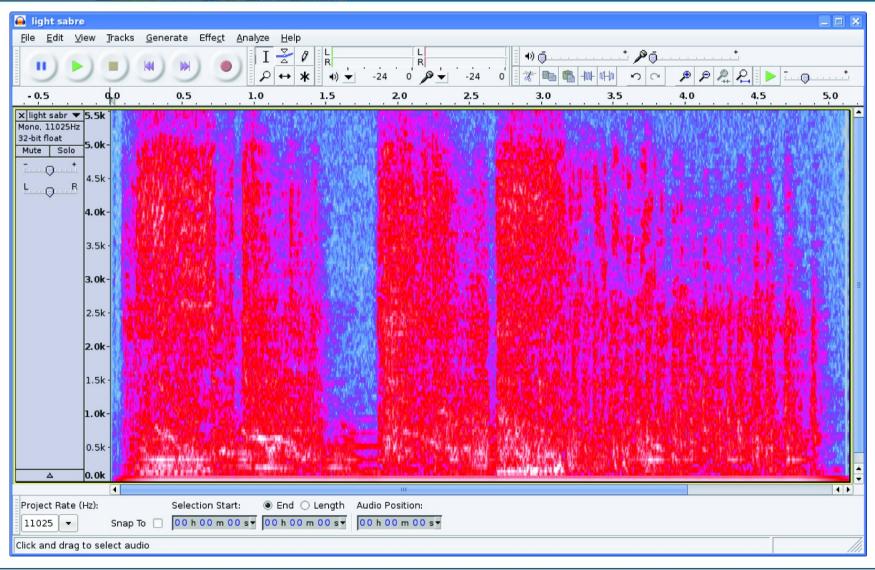


KNOWLEDGE MEDIA

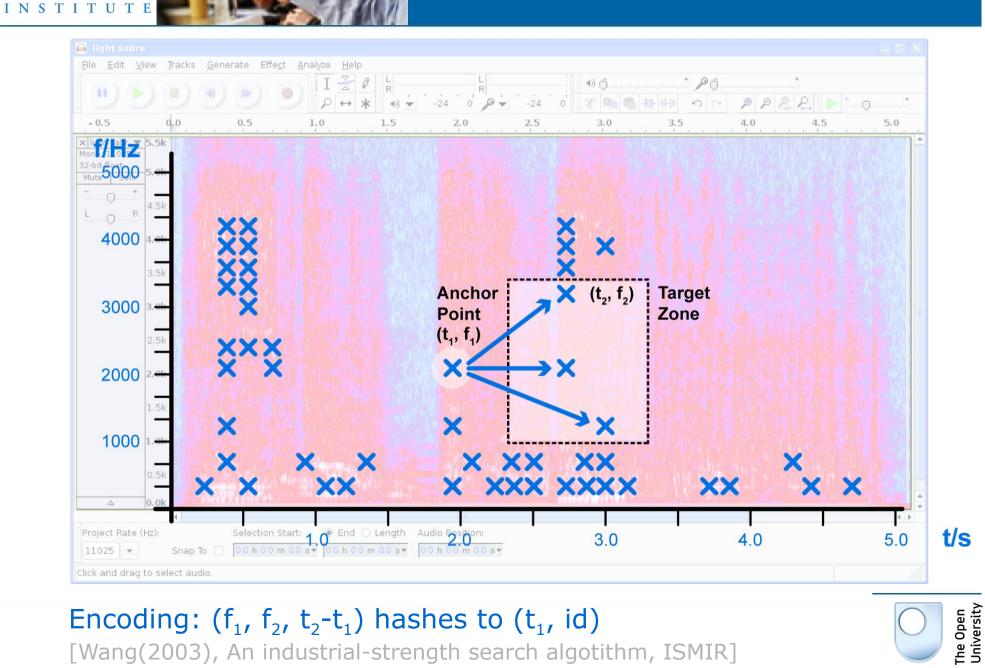
INSTITUT

E

How Shazam works: audio fingerprinting



The Open University



Encoding: (f_1, f_2, t_2-t_1) hashes to (t_1, id)

