
1 Principles and Applications of Model Driven Engineering Lecture #4

Where will be MDE in 2030?

Jean Bézivin
JBezivin@gmail.com

mailto:JBezivin@gmail.com

2 Principles and Applications of Model Driven Engineering Lecture #4

Lecture 4: Where will be MDE in 2030?

One of the main promises of MDE is that, by raising the level of abstraction, it should be possible to achieve more
sustainability in time for software intensive systems. This was the initial MDA objective. With Platform
Independent Models (PIMs) that one could map on various new technological platforms, the heavy software
investments could be protected. In a period of rapid technological obsolescence, this guarantee of durability was
most welcome. Unfortunately this idea has not met widespread success yet and sometimes contributes to the
impression that MDE partly missed the boat. This last lecture will thus take a critical eye to MDE and compare the
promises with the deliveries. In spite of the immense hopes that greeted the initial MDA proposal as a possible
way to regenerate the entire software engineering practices, we must recognize today that its impact is more
limited and its perspectives more confined. We consequently propose the view in this last lecture that the current
iteration may not be the last one. This piece of technology may need an additional cycle to mature and produce
maximum impact. The lecture will summarize the important lessons learnt in the current iteration and examine
some of the difficulties that may have hampered a wider adoption. Among these difficulties some loose or
contradictory goals will be discussed as well as the ambiguous relation between programming languages and
modeling languages. At a time when software engineering is being much questioned - not only in its operation but
also in its essence - we may consider the necessary adaptation of MDE as a chance for the future. To this purpose
we need to reflect on the past and select the good set of properties and practices that will tomorrow allow MDE to
play a central role to produce, maintain and operate software based systems. In the critical analysis of the first
decade of MDE, the course will propose on one side a list of successful items that should absolutely be kept (like
the central concepts of DSL or transformations) and on the other side a list of elements that may be questioned
(like the notion of exclusive visual modeling or the idea of a general purpose modeling language). Asking the
question of where will be MDE in 2030 amounts to proposing a research agenda for revisiting the whole area of
software modeling.

 Introduction
 On the evolution of technology
What to throw away?
What to keep?
 A research agenda
 Conclusions

3 Principles and Applications of Model Driven Engineering Lecture #4

The present situation is not ideal

 Ideas spreading slowly
 High expectations not followed by solution delivery

 Promises made by MDA in 2000 not delivered
 Several big companies not supporting the idea
 MDA not widely adopted by industry
 Tools lacking maturity
 Software landscape not significantly transformed (impacted?) by MDE

(not yet?)
 The current iteration may not be the last one.

 This piece of technology may need an additional cycle to mature and
produce maximum impact.

4 Principles and Applications of Model Driven Engineering Lecture #4

Good time to reflect and react

 Interesting to understand what did work and what did not work
 Identify what are the main criticisms to MDA
 Also identify the good points
 Positive attitude

 Reflect on the past
 Critically analyze the present
 Prepare for the future

 Need to separate three parts
 Negative balance (throw away)
 Positive balance (keep)
 What need yet to be added (research roadmap)

 First a global look at the evolution of software technology in general

5 Principles and Applications of Model Driven Engineering Lecture #4

Engineering as a succession of hypes

 Is MDE to be recorded as
another transient hype in the
software technology history?

 Many developers’ career paths
follow a continuous zigzag
from hype to hype.

 We need to focus more on
continuity and progresses than
on ruptures and failures.

 A solution that does not meet
immediate success may just be
premature, not always wrong.

6 Principles and Applications of Model Driven Engineering Lecture #4

Quotations

 Those who cannot remember the past are condemned to repeat it
 George Santayana

 Some past experience in software modeling are worth repeating and
extending while some are not.

 As we advance in the present, history keeps changing

 Michel Serres
 There is a record on the birth registration of Ajaccio on the 15 August

1769 at the name of N. di Buonaparte. This came rather unnoticed in
the following years until Napoleon become famous. Interpretation of
the past is always made with the latest point of view of the present.

 Interpretation of the past history of the modeling formalisms should be
made in the light of the latest knowledge and developments in DSLs.

