Where will be MDE in 20307

]Bezivin@gmail.com

LIRSS A WA - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

mailto:JBezivin@gmail.com

Lecture 4: Where will be MDE in 2030?

d Introduction

J On the evolution of technology
J What to throw away?

J What to keep?

J Aresearch agenda

J Conclusions

1 X7 AP 3 S T ST T Principles and Applications of Model Driven Engineering Lecture #4

The present situation is not ideal

Ideas spreading slowly

U O

High expectations not followed by solution delivery
» Promises made by MDA in 2000 not delivered

Several big companies not supporting the idea
MDA not widely adopted by industry
Tools lacking maturity

U OO0 0O

Software landscape not significantly transformed (impacted?) by MDE
(not yet?)
The current iteration may not be the last one.

U

» This piece of technology may need an additional cycle to mature and
produce maximum impact.

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 3

Good time to reflect and react

 Interesting to understand what did work and what did not work
(Identify what are the main criticisms to MDA
O Also identify the good points

O Positive attitude
» Reflect on the past
» Critically analyze the present
» Prepare for the future
1 Need to separate three parts
» Negative balance (throw away)
» Positive balance (keep)
» What need yet to be added (research roadmap)

O First a global look at the evolution of software technology in general

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

Engineering as a succession of hypes

 Is MDE to be recorded as
another transient hype in the
software technology history?

L Many developers’ career paths
follow a continuous zigzag
from hype to hype.

J We need to focus more on

continuity and progresses than

on ruptures and failures.

[A solution that does not meet

immediate success may just be

premature, not always wrong.

'.
3

10 STVILINISSE

vmswvesi W0 (TEALINNLS mETA

OISIQ IOV I LN

A
-
p—
'
_—
L
p—
—
-
o
-
—
—
-
e
—
e
s
e

EISZ IS RS W FEPT Principles and Applications of Model Driven Engineering Lecture #4 5

Quotations

U Those who cannot remember the past are condemned to repeat it

O George Santayana

» Some past experience in software modeling are worth repeating and
extending while some are not.

L As we advance in the present, history keeps changing

] Michel Serres

» There is a record on the birth registration of Ajaccio on the 15 August
1769 at the name of N. di Buonaparte. This came rather unnoticed in
the following years until Napoleon become famous. Interpretation of
the past is always made with the latest point of view of the present.

» Interpretation of the past history of the modeling formalisms should be
made in the light of the latest knowledge and developments in DSLs.

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 6

0.0300%,
0.0280%|
0.0260%)|
0.0240%|
0.0220%|
0.0200%|
0.0180%)|
0.0160%|
0.0140%)|
0.0120%|
0.0100%|
0.0080%|
0.0060%|
0.0040%|
0.0020%|
0.0000%;

Technology waves

W 1e00 W 1910 1920 1930 [1940 [N 1950 [1960 [1970 [1980 [1990

1900 1910 1920 1930 1940 1950 1960 1870 1980 1950 2000

Structured Programming

Object Oriented Languages

Model Driven Engineering

Each wave does not replace the previous one, but complements it.

WA

EEI X715 R~ AT FE T Principles and Applications of Model Driven Engineering Lecture #4

Impact of some technological changes

W Y2 W cbject oriented [l structured programming

A\

0.0 000"

0.00004500%|

0.00004000%

-\

0.00003500%

0.00003000%

0.00002500%

NN

0.0 000"

0.00001500%|

0.00001000%|

0.00000500%|

0. 0000000%70

=

VAR

1972.5 1975 19775 1880 13825 1885 19875 1880 19625 1885 19875 2000 20025 2005 2007 5

|

——

Structured Programming, Object Oriented, Y2K

Different trends
(different scale)
(different timeframes)

B st W model iranstormation

0.000005000¢

0.000004500%

0.000004000¢

il

0.000003500¢%

s

92l
il

0.000003000%

0.000002500%

0.000002000%

0.000001500%

iy

-
A

0.0000010G0%

0.000000500%

|

L A B (R [I R S S I TR

0.00003000%

XSLT, Model Transformation

B metamode! [uml

.