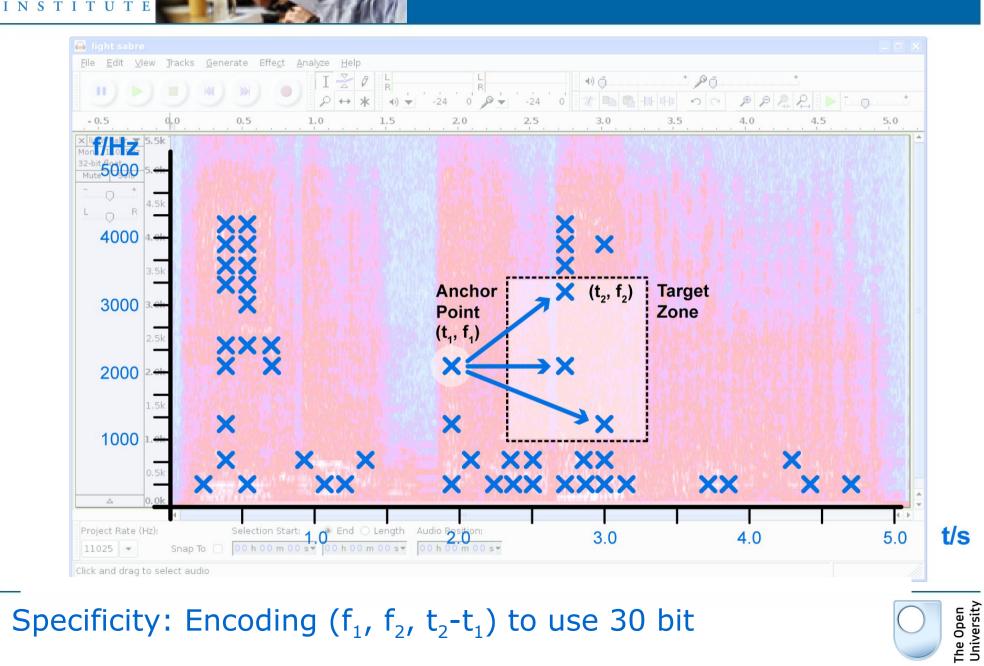
KNOWLEDGE MEDIA

[Wang(2003), An industrial-strength search algotithm, ISMIR]

Every query vector $(f_1, f_2, t_2^q - t_1^q)$ is matched to the database. You get a list of possible (t_1^{id}, id) values (some are false positives).

Create a histogram of t^{id}₁-t^q₁ values (temporal consistency check!)

A substantial peak in this histogram means that the query has matched song id at time offset $t_1^{id} - t_1^q$.



Specificity: Encoding (f_1, f_2, t_2-t_1) to use 30 bit

KNOWLEDGE MEDIA

KNOWLEDGE MEDIA KNOWLEDGE MEDIA IN STITUTE Shazam's constellation pairs

Assume that the typical survival probability of each 30-bit constellation pair after deformations that we still want to recognise is p, and that this process is independent per pair. Which encoding density, ie, the number of constellation pairs per second, would you need on average so that a typical query of 10 seconds exhibits at least 10 matches in the right song with a probability of at least 99.99%? Under these assumptions, further assuming that the constellation pair extraction looks like a random independent and identically distributed number, what is the false positive rate for a database of 4 million songs each of which is 5 minutes long on average?

Divide frequency scale into 33 frequency bands between 300 Hz and 2000 Hz Logarithmic spread – each frequency step is 1/12 octave, ie, one semitone

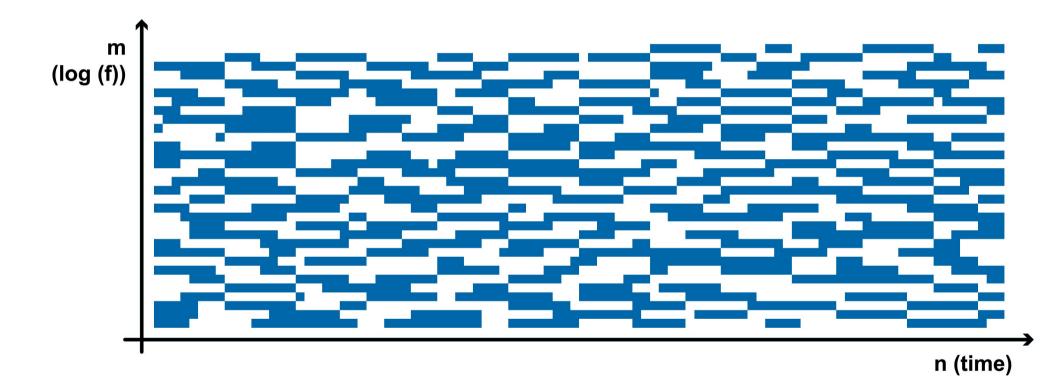
Divide time axis into blocks of 256 windows of 11.6 ms (3 seconds)

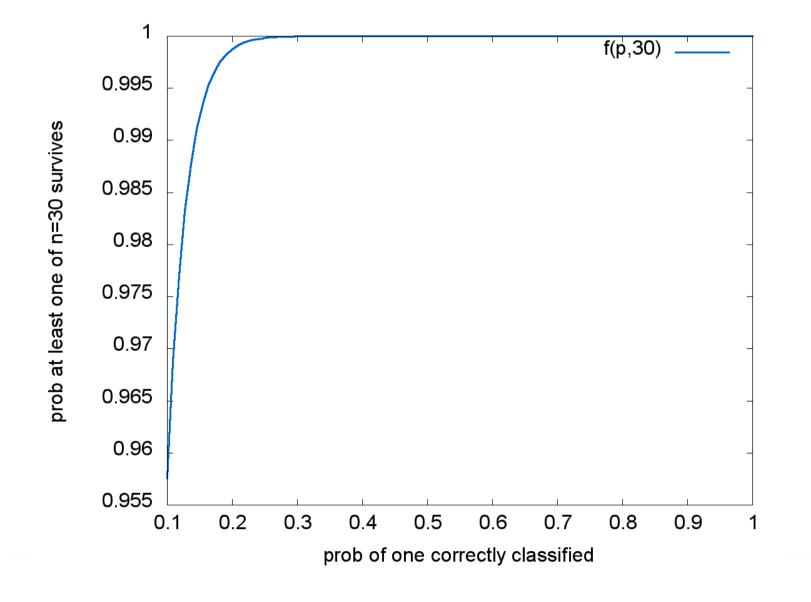
E(m,n) is the energy of the m-th frequency at n-th time in spectrogram