7 Principles and Applications of Model Driven Engineering Lecture #4

Technology waves

Structured Programming

Object Oriented Languages

Model Driven Engineering

Each wave does not replace the previous one, but complements it.

8 Principles and Applications of Model Driven Engineering Lecture #4

Impact of some technological changes

Structured Programming, Object Oriented, Y2K

XSLT, Model Transformation
Different trends
(different scale)

(different timeframes)

Metamodel, UML

9 Principles and Applications of Model Driven Engineering Lecture #4

Measure of the perceived importance

Google Ngram Viewer

(Raw Ngram buzzword observations)

Possible multiple successive peaks

10 Principles and Applications of Model Driven Engineering Lecture #4

18 ± 3 Software Technology Maturation
(W. Riddle)

 18 ± 3 Software Technology Maturation
 15 to 21 years to mature a technology

to the point that it can be popularized
and disseminated to the technical
community at large

 If we take the MDA announcement
(2000) as the starting point for MDE,
the jury is still out, but not for a long
time.

 Without a killer application, OOP or OT
would have never become mainstream

1965

Simula invented
Smalltalk started

1980

Smalltalk released
from Xerox PARC

1983

First killer app
Produced (T.
Love)
 1986

First OOPSLA
conference

21 (18+3)

11 Principles and Applications of Model Driven Engineering Lecture #4

Only 3 technology maturation cycles

1960 + 3 x 18 = 2014

12 Principles and Applications of Model Driven Engineering Lecture #4

Riddle Software Technology Maturation

MDE?

OT?

13 Principles and Applications of Model Driven Engineering Lecture #4

Gartner ’s Hype Cycle Key Phases

 A hype cycle is a graphic representation of the
maturity, adoption and social application of specific
technologies:
 Technology Trigger: A potential technology

breakthrough kicks things off. Early proof-of-
concept stories and media interest trigger
significant publicity. Often no usable products exist
and commercial viability is unproven.

 Peak of Inflated Expectations: Early publicity
produces a number of success stories—often
accompanied by scores of failures. Some companies
take action; many do not.

 Trough of Disillusionment: Interest wanes as
experiments and implementations fail to deliver.
Producers of the technology shake out or fail.
Investments continue only if the surviving
providers improve their products to the satisfaction
of early adopters.

 Slope of Enlightenment: More instances of how
the technology can benefit the enterprise start to
crystallize and become more widely understood.
Second- and third-generation products appear from
technology providers. More enterprises fund pilots;
conservative companies remain cautious.

 Plateau of Productivity: Mainstream adoption
starts to take off. Criteria for assessing provider
viability are more clearly defined. The technology’s
broad market applicability and relevance are clearly
paying off.

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

Visibility

Time

MDE
?

Peak of inflated
expectation

Plateau of
productivity

Slope of
Enlightenment

Tough of
Disillusionment

Technology trigger

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

14 Principles and Applications of Model Driven Engineering Lecture #4

Gartner’s MDA adoption (2003)

15 Principles and Applications of Model Driven Engineering Lecture #4

A possible scenario for MDE

Visibility

Time

Technology trigger

Second tentative

Another oscillation before stabilization?

2010 2020 2030

16 Principles and Applications of Model Driven Engineering Lecture #4

Boehm’s Pattern

 Discussed in «A view of 20th and 21th Century Software Engineering» in
ICSE’2006, Keynote, Shanghai, China.

 Hegelian view of software engineering past.
 Most explanations of software engineering evolution from 1950 to

present follow a similar pattern
 Thesis
 Antithesis
 Synthesis

 Boehm applies this to:
 Similarity of software and hardware; COTS
 Structured programming; Formal methods
 Waterfall process; Software processes
 Concurrency control
 Open Source
 Software crafting; Agile methods
 etc.

17 Principles and Applications of Model Driven Engineering Lecture #4

Negative points: Models Have Failed

 Models have failed, at least temporarily.
 Deployment of MDE seems today to have reached a standstill.
 Immense hopes greeted the MDA™ initial proposal as a possible

way to regenerate the entire software engineering practices
 Recognition today that its impact is rather limited and its perspectives

quite confined.
 Observation that the process is not at the same level that in case of

technology take-off like OT in the 80’s
 What went wrong?