0.00002750%)
0.00002500%
0.00002250%)

Pal

/

0.00002000%
0.00001750%
0.00001500%

/|

0.00001250%)
0.00001000%
0.00000750%)

7

/

0.00000300%

000000250% e

/"'/f ___..,-———""'""'———-

L0000 Tgez—Temd

1986 1588 1980 1962 1954 1986 1908 2000

Metamodel, UML

2002 204 2006 2008

(=1 <7 1 S fF T T

Mational Instituts of Informatics

Measure of the perceived importance

NATO SCIENCE COMM

SOFTWARE ENGINEERING
TECHNIQUES

GOOSIE books Google Ngram Viewer

B soitware engineering

/N
/N

/ \\ /N

/ N

0.0000600%——

0.0000500% \ /

0.0000400% /

0.0000300% \ /_/

0.0000200%

0.0000100% x __/

0.000000045F Jﬁm 7880 7985 7980 7895 2000 7005

(Raw Ngram buzzword observations)

Possible multiple successive peaks

tional Institute of Informatics

(.

18 + 3 Software Technology Maturation

(W. Riddle)

18 = 3 Software Technology Maturation

15 to 21 years to mature a technology
to the point that it can be popularized
and disseminated to the technical
community at large

If we take the MDA announcement
(2000) as the starting point for MDE,
the jury is still out, but not for a long
time.

Without a killer application, OOP or OT
would have never become mainstream

Cost Models

related data

example, COCOMD)
J-1981- publication of Boehm's text
Smalltalk-80

computerized notebook

avalladle

product

Simula invented
Smalltalk started

Smalltalk released First killer app
from Xerox PARC Produced (T.

A Love) A

(-1966- appearance of first collection of cost-

1-1976- appearance of a usable system (Price 5)
=1078= altermative systems are available (for

0=1965+ Kay's thesis defines concept of 2 personal
11972 prelImingry version of smalital 15

271976 majur 1ew wersion of Smalltalk appears

3-1981- other companies start porting the
Smalltalk=B0 system to their computers

4-1983- Smalitalk-60 avallable as a commérclal

SREM
0+1968-

F—-—-—-—-I—--‘—-——_

1SD0S system demonstrates applicabllity
of atbribute-valu=relation approach t
pre~implementation activities

1-1073-74- (iret concrete definition of the SREM

2-197-
3-198)-

Unix

0-1967-
1=197|-
2-1973-
3-19%6-

4-1981-

system appears
{irst release of the SREM system
Vax version avallable

apearance of the Multics system

InIt1al versions of Uik gvallalle

Unix system debuts at Siqops conference
collection of papers appeara and oyatem
begins to be widely used In aademic
community

announcement of Unix System 111

First OOPSLA
conference

1965 1980 1983 1986
D et bk b b >
21 (18+3)
7 198 F T T T Principles and Applications of Model Driven Engineering Lecture #4 10

Only 3 technology maturation cycles

Software Engineering
0-1960- inadequacy of existing techniques for
large-scale software develooment noted

e v in several projects (for example SAGE)
1-1968- concept of software enqineering I
SOFTWARE ENGINEERING . articulated at workshop on Software
B | Engineering at Garmisch Partenkirchen

<€

2-1973-74- general collections of papers appear
and policy quidelines are established in
Various communities

V 3-1978-79- texts and qgenerally usable systems

supporting software engineering appear

(for example, the SREM system)

v 4-1983- use 4f software engineering shifts to a

larger community through actions such as

the Nel aver directive and the delinition

v of a Software Engineering Institute

MDE? :>

LIRSS A WA - AT LT

E LB R ATZTRT

Riddle Software Technology Maturation

BASIC RESEARCH

Investigation of idess and concepts thal Ialer prove fundamental
penaral recognition of problem and discussion of ils scope/nature

KE === 2= S S HOR====="-="=_F
Appearance of a Key Idea Underlying the

Technology or a Clear Articulation of the
Problem

COMCEPT FORMULATION

informal circulstion of idess
convergence on & compatible set of idess
general publication of solutions 1o parts of the problem

Clear Definition of Solution Approach Via a
Seminal Paper or a Demonstration System

DEVELOPMENT sad EXTEMSIOM
trial, preliminary use of the technology
clarfication of the under lying idess
sxlension of the general spproach o o broader solution

Usable Capabilities Become Available

EMHANCEMEMT and EXPLORATION

{internal)
major extension of general approach to other problem domains
use of the technalogy to solve real problems
slabilization and parting of the technology
development of {raining mater ials
der ivations of resulls indicating value

Principles and Applications of Model Driven Engineering

e Y "e——
Shift to Usage Outside of Development Group

ENHANCEMENT sad EXPLORATION

(External)
Sama aclivities as for ENHAMCEMEMNT and EXPLORATION { internal)
but they are carried oul by a broader group, including people
oulside the development group.