For each block extract 256 sub-fingerprints of 32 bits each

 $\mathsf{b}(\mathsf{m},\mathsf{n}) = \mathsf{sign}\left([\mathsf{E}(\mathsf{m},\mathsf{n}) - \mathsf{E}(\mathsf{m}+1,\mathsf{n})] - [\mathsf{E}(\mathsf{m},\mathsf{n}+1) - \mathsf{E}(\mathsf{m}+1,\mathsf{n}+1)]\right)$

 $0 \le m \le 31$ (frequency) $0 \le n \le 255$ (time)





Exercise: fingerprint block probabilities

Assuming bit errors are independently identically distributed at the rate of b. Show that the probability $p({\bf k},b)$ of having no more than ${\bf k}$ bit errors in one sub-fingerprint is

KNOWLEDGE MEDIA

$$\mathsf{p}(\mathsf{k},\mathsf{b}) = \sum_{i=0}^{\mathsf{k}} \binom{32}{i} (1-\mathsf{b})^{32-i}\mathsf{b}^i.$$

Show that the probability that among 256 sub-fingerprints at least one survives with no more than ${\bf k}$ bit errors is given by

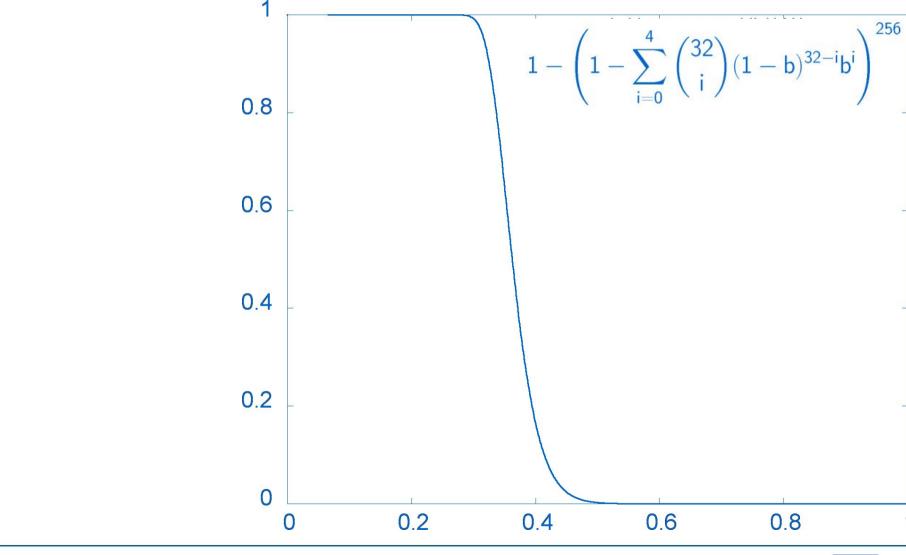
 $1 - (1 - p(k, b))^{256}$.

Verify, using above formulas, the following claim: Even though a high bit error rate of b = 0.3 causes the probability p(4) that no more than 4 bits were flipped to drop under 2%, it is the case that when you look at 256 sub-fingerprints, at least one of them will have no more than 4 bit errors with more than 99% probability.

KNOWLEDGE MEDIA KNOWLEDGE MEDIA IN STITUTE STITUTE STITUTE STITUTE

Assuming that the fingerprint block extraction process yields random, independent and identically distributed bits, what is the probability that a randomly modified fingerprint block matches a *different* random block in the database that consists of, say, 10^{11} overlapping fingerprint blocks (4 million songs with around 5 minutes each)? The bit error rate for the random modification is assumed to be 35%.