 No sustainability
 lack of model portability in time and space

 No killer app
 Decreasing importance of standards (including UML)
 Many other factors

18 Principles and Applications of Model Driven Engineering Lecture #4

Many technologies have a limited life

 Remember AD/Cycle by IBM?
 Remember MDR/Netbeans (excellent MDE platform)?
 Remember Microsoft RTIM?
 Remember Microsoft OSLO?
 Remember Microsoft DSL tools?
 How long will EMF last?
What will follow EMF?
Will there be a migration path from EMF?

19 Principles and Applications of Model Driven Engineering Lecture #4

Promises and deliveries

What has been promised and what has been achieved
 MDA made many promises in 2000

 And has problems delivering in 2012

Models

2000 2012?

Promises
Delivery

Evaluation

2030?

The strongest commitment of MDA was on protecting
all software investments from deprecation,

over long periods of time.

20 Principles and Applications of Model Driven Engineering Lecture #4

Sustainable Modeling?

 The first promise/commitment of
MDA™ was on sustainability:
 “Developers gain the ultimate in

flexibility, the ability to regenerate code
from a stable, platformindependent
model as the underlying infrastructure
shifts over time”.

 “ROI flows from the reuse of application
and domain models across the software
lifespan--especially during long-term
support and maintenance, the most
expensive phase of an application's life”.

PERMANENT LINK TO THIS COMIC: HTTP://XKCD.COM/1007/
IMAGE URL (FOR HOTLINKING/EMBEDDING):

HTTP://IMGS.XKCD.COM/COMICS/SUSTAINABLE.PNG

Sustainability is the new hype,
but is this hype sustainable?

Many other technologies also

are lacking sustainability

21 Principles and Applications of Model Driven Engineering Lecture #4

From the MDA whitepaper (Nov. 27, 2000)

 For years we've assumed that a
clear winner will emerge and
stabilize this state of flux, but it's
time to admit what we've all
suspected: The sequence has no
end!

 And, in spite of the advantages
(sometimes real, sometimes
imagined) of the latest middleware
platform, migration is expensive
and disruptive …

 As the pace of technology continues
to quicken, and the demands of
integrating your existing legacy
systems, your new intranet, and your
ebusiness fall on your shoulders, you
need an architecture that makes
interoperability central to your
infrastructure …

 The bad news is that there will never
be a single operating system, single
programming language, or single
network architecture that replaces all
that has passed; the good news is
that you can still manage to build
systems economically in this
environment …

 Over the past decade or more,
companies have endured a
succession of middleware platforms
…

22 Principles and Applications of Model Driven Engineering Lecture #4

From the MDA whitepaper (Nov. 27, 2000)

 PIM: Whether your ultimate target is
CCM, EJB, MTS, or some other
component or transaction based
platform, the first step when
constructing an MDA based application
will be to create a platformindependent
application model expressed via UML in
terms of the appropriate core model …

 PSM: Platform specialists will convert
this general application model into one
targeted to a specific platform such as
CCM, EJB, or MTS. Standard mappings
will allow tools to automate some of the
conversion. In Figure 1, these target
platforms occupy the thin ring
surrounding the core

 There is a way to manage this situation,
and it's based on the core modeling
standards from OMG. What we have is the
ability to apply modeling technology to
pull the whole picture together.

 Companies that adopt the MDA gain the
ultimate in flexibility: the ability to derive
code from a stable model as the
underlying infrastructure shifts over time.
ROI flows from the reuse of application
and domain models across the software
lifespan …

23 Principles and Applications of Model Driven Engineering Lecture #4

Some MDA success stories but no killer app. yet

http://www.omg.org/mda/products_success.htm

http://www.omg.org/mda/products_success.htm

24 Principles and Applications of Model Driven Engineering Lecture #4

What is a Killer App?

Tom Love experiment
at Schlumberger
(see also the Analyst
At Xerox)

220 lines of Smalltalk
vs.
10,000 lines of Fortran

A killer app. should provide measurable and reproducible evidence that the new proposal offers
an order of magnitude improvement over previous solutions.