] gy

Substantial Evidence of Value and |

Applicability

POPULARIZATION
appearance of production-quality, supporied versions
commercialization and marketing of the technology
propagation of the lechnology throughout community of users

< dla »
Propagation Throughout 40% of the
Community
e 4}) meesemen-)

Propagation Throughout 70% of the
Community

Figure 1: Software Technology Maturation Phases

oT?

Lecture #4

Gartner ’s Hype

0 Ahype cycle is a graphic representation of the
maturity, adoption and social application of specific
technologies:

>

Technology Trigger: A potential technology
breakthrough kicks things off. Early proof-of-
concept stories and media interest trigger
significant publicity. Often no usable products exist
and commercial viability is unproven.

Peak of Inflated Expectations: Early publicity
produces a number of success stories—often
accompanied by scores of failures. Some companies
take action; many do not.

Trough of Disillusionment: Interest wanes as
experiments and implementations fail to deliver.
Producers of the technology shake out or fail.
Investments continue only if the surviving
providers improve their products to the satisfaction
of early adopters.

Slope of Enlightenment: More instances of how
the technology can benefit the enterprise start to
crystallize and become more widely understood.
Second- and third-generation products appear from
technology providers. More enterprises fund pilots;
conservative companies remain cautious.

Plateau of Productivity: Mainstream adoption
starts to take off. Criteria for assessing provider
viability are more clearly defined. The technology’s
broad market applicability and relevance are clearly
paying off.

Cycle Key Phases

Visibility
'i‘ Peak of inflated
1
1

xpectation

Plateau of

Slope of
Enlightenment

Time

http://www.gartner.com/technology/research/methodologies/hype-cycle.isp

LIRSS A WA - AT LT

E LB R ATZTRT

Principles and Applications of Model Driven Engineering

Lecture #4 13

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

Gartner’s MDA adoption (2003)

Wisibility

Kay: Tima to Plateauw
f NET Platform

O Less than two years
B Twoto five years
Compeaite Applications Proped Partiolio Management @ Foe lo 10 years
Advanced Web Sarvices

ﬂ,_ Muore than 10 years
Businass Process
Managemant ARAD 2004
betadata
Managamiend

Busliess Process Anaksls

Secura Web Sanncen
Swarm

Inteligence

Integialed S00A

Hapd Application Developmont
Framewarks

Agile Development

Architecled,
Model-Craiven 204

Entreprise
SCCM

Legacy
Modernization

Aapect-Orenled
Goftwars
Developmaent

Autpmaled
Taaling

Unified Modeling

Language Enhancementa Java 2 Flatform,
Mobile Development Enterprise Edition
BascWeb Business Rule Enginas
SEIVices
Parfarmance Taating A af Mey 2003
Technalafgy Paak of Inflaled Teaugh of alape of Plataau ol
Trigoer Expectations Desifluslonmeanl Enlightenment

Productivivy
Principles and Applications of Model Driven Engineering

Lecture #4

Visibility

LIRSS A WA - AT LT

IE R RTSTRT

A possible scenario for MDE

Second tentative

Another oscillation before stabilization?

Principles and Applications of Model Driven Engineering

Lecture #4

15

Boehm’s Pattern

O Discussed in «A view of 20" and 21% Century Software Engineering» in
ICSE’2006, Keynote, Shanghai, China.

 Hegelian view of software engineering past.
L Most explanations of software engineering evolution from 1950 to
present follow a similar pattern

» Thesis

» Antithesis

» Synthesis
1 Boehm applies this to:
Similarity of software and hardware; COTS
Structured programming; Formal methods
Waterfall process; Software processes
Concurrency control
Open Source
Software crafting; Agile methods
etc.