Probability of at least one subfingerprint surviving with no more than 4 errors



KNOWLEDGE MEDIA

ITU

INS

How audio matching with sub-fingerprinting works

Quantisation through locality sensitive hashing (LSH)

$$\stackrel{i: \mathbb{R}^{d} \to \mathbb{Z}}{\mathbf{v} \mapsto \mathsf{h}^{i}(\mathbf{v}) = \left\lfloor \frac{\mathsf{a}^{i}\mathsf{v} + \mathsf{b}^{i}}{\mathsf{w}} \right\rfloor }$$

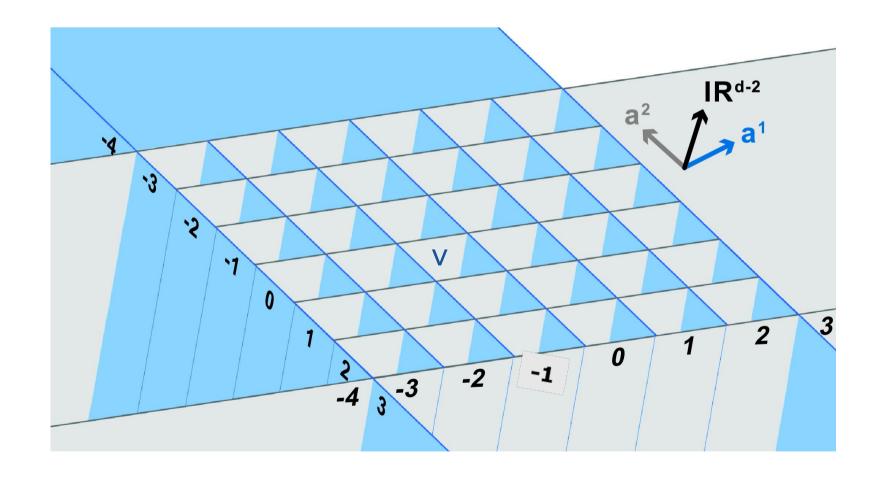
 $a^i \in \mathbb{R}^d$ is a random Gaussian-distributed vector $w \in \mathbb{R}^+$ is a constant $b^i \in [0,w)$ is a random number

h

KNOWLEDGE MEDIA

 $h(v) = (h^1(v), h(^2(v), \ldots, h^k(v))$ is the LSH hash vector.

Quantisation LSH hashes



KNOWLEDGE MEDIA

ΤΙΤ U Τ

E

INS

Redundancy is key

Use L independent hash vectors of k components each both for the query and for each multimedia object.

Database elements that match at least m out of L times are candidates for nearest neighbours.

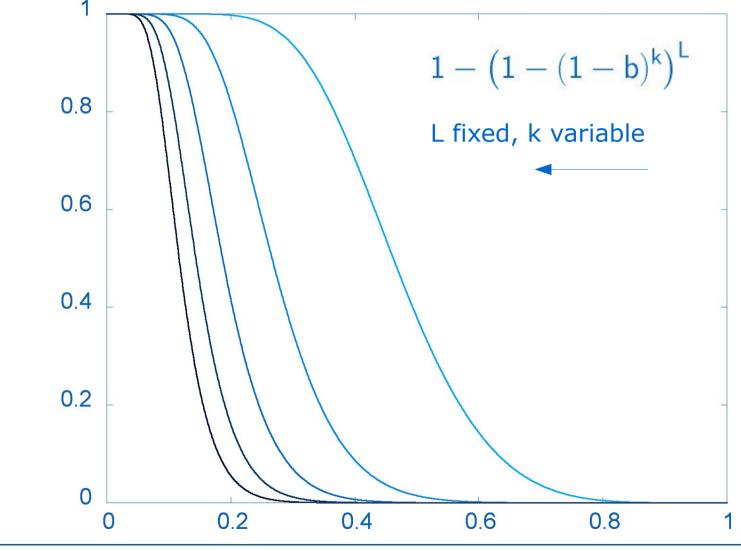
Chose w, k and L (wisely) at runtime

- w determines granularity of bins, ie, # of bits for $h^i(v)$
- k and L determine probability of matching

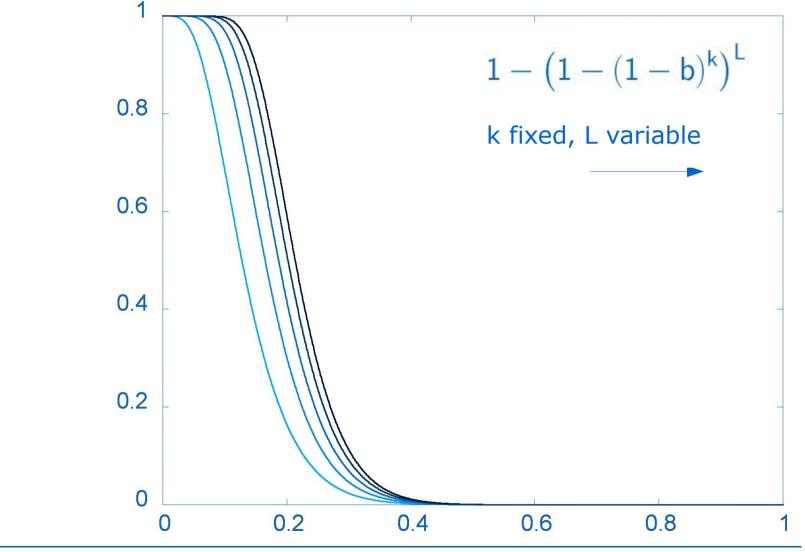
Prob(min 1 match out of L)