25 Principles and Applications of Model Driven Engineering Lecture #4

Decreasing importance of standards

 MDE has been
characterized by
 low quality of standards

• including UML
 high importance given to

them by some companies
and researchers

 The focus is now moving
more on tools and
principles

Principles

Standards

Tools

Principles

Standards

Tools

26 Principles and Applications of Model Driven Engineering Lecture #4

UML and MDE: friend or foe, devil or angel?

 UML was the conclusion of the
OOADTF and the beginning of MDA
 Everything started with UML and this is

probably the main problem of MDE

 UML is a loosely defined language
 UML is a language with one syntax and an

infinity of semantics

 UML is not a badly designed language
 Because it was never designed at all
 It is the result of industrial consensus,

obtained through a precise process
(committee invention)

 Bad modularity principles (profiles)
 UML as a visual syntax for C++

 UML as a better « programming » language?

27 Principles and Applications of Model Driven Engineering Lecture #4

UML as the modeling language archetype?

 UML as the typical visual language.
 Many still wrongly associate MDE with visual modeling.
 MDE has later shown that textual modeling (Xtext) is often better than visual modeling.

 UML as a general purpose language (GPL).
 MDE has demonstrated the interest of precise and focused Domain Specific Languages

(DSLs).
 UML considered as the archetype of modeling languages, illustrates a property that is at

the extreme opposite of the main MDE basic principles.
 UML is often considered as an OO modeling language

 MDE has demonstrated the benefits of multiparadigm modeling, considering not only
objects, but rules, events, functions, tables, processes, etc.

 UML has wrongly conveyed the idea that modeling was OO modeling
 UML is known for its complexity, by the size of its metamodel and its rapid

evolution
 MDE promotes the idea of simple languages that could be combined, with controlled

execution

28 Principles and Applications of Model Driven Engineering Lecture #4

Lack of focus

 If MDE is the solution then what is the problem?
 What is the precise application scope of MDE?
 Complete usability taxonomy of models, metamodels and transformations?

 To some people MDE is the capacity to efficiently use UML, even for blueprint
 To some people MDE is the capacity to transform UML into Java or J2EE
 To some people MDE would allow to work with BPMN and UML and bridge the

business and IT efficiently
 Different levels

 Core (representation, storage)
 Basic operations (transformations)
 Specialized model facilities (non agnostic)

 MDD - or MDE for code generation (e.g. UML to Java) - is quite well
understood, but other advanced usages of MDE are still much less
mastered.
 Difference between MDE and OT: lack of common agreement

29 Principles and Applications of Model Driven Engineering Lecture #4

Wrong focus

 Also
 MDE concentrated too much

on models of code and not
enough on models of data

 MDE concentrated too much
on models of solutions and
not enough on models of
problems

 MDE concentrated too much
on Information Systems
models and not enough on
Business models

 MDE concentrated too much
on modeling in the small and
not enough on modeling in
the large

 etc.

Software
Engineering

System
Engineering

Data
Engineering

Business
Engineering

appliesTo

Model
Driven

Engineering

Initially MDA was for software engineering

30 Principles and Applications of Model Driven Engineering Lecture #4

Executability vs. Precision

 One important ambiguity has been to let the idea
propagate that all MDE-models, and particularly UML,
could be made executable.

MDE promotes the idea that some models may be
executable but not all
 A perverse corollary of this is that non executable models are not

precise
 Many models may be executable and however very precise

 Precision is not always obtained through executability
 Many models may contribute to the final generation of executable code, while

not being themselves executable
 Some models may be progressively made executable (e.g. by transformation,

progressive enactment)

31 Principles and Applications of Model Driven Engineering Lecture #4

Too complex

 Metamodels are much too complex
 Typically a metamodel may contain 5000 elements which is too

much
 A metamodel is intended to remain open (not code or grammar)
 500 elements for a metamodel should be a maximum

 Too many metamodels
 Each metamodel is a silo
 Allow some communities to hide from other ones

 Relations between metamodels are not understood
 Overlapping is frequent
 False similarities (i.e. different concepts with similar names)

happen frequently
 MDE as viewed today may be adding accidental complexity

instead of helping to master complexity

32 Principles and Applications of Model Driven Engineering Lecture #4

The work on platforms was
one of the MDE big failures

 The CIM/PIM/PSM was a false good
idea.