VVVVYVYVYY

1 7 1P R T ST T Principles and Applications of Model Driven Engineering Lecture #4 16

Negative points: Models Have Failed

d Models have failed, at least temporarily.
» Deployment of MDE seems today to have reached a standstill.

» Immense hopes greeted the MDA™ initial proposal as a possible
way to regenerate the entire software engineering practices

v Recognition today that its impact is rather limited and its perspectives
quite confined.

v" Observation that the process is not at the same level that in case of
technology take-off like OT in the 80’s

d What went wrong?

» No sustainability
v" lack of model portability in time and space

» No Kkiller app
» Decreasing importance of standards (including UML)
» Many other factors

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 17

Many technologies have a limited life

(J Remember AD/Cycle by IBM?

J Remember MDR/Netbeans (excellent MDE platform)?
J Remember Microsoft RTIM?

(J Remember Microsoft OSLO?

L Remember Microsoft DSL tools?

1 How long will EMF last?

U What will follow EMF?

J Will there be a migration path from EMF?

1 X7 AP 3 S T ST T Principles and Applications of Model Driven Engineering Lecture #4

18

Promises and deliveries

d What has been promised and what has been achieved
» MDA made many promises in 2000

v And has problems delivering in 2012

2000 20127 20307

| Promises
Models Delivery

Evalu:ation

The strongest commitment of MDA was on protecting
all software investments from deprecation,
over long periods of time.

1 7 1P R T ST T Principles and Applications of Model Driven Engineering Lecture #4 19

Sustainable Modeling?

O The first promise/commitment of
MDA™ was on sustainability:

» “Developers gain the ultimate in
flexibility, the ability to regenerate code
from a stable, platformindependent
model as the underlying infrastructure
shifts over time”.

» “ROI flows from the reuse of application
and domain models across the software
lifespan--especially during long-term
support and maintenance, the most
expensive phase of an application's life”.

LIRSS A WA - AT LT

I_l_/_le "x%‘ﬁﬁ;mFﬁ

1000%- 2109: ALL SENTENCES ARE 79 ?
1

JUST THE. WORD "susTAINRBLE ™

REPEATED QVER ADOVER. -~ 7

oo
10%-]

FREQUENCY OF %]

USE OF THE WORD

"SUSTAINABLE " IN

US BNGUSH TexT, ="
AS A PERCENTRGE OF
ALL WORDS, BY YERR. 0y, |
SOURCE: GonGLE NERAMS.

0.000%

0.0001% 4

oand 2036: "USTANRBLE® OCLURS

206: “suSTANABLE ™ OCCURS AN
AVERAGE OF ONCE PER. SENTENCE

AN AVERAGE OF ONCE. PER. PAGE

0.000015% - o

0.000001%

———r—7 —

1960 \‘?‘30 2000 2020 2040 2060 K)SO 2100 2120 240
YEAR

PERMANENT

THE WORD "SUSTAINARLE " IS UNSUSTAINABLE.
LINK TO THIS COMIC: HTTP://XKCcD.com/1007/

IMAGE URL (FOR HOTLINKING/EMBEDDING):
HTTP://IMGS.XKCD.COM/COMICS/SUSTAINABLE.PNG

Sustainability is the new hype,

but is

this hype sustainable?

Many other technologies also

are

Principles and Applications of Model Driven Engineering

lacking sustainability

Lecture #4 20

From the MDA whitepaper (Nov. 27, 2000)

O As the pace of technology continues [For years we've assumed that a
to quicken, and the demands of clear winner will emerge and

integrating your existing legacy

Systems’ your new intranet, and your Stabilize thlS state Of ﬂux, but it'S
ebusiness fall on your shoulders, you time to admit what we've all
need an architecture that makes suspected: The sequence has no
interoperability central to your |
: end!
infrastructure ... _ _

QO The bad news is that there will never = And, in spite of the advantages
be a single operating system, single (sometimes real, sometimes
programming language, or single imagined) of the latest middleware

network architecture that replaces all . o .
that has passed; the good ne\?vs is platform, migration is expensive
that you can still manage to build and disruptive ...

systems economically in this

environment ...