KNOWLEDGE MEDIA

INSTITUT



Prob(min 1 match out of L)



KNOWLEDGE MEDIA

T

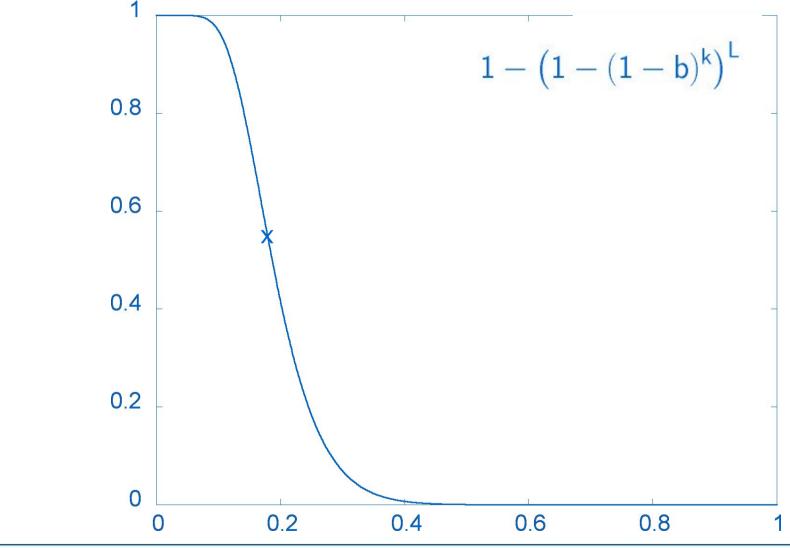
INSTITU

Exercise: compute inflection point

KNOWLEDGE MEDIA

T

INSTITU



KNOWLEDGE MEDIA KNOWLEDGE MEDIA IN STITUTE Min hash Estimate discrete set overlap

$$sim(A_i,A_j) = \frac{|A_i \cap A_j|}{|A_i \cup A_j|}$$

- $D_1 =$ Humpty Dumpty sat on a wall,
- D_2 = Humpty Dumpty had a great fall.
- $D_3 = AII$ the King's horses, And all the King's men
- $D_4 = Couldn't$ put Humpty together again!

Surrogate docs after stop word removal and stemming

- A₁ = {humpty, dumpty, sat, wall}
- $A_2 = \{$ humpty, dumpty, great, fall $\}$
- $A_3 = \{all, king, horse, men\}$

KNOWLEDGE MEDIA

 $A_4 = \{$ put, humpty, together, again $\}$

Equivalent term-document matrix

KNOWLEDGE MEDIA

ITUT

INS

	A_1	A_2	A ₃	A_4
humpty	1	1	0	1
dumpty	1	1	0	0
sat	1	0	0	0
wall	1	0	0	0
great	0	1	0	0
fall	0	1	0	0
all	0	0	1	0
king	0	0	1	0
horse	0	0	1	0
men	0	0	1	0
put	0	0	0	1
together	0	0	0	1
again	0	0	0	1

Similarity between two docs

		A_1	A_2	A_3	A ₄
$sim(A_i,A_j) = \tfrac{c_{11}}{c_{11}+c_{10}+c_{01}}$	humpty	1	1	0	1
	dumpty	1	1	0	0
$c_{xy} = number of (x,y) rows$	sat	1	0	0	0
	wall	1	0	0	0
	great	0	1	0	0
	fall	0	1	0	0
	all	0	0	1	0
Important observation	king	0	0	1	0
c ₀₀ is unused!	horse	0	0	1	0
	men	0	0	1	0
	put	0	0	0	1
		-	-	-	-

KNOWLEDGE MEDIA

INSTITUTE

together0001again0001

Estimation of similarity through random permutations

 $\pi_1 =$ (dumpty, men, again, put, great, humpty, wall, horse, king, sat, fall, together, all)

KNOWLEDGE MEDIA

- $\pi_2 = (fall, put, all, again, dumpty, sat, men, great, wall, king, horse, humpty, together)$
- $\pi_3 =$ (horse, dumpty, wall, humpty, great, again, sat, all, men, together, put, king, fall)
- $\pi_4 = (king, humpty, men, together, great, fall, horse, all, dumpty, wall, sat, again, put)$

Surrogate documents form random permutations

Keep first occurring word of A_i in π_j for dense surrogate representation

	A ₁	A ₂	A ₃	A ₄
π_1	dumpty	dumpty	men	again
π_2	dumpty	fall	all	put
π_3	dumpty	dumpty	horse	humpty
π_4	humpty	humpty	king	humpty

Surrogate documents form random permutations

A_1 A_2 A_3 A_4 π_1 dumptydumptymenagain π_2 dumptyfallallput π_3 dumptydumptyhorsehumpty π_4 humptyhumptykinghumpty

Estimate $sim(A_2, A_4) = 1/4$ (proportion of co-inciding words)

KNOWLEDGE MEDIA

Exercise: estimate $sim(A_4, A_5)$ with min hash

Mice are dancing in a round, On a bench a cat is sleeping. "Hush, you mice, don't make such noise Or you'll wake up Vaska Cat Vaska Cat will jump and leap And will spoil and break your round".