 The notion of a platform model was
never taken seriously.

 No consensus on platform
metamodels.

 Join development of:
 A platform
 A set of DSLs for abstracting this

platform
 A set of transformations for

generating to the platform
 More research needed on practical

platforms (e.g. HTML5,
Javascript/Json, etc.) used in the
context of software modeling

33 Principles and Applications of Model Driven Engineering Lecture #4

XMI Failure

 From SMIF to XMI, a good start
 XMI as the final interoperability solution, the first mistake
 XMI with UML is part of MDE legacy
 JSON is only a partial replacement
 The proportion of native data expressed in XMI is

completely marginal and will not increase
Modeling tools should be able to natively manage a number

of formats, including XML and binary formats
 XMI will eventually disappear, creating an additional

problem of maintenance for UML models

34 Principles and Applications of Model Driven Engineering Lecture #4

Other problems

 Too easy ways to define metamodels, without sufficient
(any) validation.
 Metamodels loosely linked to reference implementations
 Metamodels of rather poor quality, evolving through permanent revision tasks

forces

 Lack of concern about the possible overlapping of
metamodel-based standard agreements
 Lack of global view on the relations between models and collections of models is a

serious difficulty
 Alternative solution is to use only one unique metamodel (UML?)

 Lack of understanding of the real nature of "model
decorations" and its various consequences.
 These decorations usually pollute the model, cannot be easily separated or

cumulated.

35 Principles and Applications of Model Driven Engineering Lecture #4

Other problems

 Lack of clear distinction between descriptive and
prescriptive modeling.

 Lack of a clear classification or taxonomy of models and
model operations.

 No general automated way to compare/relate models and
metamodels

 No automated way to manage metamodel versions
 No known mature solution to collaborative modeling
 etc.

36 Principles and Applications of Model Driven Engineering Lecture #4

Reasons to hope

 We learned a lot in 10 years of
automated software modeling

 Solid background for the next
iteration

 Concepts
Definitions

Tools

Applications

 MDE + Open
Source

37 Principles and Applications of Model Driven Engineering Lecture #4

Some ideas learned

 MDE is a solution for the separation and integration of various aspects of
information systems with the help of typed graphs

 MDE (Modelware) is a specific branch of Software Language Engineering (SLE)
 Examples of other branches (technical spaces)

 Grammarware
 XMLware
 Ontologyware
 etc.

 Each branch has its own engineering advantages and drawbacks
 No one will preclude all others even if competition holds
 More emulation than competition: TSs are complementary

 MDE is not:
 Visual programming
 UML
 PIM to PSM

 All models are not executable, even if some are
 Models may be completely precise and nevertheless computer-understandable

38 Principles and Applications of Model Driven Engineering Lecture #4

Basic MDE Principles

1. Representation principle
 A model M is a representation of a system S

2. Multiple view principle
 Several models may provide different representations of the same system S

3. Conformance principle
 Any model M conforms to the language of its metamodel MM

4. 3-level principle
 Any metamodel MM conforms to the same self-conforming metametamodel MMM

5. Transformation principle
 The most important operation applicable on models is a transformation

6. Weaving principle
 Abstract correspondences between models are represented as models

7. Megamodel principle
 Model elements may be considered as models

8. Unification principle
 All models specialize a common abstract model

39 Principles and Applications of Model Driven Engineering Lecture #4

We learned a lot

 Assuming
 We know that MDE is a branch of language engineering
 We know that automation needs transformations
 We know that a relation between models may be represented as a

model
 We know that sets of models (conforming to different metamodels)

may be represented as models
 We know that it should be possible to define a strong and regular

modeling framework (improved EMF) that will make easy to define
and manage an important number of small and precise composable
DSLs

 But this structured library of small metamodels does not yet
exist
 Biggest challenge ahead for MDE

40 Principles and Applications of Model Driven Engineering Lecture #4

Transformation is key

 Without practical transformations, no reasonable automation
 Remember the «Bubbles don't crash» criticism on models by Bertrand