L Over the past decade or more,
companies have endured a
succession of middleware platforms

LIRSS A WA - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 21

From the MDA whitepaper (Nov. 27, 2000)

Thcelr'ﬁ'isba W%Y to tmhanage thisdsilt_uation, Q PIM: Whether your ultimate target is
and it's based on the core modeling

standards from OMG. What we have is the CCM, EJB, MTS, or somc? other

ability to apply modeling technology to componentor transaction based

pull the whole picture together. platform, the first step when

constructing an MDA based application

will be to create a platformindependent
application model expressed via UML in
terms of the appropriate core model ...

) L PSM: Platform specialists will convert
< Mol Drven et this general application model into one

: : targeted to a specific platform such as
Companies that adopt the MDA gain the .
ultimate in flexibility: the ability to derive CCM, EJB, or MTS. Standard mappings
code from a stable model as the will allow tools to automate some of the
underlying infrastructure shifts over time. conversion. In Figure 1, these target
ROI flows from the reuse of application platforms occupy the thin ring

and domain models across the software _
lifespan ... surrounding the core

LIRSS A WA - AT LT

1 7 1P R T ST T Principles and Applications of Model Driven Engineering Lecture #4 22

Some MDA success stories but no killer app. yet

ABB Research Center

f-eCommerce

Swisslog Software AG

LMext

Postgirot Bank AB

Austrian Railways

Mational Senvices Industries

o "*
£ N Vol

o "The Architecture of Choice for a Changing World"
L "

[% £]

Lockheed Martin

Swedish Parliament

Deutsche Bank
Bauspar AG

Carter Ground Fueling Lid.

Gothaer Versicherungen

Danzas Group

How CodeGenie waorked for

M1 Global Solutions

ObjectSecurity and Fraunhofer

AMS

DaimlerChrysler
Cube Model: MDA Meets Open

FOkLS: AD4 Vifdual Airspace
Management System

Source

http://www.omq.org/mda/products success.htm

-’r,TLC'\'

Looking Glass Metworks
.5 Government Intelligence
Agency
The Open System Architecture
for Condition Based Maonitoring
(OSA-CBM) Project
CcGl
BankHO3ST
E-SoftSys
Magnet Communications, Inc.
Credit Suisse
Siemens Transportation
Systems
Mational Cancer Institute

E BRI STRT

al Instituts of

Principles and Applications of Model Driven Engineering

Lecture #4

23

http://www.omg.org/mda/products_success.htm

What is a Killer App?

Schiumberger

In 1983 at Schlumberger, 1 used Smalltalk-80 to build a tiny prototype of an ana- i
lyst workstation for viewing a diverse collection of data from oil wells.* A working Tom Love experiment
demonstration was built with only 220 lines of new code and lors of reused classes
provided by Xerox. It provided an interactive interface to data residing on a VAX at SCthmberger
computer. This interface furnished iconic menus for accessing maps, measurement (See also the AnaIySt
data, analysis reports, and photographs. It also did simple plotting of measurement At Xe rox)
dara.
1 showed my work to any number of software professionals in the company
and asked them to estimate how much effort it would have required to develop .
comparable facilities in FORTRAN, the most commonly used language at 220 lines of Smalltalk
Schlumberger at that rime. The smallest estimate [ever received was 10,000 lines VS.
of code. While cerrainly not a commercial product, it was a commercial problem, .
and the leverage provided by objects scemed most impressive. 10;000 lines of Fortran
This project was also interesting because of some imporrant observations
about the use of objects. One day, a company Vice President was in my office look-
ing at the small amount of work I had done. He said, “do you mean 1 paid you a
year’s salary to produce 220 lines of code?™ Ar first, 1 felr terrible. Then, I began to
realize how inappropriate it is for us ro feel obligated ro produce bulk in return for
our compensation,
How I had actually spent that year was learning Smalltalk-80 as the first com-
mercial user of that system. Much of the year was spent reading source code [
thought I could reuse in the protorype application I was building. Documentarion
for Smalltalk did not become available unal the next year!

A killer app. should provide measurable and reproducible evidence that the new proposal offers
an order of magnitude improvement over previous solutions.