KNOWLEDGE MEDIA

$$A_{1} = \{ \text{mice, danc, round} \}$$

$$A_{2} = \{ \text{bench, cat, sleep} \}$$

$$A_{3} = \{ \text{hush, mice, nois} \}$$

$$A_{4} = \{ \text{wake, vaska, cat} \}$$

$$A_{5} = \{ \text{vaska, cat, jump, leap} \}$$

$$A_{6} = \{ \text{spoil, break, round} \}$$

KNOWLEDGE MEDIA KNOWLEDGE MEDIA IN STITUTE ST

A₄ = {wake, vaska, cat} A₅ = {vaska, cat, jump, leap}

 $\begin{aligned} \pi_1 &= (\text{bench, break, cat, danc, hush, jump, leap, mice, nois, round, sleep, spoil, vaska, wake) \\ \pi_2 &= (\text{cat, vaska, wake, bench, danc, nois, leap, jump, sleep, round, mice, break, spoil, hush) \\ \pi_3 &= (\text{hush, break, vaska, nois, jump, mice, sleep, spoil, wake, round, leap, bench, danc, cat) \\ \pi_4 &= (\text{spoil, bench, cat, wake, nois, leap, danc, sleep, jump, round, mice, hush, break, vaska) \\ \pi_5 &= (\text{vaska, danc, leap, break, round, nois, spoil, hush, wake, jump, sleep, cat, benc, h mice) \\ \pi_6 &= (\text{round, vaska, danc, wake, spoil, hush, sleep, leap, cat, nois, mice, break, bench, jump) \\ \pi_7 &= (\text{danc, break, vaska, spoil, sleep, wake, round, bench, leap, hush, jump, mice, nois, cat) \\ \pi_8 &= (jump, nois, break, danc, round, leap, hush, cat, sleep, vaska, spoil, mice, bench, wake) \end{aligned}$

Scale Invariant Feature Transform

"distinctive invariant image features that can be used to perform reliable matching between different views of an object or scene."

Invariant to image scale and rotation.

Robust to substantial range of affine distortion, changes in 3D viewpoint, addition of noise and change in illumination.

[Lowe, D.G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60, 2, pp. 91-110.]