Meyer?
 Transformation may crash ;) and are most useful
 Transformations draw the boundary between old contemplative modeling

and modern MDE
 Different kinds of transformations

 From model to model (M2M)
 From model to system (M2S)
 From system to model (S2M)
 With a special simplification when the system belongs to another 3-level

structured technical space
 Characteristics of transformations

 Basic properties
 Time of execution
 Different purposes

41 Principles and Applications of Model Driven Engineering Lecture #4

Characteristics of transformations

 Basic properties
 Metamodel-based
 Rule-based
 Transformations as models

 Time of execution
 Software production
 Software maintenance
 Software operation

 Different purposes
 Measure
 Verification
 Synchronization (e.g. round-trip when this applies)
 Interoperability
 Reusability (of functionality)
 Most situations

42 Principles and Applications of Model Driven Engineering Lecture #4

Ubiquitous DSLs

 The future of IT is with DSLs
 But DSLs also have a bright past

 Excel (initially Visicalc)
 SQL
 and much more

 However the real application scope of DSLs is yet unknown and rapidly
growing
 Generative programming (i.e. generating GPL code from other DSLs)
 But this is only the emerged part of the iceberg

 The discovery that MDA™ and then MDE was strongly related to DSLs is
only a recent idea but a strong result

 The basic layers of any MDE stack should contain DSLs for defining
metamodels, defining correspondances between models and defining
executable transformations

43 Principles and Applications of Model Driven Engineering Lecture #4

Research agenda

 Just some ideas
1. Relations between programming and modeling
2. Definition & promotion of a better M3
3. Understanding modularity in modeling
4. Revisiting model transformations
5. Relations between Tools and Metamodels (last lesson)

 Most of the efforts should be first spent on the basic MDE layers

44 Principles and Applications of Model Driven Engineering Lecture #4

Confusion between programming and modeling

 Search for making UML into a visual executable language led to the belief that
modeling languages and programming languages are similar

 This is still one of the strongest debate in the community but also one of the
major problems of MDE

 Another view is that they are different but complementary
 Using modeling languages may result in generating executable code through

model transformation
 Some programming languages (JavaScript for example) are not languages to

program but language to generate (see GWT) and are excellent candidates to
be jointly used with modeling languages

45 Principles and Applications of Model Driven Engineering Lecture #4

Modeling and programming languages

 Is there a difference between models and programs?
 Some have coined the term mogram to describe the common entity

 Main difference (?)
 All programs are executable
 Some models are not executable

 Programs are models (a special case of)
 A programming language has a precise and fixed execution semantics
 Few models are natively executable
 Some models may be transformed into an executable program

 But there are some other differences and non-differences between a model and
program

46 Principles and Applications of Model Driven Engineering Lecture #4

The two parallel tracks

Programming
Languages

Assembler
Fortran COBOL

Algol60
PL/1 ADA Java

C#

Smalltalk

C++
Ruby Scala

Python
F#

Go Dart

Modeling
Languages Sara

SREM SADT
Petri JSD

DFD
B

OMT

Z

VDM
UML

SART

ExecutableUML?

Flowcharts

Lisp

Prolog

SysML

Pascal

47 Principles and Applications of Model Driven Engineering Lecture #4

The impossible dream

 A language with all the
nicest properties of
programming
languages and
modeling languages.
 Either by making a

modeling language
executable
(executable UML)

 Or by including
modeling features in
a programming
language (UMPLE)

 Is this feasible?
 Many goals of both

kinds of languages
are in complete
opposition

http://cruise.site.uottawa.ca/umple/

http://cruise.site.uottawa.ca/umple/

48 Principles and Applications of Model Driven Engineering Lecture #4

Models and Programs

 Technical space notation
 Distinction between a MDE-model and a Programming-model
 Both are Software-models
 In the following we name models MDE-models and programs

Programming-models
 Issue of representation

 Usually a model is a graph and a program is a tree
 Issue of appearance

 Usually programs are expressed by a concrete textual syntax while many
models are expressed in a visual syntax

 This is being less significant now that many models are also expressed
textually

 Issue of conformance
 A program conforms to a grammar
 A model conforms to a metamodel
 Quite important (see next slide)

49 Principles and Applications of Model Driven Engineering Lecture #4

Grammars vs. Metamodels

 Issue of representation
 Grammars are trees
 Metamodels are graphs

 Issue of visibility
 Metamodels are open
 Grammars are rather closed

 Issue of evolutivity
 Grammars are (usually) fixed
 Metamodels are (usually) variable

 Issue of maturity
 Grammarware has 50+ years
 Modelware has much less maturity

50 Principles and Applications of Model Driven Engineering Lecture #4

Not to be confused

M2 S

M1

M3

M S2

S1

S3

Multimodeling Composite Modeling

A usual program is an example of a composite model, representing at the same time
the domain, the execution platform, and the application user requirements.