LIRSS A WA - AT LT

EISZ IS RS W FEPT Principles and Applications of Model Driven Engineering Lecture #4 24

Decreasing importance of standards

Principles

Standards

Tools

LIRSS A WA - AT LT

IE R RTSTRT

Principles

: Standards

Tools

O MDE has been
characterized by
» low quality of standards
e including UML
» high importance given to
them by some companies
and researchers
 The focus is now moving
more on tools and
principles

Principles and Applications of Model Driven Engineering Lecture #4 25

UML and MDE: friend or foe, devil or angel?

d UML was the conclusion of the
OOADTF and the beginning of MDA

» Everything started with UML and this is

probably the main problem of MDE
O UML is aloosely defined language
» UML is a language with one syntax and an
infinity of semantics

O UML is not a badly designed language
» Because it was never designed at all

» Itis the result of industrial consensus,
obtained through a precise process
(committee invention)

O Bad modularity principles (profiles)

d UML as a visual syntax for C++
» UML as a better « programming » language?

LIRSS A WA - AT LT

X7 R T ST PT Principles and Applications of Model Driven Engineering Lecture #4 26

UML as the modeling language archetype?

UML as the typical visual language.
» Many still wrongly associate MDE with visual modeling.
» MDE has later shown that textual modeling (Xtext) is often better than visual modeling.

UML as a general purpose language (GPL).

» MDE has demonstrated the interest of precise and focused Domain Specific Languages
(DSLs).

» UML considered as the archetype of modeling languages, illustrates a property thatis at
the extreme opposite of the main MDE basic principles.

UML is often considered as an OO0 modeling language

» MDE has demonstrated the benefits of multiparadigm modeling, considering not only
objects, but rules, events, functions, tables, processes, etc.

» UML has wrongly conveyed the idea that modeling was 00 modeling
UML is known for its complexity, by the size of its metamodel and its rapid
evolution

» MDE promotes the idea of simple languages that could be combined, with controlled
execution

LIRSS A WA - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 27

Lack of focus

O If MDE is the solution then what is the problem?
» What is the precise application scope of MDE?
» Complete usability taxonomy of models, metamodels and transformations?
v To some people MDE is the capacity to efficiently use UML, even for blueprint

v To some people MDE is the capacity to transform UML into Java or J2EE

v To some people MDE would allow to work with BPMN and UML and bridge the
business and IT efficiently

» Differentlevels
v’ Core (representation, storage)
v' Basic operations (transformations)
v" Specialized model facilities (non agnostic)

1 MDD - or MDE for code generation (e.g. UML to Java) - is quite well
understood, but other advanced usages of MDE are still much less
mastered.

» Difference between MDE and OT: lack of common agreement

LIRSS A WA - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 28

Wrong focus

d Also Initially MDA was for software engineering

» MDE concentrated too much
on models of code and not
enough on models of data _—

» MDE concentrated too much Driven
on models of solutions and Engineering
not enough on models of
problems

» MDE concentrated too much appliesTo
on Information Systems
models and not enough on
Business models

» MDE concentrated too much
on modeling in the small and
not enough on modeling in

the large
> etc.

LIRSS A WA - AT LT

EISZ IS RS W FEPT Principles and Applications of Model Driven Engineering Lecture #4 29

Executability vs. Precision

L One important ambiguity has been to let the idea
propagate that all MDE-models, and particularly UML,
could be made executable.

 MDE promotes the idea that some models may be
executable but not all

» A perverse corollary of this is that non executable models are not
precise

» Many models may be executable and however very precise
v’ Precision is not always obtained through executability

v/ Many models may contribute to the final generation of executable code, while
not being themselves executable

v Some models may be progressively made executable (e.g. by transformation,
progressive enactment)

P SRS, A - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 30

Too complex

(] Metamodels are much too complex

» Typically a metamodel may contain 5000 elements which is too
much

» A metamodel is intended to remain open (not code or grammar)
» 500 elements for a metamodel should be a maximum
1 Too many metamodels
» Each metamodel is a silo
» Allow some communities to hide from other ones
(d Relations between metamodels are not understood
» Overlapping is frequent

» False similarities (i.e. different concepts with similar names)
happen frequently

 MDE as viewed today may be adding accidental complexity
instead of helping to master complexity

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 31

L O O O

a

B o
E S #ERF T ZTRR

The work on platforms was
one of the MDE big failures

The CIM/PIM/PSM was a false good
idea.