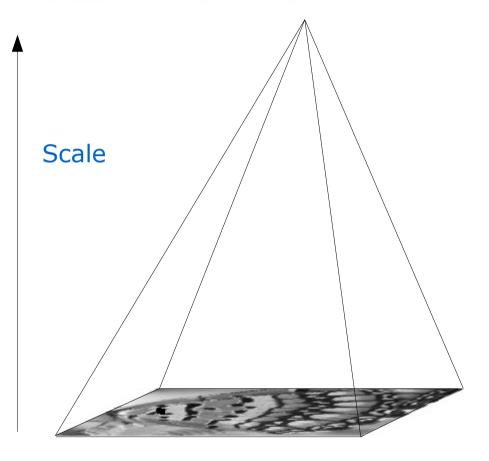
SIFT Implementation

For a given image: Detect scale space extrema

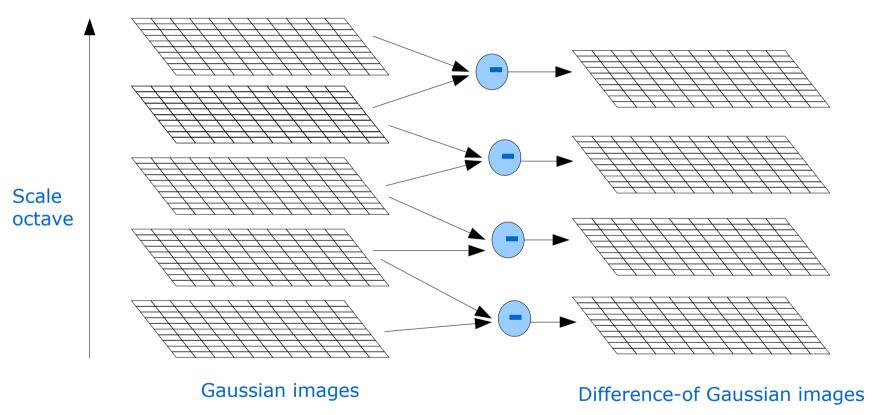
Localise candidate keypoints

Assign an orientation to each keypoint

Produce keypoint descriptor



Difference of Gaussian image creation



KNOWLEDGE MEDIA

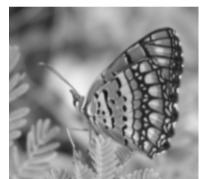
INSTITUT

E

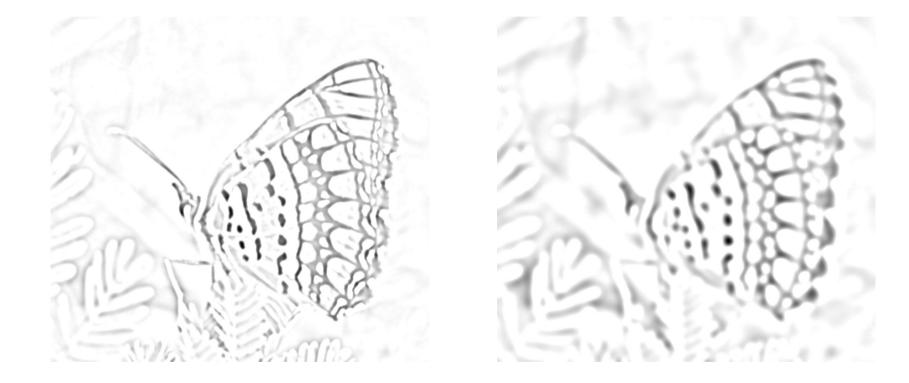
Gaussian blur illustration

KNOWLEDGE MEDIA

INSTITUT



Difference of Gaussian illustration



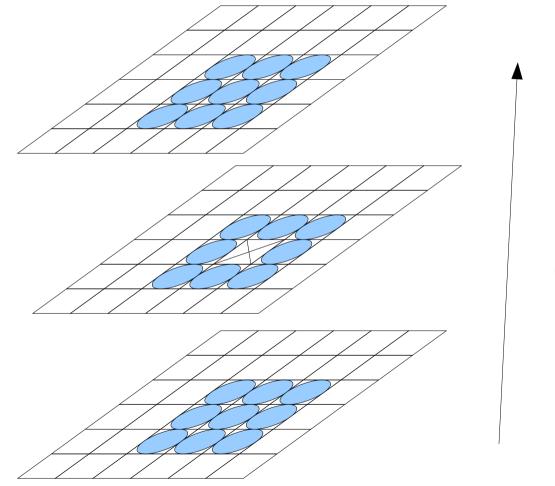
KNOWLEDGE MEDIA

INSTITUT

Once the Difference of Gaussian images have been generated:

- •Each pixel in the images is compared to 8 neighbours at same scale.
- •Also compared to 9 corresponding neighbours in scale above and 9 corresponding neighbours in the scale below.
- •Each pixel is compared to 26 neighbouring pixels in 3x3 regions across scales, as it is not compared to itself at the current scale.
- •A pixel is selected as a SIFT keypoint only either if its intensity value is extreme.

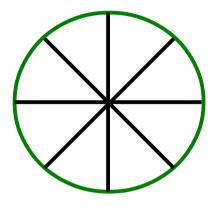
Pixel neighbourhood comparison



KNOWLEDGE MEDIA

INSTITUT

Orientation assignment

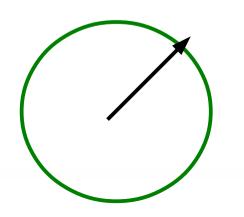


KNOWLEDGE MEDIA

Orientation histogram with 36 bins – one per 10 degrees.

Each sample weighted by gradient magnitude and Gaussian window.

Canonical orientation at peak of Smoothed histogram.



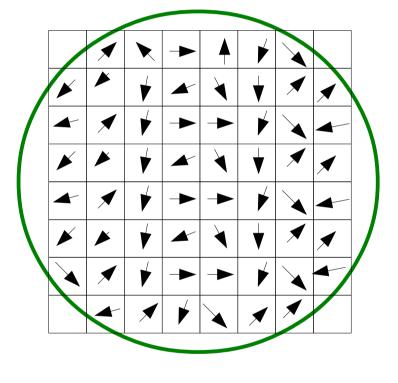
Where two or more orientations are detected keypoints created for each orientation.

 2π

We now have location, scale and orientation for each SIFT keypoint ("keypoint frame").

- → descriptor for local image region is required. Must be as invariant as possible to changes in illumination and 3D viewpoint.
- Set of orientation histograms are computed on 4x4 pixel areas.
- Each gradient histogram contains 8 bins and each descriptor contains an array of 4 histograms.
- → SIFT descriptor as 128 (4 x 4 x 8) element histogram