51 Principles and Applications of Model Driven Engineering Lecture #4

Programming is difficult

The World

The Machine

A Program The Application
Requirements

class BankCustomer{
}
class Printer{
}
class Application{
}

A
Programming

Language

c2

52 Principles and Applications of Model Driven Engineering Lecture #4

Towards a new M3

 The current M3 (metametamodels) have been defined by opportunity
 First inspired by UML like MOF (for tooling reasons)
 Then aligned with UML (for political reasons)
 Thus object-oriented and class-based by opportunity, not by objective
 Then simplified by necessity (EMOF and ECORE)
 UML was class-based by objective (OOAD and targeting Java and similar languages)

 A M3 should be paradigm-agnostic
 Allowing to build any kind of metamodel (OO, functional, rule-based, event-based,

process-based, etc.)
 There is no need to be visual for a M3

 A M3 defines the representation system of the corresponding TS
 It should be defined with maximum care

53 Principles and Applications of Model Driven Engineering Lecture #4

Towards a new M3

 Characteristics of an ideal M3
 Minimalist (and not universalist)
 Based on typed hypergraphs
 Implementable on advanced Big Data systems (cloud, NoSQL, etc.)
 Allowing libraries of metamodels (lattices with true incremental

deltas)
 Allowing domain evolution (class-based is not the obvious

solution)
 Implemented on an open-source basis for rapid shared adoption
 With robust serialization (Json or XML-based)

54 Principles and Applications of Model Driven Engineering Lecture #4

Towards a new M3

 Defining a new M3 is
defining a new TS
 It should be conceptually

sound
• Typed hypergraphs

 It should be efficient and
scalable

• Use some graph database
(bigdata, cloud, NoSQL,
etc.)

– Ex. HypergraphDB, Neo4J,
OrientDB, CouchDB, etc.

MDE M3 level
conceptual framework

ECORE
+

Java
+

Teneo

Teneo is a Model-Relational
mapping

and runtime database
persistence solution for EMF)

MinimalM3
+

Script/Funct.
+

HypergaphDB

example

EMF
mapping

improved
mapping

55 Principles and Applications of Model Driven Engineering Lecture #4

Modularity for Models

 By nature MDE is modular
 It promotes full separation

of aspects

M2 S

M1

M3

Multimodeling

W

56 Principles and Applications of Model Driven Engineering Lecture #4

Lack of good model modularity devices

 Initially the definition of UML by Rational (formerly an ADA company) was to
borrow the package mechanism to the programming language community.

 IBM (S. Cook) proposed a better solution named schemes that was rejected
for political reason

 By lack of a better idea, people considered models composed of packages in
MDA/MDE

 To solve problems, OMG introduced the concept of profiles that make the
situation much worse

 When the need to exchange models by serialization arose (SMIF), MDE/MDA
borrowed solutions to the XML community (XMI) and therefore introduced the
name space mechanism in the representation of models

 Today there is still no specific model modularity and people are struggling with
packages, profiles and namespaces

57 Principles and Applications of Model Driven Engineering Lecture #4

Contexts and coreferences (Sowa graphs)

BELIEVES PERSON: John

MARRY PERSON SAILOR

PERSON: Mary WANTS

PROPOSITION:

SITUATION:

"John believes that Mary wants to marry a sailor"

58 Principles and Applications of Model Driven Engineering Lecture #4

Revisiting model transformations

 Three objectives
 Use

 Focus on usability and acceptance
 Reuse

 Focus on sharing libraries of transformation components
 Re-architecture the IS

 Radically different
 Propose a clear alternative to OO-architecture
 Closer to data-flow architectures of the 70’s