The notion of a platform model was
never taken seriously.

No consensus on platform
metamodels.

Join development of:
» A platform

» A set of DSLs for abstracting this
platform

» A setof transformations for
generating to the platform
More research needed on practical
platforms (e.g. HTMLS5,
Javascript/Json, etc.) used in the
context of software modeling

P SRS, A - AT LT

Additional
I nfortration PIM
PSrA
Lecture #4

Principles and Applications of Model Driven Engineering

32

XMI Failure

U From SMIF to XMI, a good start

L XMI as the final interoperability solution, the first mistake
L XMI with UML is part of MDE legacy

1 JSON is only a partial replacement

U The proportion of native data expressed in XMl is
completely marginal and will not increase

J Modeling tools should be able to natively manage a number
of formats, including XML and binary formats

L XMI will eventually disappear; creating an additional
problem of maintenance for UML models

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 33

Other problems

U Too easy ways to define metamodels, without sufficient
(any) validation.

» Metamodels loosely linked to reference implementations

» Metamodels of rather poor quality, evolving through permanent revision tasks
forces

U Lack of concern about the possible overlapping of
metamodel-based standard agreements

» Lack of global view on the relations between models and collections of models is a
serious difficulty

» Alternative solution is to use only one unique metamodel (UML?)

U Lack of understanding of the real nature of "model
decorations” and its various consequences.

» These decorations usually pollute the model, cannot be easily separated or
cumulated.

P SRS, A - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

Other problems

1 Lack of clear distinction between descriptive and
prescriptive modeling.

U Lack of a clear classification or taxonomy of models and
model operations.

U No general automated way to compare/relate models and
metamodels

L No automated way to manage metamodel versions
(J No known mature solution to collaborative modeling
U etc.

1 7 1P R T ST T Principles and Applications of Model Driven Engineering Lecture #4

35

Reasons to hope

1 We learned a lot in 10 years of
automated software modeling

[Solid background for the next
iteration

Concepts
Definitions

MDE + Open
Source

X7 R T ST PT Principles and Applications of Model Driven Engineering Lecture #4 36

U0

Some ideas learned

MDE is a solution for the separation and integration of various aspects of
information systems with the help of typed graphs

MDE (Modelware) is a specific branch of Software Language Engineering (SLE)

» Examples of other branches (technical spaces)
v' Grammarware
v' XMLware
v" Ontologyware
v etc

» Each branch has its own engineering advantages and drawbacks
» No one will preclude all others even if competition holds
» More emulation than competition: TSs are complementary

MDE is not:
» Visual programming
» UML
» PIM to PSM

All models are not executable, even if some are
Models may be completely precise and nevertheless computer-understandable

LTRSS, TS - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

37

Basic MDE Principles

Representation principle

» A model M is a representation of a system S
Multiple view principle

» Several models may provide different representations of the same system S
Conformance principle

» Any model M conforms to the language of its metamodel MM
3-level principle

» Any metamodel MM conforms to the same self-conforming metametamodel MMM
Transformation principle

» The most important operation applicable on models is a transformation
Weaving principle

» Abstract correspondences between models are represented as models
Megamodel principle

» Model elements may be considered as models
Unification principle

» All models specialize a common abstract model

SIS, TS - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 38

We learned a lot

1 Assuming
» We know that MDE is a branch of language engineering
» We know that automation needs transformations

» We know that a relation between models may be represented as a
model

» We know that sets of models (conforming to different metamodels)
may be represented as models

» We know that it should be possible to define a strong and regular
modeling framework (improved EMF) that will make easy to define
and manage an important number of small and precise composable
DSLs

] But this structured library of small metamodels does not yet
exist

» Biggest challenge ahead for MDE

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

39

Transformation is key

O Without practical transformations, no reasonable automation
» Remember the «Bubbles don't crash» criticism on models by Bertrand
Meyer?
» Transformation may crash ;) and are most useful