Visualising the keypoint descriptor

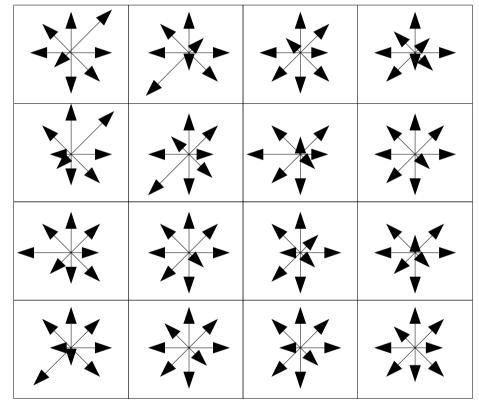


KNOWLEDGE MEDIA

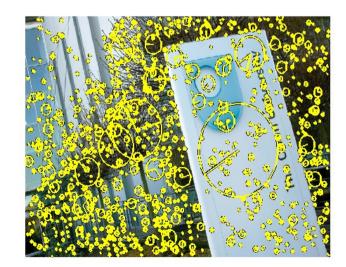
INS

ТІТИТ

E



Example SIFT keypoints

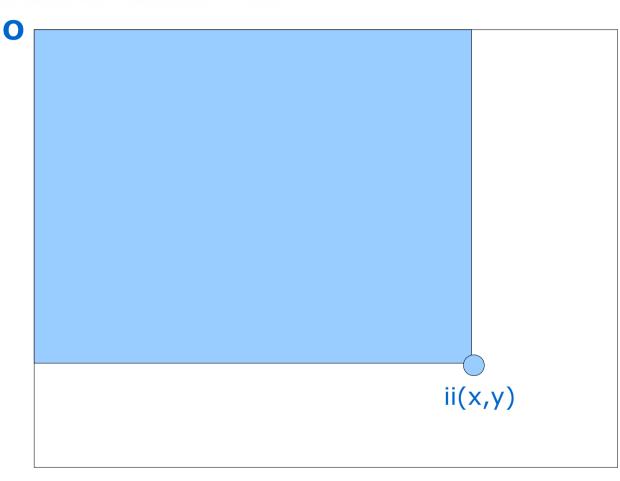


- Alternative to SIFT "Speeded Up Robust Features"
- High dimensionality of SIFT descriptor makes it costly to compute and slow to match.
- Goal is to speed up the detection and description process for image features.
- Similar to SIFT but the authors claim better and more robust performance.

[Bay and Tuytelaars and Van Gool, H and T and L. Speeded Up Robust Features. In ECCV 2006, pp. 404-417.]

The Open University

- Uses integral images (similar to summed area tables) to quickly compute box-type convolution filters.
- Integral image = the sum of the intensities of all pixels contained in the rectangle defined by the pixel of interest and the origin.



The value of the integral image at point (x,y) = the sum of all pixels above and to the left.

$$ii(x,y) = \sum_{x' \le x, y' \le y} i(x',y')$$

Using the following pair of recurrences:

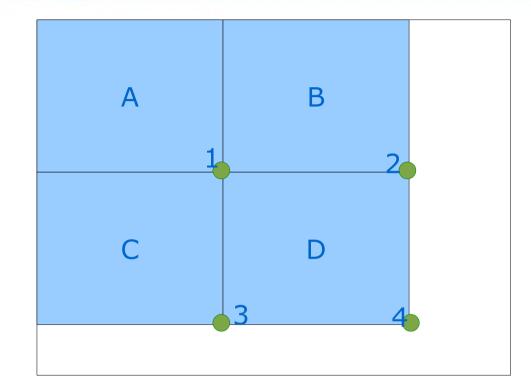
$$s(x, y) = s(x, y - 1) + i(x, y)$$

$$ii(x,y) = i(x-1,y) + s(x,y)$$

Where s(x,y) is the cumulative row sum s(x, -1) = 0 and ii(-1,y) = 0

the integral image can be computed in one pass over the original image

Integral image theory



Integral image at point 1 = **sum of pixels in A.** Value at point 2 = **A+B.** Value at point 3 = **A+C.** Value at point 4 = **A+B+C+D. Sum within D can be calculated as 4 + 1 - (2 + 3)**.

KNOWLEDGE MEDIA

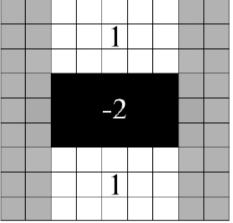
TITU

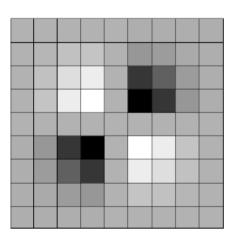
INS

SURF detector

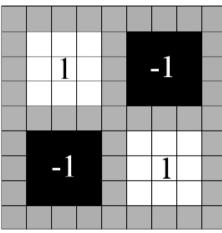
Gaussians

Y direction





XY direction



Computation time increases with filter size.

Computation time constant and Independent of filter size.

SURF Scale space

Scale

KNOWLEDGE MEDIA

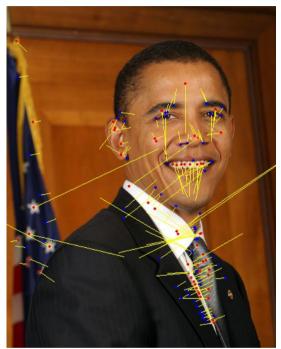
ITU

INS

Analyse by upscaling the filter sizeStart with 9x9

•Upscale by octaves (x2)

SURF: some example images



SURF and SIFT both focus on the spatial distribution of gradient information.

SURF

Is three times faster than SIFT Is less susceptible to noise (claimed to be!) Is good at handling serious image blur Is good at handling image rotation Does not handle viewpoint change or illumination change well

NB: SURF does not always outperform the original SIFT