 The killer app will be here
 Need to find a significant application written in OO style (e.g. Java)
 Rewrite it with metamodels and transformations
 Compare the building and maintenance costs

59 Principles and Applications of Model Driven Engineering Lecture #4

Conclusion

 Even if we know some limited success stories
on MDE
 We still miss the great MDE killer app
 MDE is not following the hype curve of OT
 UML has made very difficult the independent

expression of innovative software modeling
ideas

 Did MDE miss the boat?
 Industrially probably yes on this iteration
 Except for some small niches
 On the research side we learned a lot, and we

have now a vision for the future (this century)
 There is still a chance that the next iteration of

MDE will provide the basis to get the software
industry out of the bad situation where it is
installed now

60 Principles and Applications of Model Driven Engineering Lecture #4

Robin Milner’s Grand Challenge for the century

Language is the raw material of software engineering, rather as water is
the raw material for hydraulic engineering…

A more thorough science-based approach to informatics and ubiquitous
computing is both necessary and possible. We often think in terms of
models, whether formal or not. These models, each involving a subset of
the immense range of concepts needed for ubiquitous computer
systems, should form the structure of our science…

Even more importantly, the relationships (either formal or informal)
among them are the cement that will hold our towers of models together.
For example, how do we derive a model for senior executives from one
used by engineers in designing a platform for business processes, or by
theoreticians in analyzing it?

61 Principles and Applications of Model Driven Engineering Lecture #4

MDE is not «Linear Research»

The original B-tree paper was bounced; the data cube paper was
bounced. The original transaction paper was bounced. Any paper
that is non-linear is going to get bounced.

Jim Gray, SIGMOD Record,
Vol. 32, No. 1, March 2003

 It is time the researchers realize that MDE is not a small delta in
software engineering or programming languages

 The problem is not to invent a marginally better programming
language (executable UML?)

 The question is to invent radically new ways of producing
software as a real answer to the real needs of people

 Providing the research community with a new advanced
modeling framework may allow the non-linear experiments that
will explore completely these new ways to produce useful and
reliable software applications.

62 Principles and Applications of Model Driven Engineering Lecture #4

Thanks

• Questions?
• Comments?

JBezivin@gmail.com

	Where will be MDE in 2030?
	Lecture 4: Where will be MDE in 2030?
	The present situation is not ideal
	Good time to reflect and react
	Engineering as a succession of hypes
	Quotations
	Technology waves
	Impact of some technological changes
	Measure of the perceived importance
	18 ± 3 Software Technology Maturation�(W. Riddle)
	Only 3 technology maturation cycles
	Riddle Software Technology Maturation
	Gartner ’s Hype Cycle Key Phases
	Gartner’s MDA adoption (2003)
	A possible scenario for MDE
	Boehm’s Pattern
	Negative points: Models Have Failed
	Many technologies have a limited life
	Promises and deliveries
	Sustainable Modeling?
	From the MDA whitepaper (Nov. 27, 2000)
	From the MDA whitepaper (Nov. 27, 2000)
	Some MDA success stories but no killer app. yet
	What is a Killer App?
	Decreasing importance of standards
	UML and MDE: friend or foe, devil or angel?
	UML as the modeling language archetype?
	Lack of focus
	Wrong focus
	Executability vs. Precision
	Too complex
	The work on platforms was�one of the MDE big failures
	XMI Failure
	Other problems
	Other problems
	Reasons to hope
	Some ideas learned
	Basic MDE Principles
	We learned a lot
	Transformation is key
	Characteristics of transformations
	Ubiquitous DSLs
	Research agenda
	Confusion between programming and modeling
	Modeling and programming languages
	The two parallel tracks
	The impossible dream
	Models and Programs
	Grammars vs. Metamodels
	Not to be confused
	Programming is difficult
	Towards a new M3
	Towards a new M3
	Towards a new M3
	Modularity for Models
	Lack of good model modularity devices
	Contexts and coreferences (Sowa graphs)
	Revisiting model transformations
	Conclusion
	Robin Milner’s Grand Challenge for the century
	MDE is not «Linear Research»
	Thanks