» Transformations draw the boundary between old contemplative modeling
and modern MDE

O Different kinds of transformations
» From model to model (M2M)
» From model to system (M2S)
» From system to model (S2M)

» With a special simplification when the system belongs to another 3-level
structured technical space

1 Characteristics of transformations
» Basic properties
» Time of execution
» Different purposes

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 40

Characteristics of transformations

L Basic properties
» Metamodel-based
» Rule-based
» Transformations as models
O Time of execution
» Software production
» Software maintenance
» Software operation
O Different purposes
» Measure
» Verification
» Synchronization (e.g. round-trip when this applies)
» Interoperability
» Reusability (of functionality)
» Most situations

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

41

Ubiquitous DSLs

(d The future of IT is with DSLs

1 But DSLs also have a bright past
» Excel (initially Visicalc)
> SQL
» and much more
L However the real application scope of DSLs is yet unknown and rapidly
growing
» Generative programming (i.e. generating GPL code from other DSLs)
» But this is only the emerged part of the iceberg
U The discovery that MDA™ and then MDE was strongly related to DSLs is
only a recent idea but a strong result

O The basic layers of any MDE stack should contain DSLs for defining
metamodels, defining correspondances between models and defining
executable transformations

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 42

Research agenda

O Just some ideas

1.
2.
3.
4,
5.

Relations between programming and modeling
Definition & promotion of a better M3

Understanding modularity in modeling

Revisiting model transformations

Relations between Tools and Metamodels (last lesson)

 Most of the efforts should be first spent on the basic MDE layers

1 7 1P R T ST T Principles and Applications of Model Driven Engineering Lecture #4

43

Confusion between programming and modeling

L Search for making UML into a visual executable language led to the belief that
modeling languages and programming languages are similar

U This is still one of the strongest debate in the community but also one of the
major problems of MDE

U Another view is that they are different but complementary

U Using modeling languages may result in generating executable code through
model transformation

J Some programming languages (JavaScript for example) are not languages to
program but language to generate (see GWT) and are excellent candidates to
be jointly used with modeling languages

1 7 1P R T ST T Principles and Applications of Model Driven Engineering Lecture #4

44

Modeling and programming languages

[s there a difference between models and programs?

» Some have coined the term mogram to describe the common entity
Main difference (?)

» All programs are executable
» Some models are not executable

Programs are models (a special case of)

» A programming language has a precise and fixed execution semantics

» Few models are natively executable

» Some models may be transformed into an executable program
But there are some other differences and non-differences between a model and
program

LIRSS A WA - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 45

The two parallel tracks

Programming

Li Algol60 Smalltalk
'SP 90 mane Languages

Fortran COBOL PL/1 Java
ADA ¢
Assembler Prolog Pascal

Ruby Scala

Go
Python Dart

F#

C#

lT ExecutableUML?

Petri .
JSD Z
Flowcharts SREM SADT B UML Modeling

SysML
sara ST DFD VDM OMT ye Languages

WA

EEI X715 R~ AT FE T Principles and Applications of Model Driven Engineering Lecture #4 46

O A language with all the
nicest properties of

programming
languages and

modeling languages.

» Either by making a
modeling language

executable

(executable UML)

» Or by including
modeling features in
a programming
language (UMPLE) —)

1 Is this feasible?

» Many goals of both
kinds of languages
are in complete

opposition

LIRSS A WA - AT LT

E LB R ATZTRT

~, Draw on the right, write (Umple) model code on the left. Generate
e Visit the User Manual or the Umple Home Page for help. Download Umple Report an Issue

The impossible dream

Java, PHP or Ruby code from

ne=1 Create Bookmarkable URL

e you requested is not
a name in the URL you used
ary simple Umple file demonstrating

eS| s
use this to start experimenting with

Click on the Generate Code button to see the
almost 700 lines of Java

//Definition of a class
class A {

// The class has an attribute called 'name’ that
efault

string by defaul
name;
/ The cla: Iso has an integer attribute,
tialized to 1
Integeri=1
s
Definition of d cl
class B { 5
/ This will b bclass of B. It will inherit th
attributes r
isA A;
¥
cla
o

// The following indicates that a C has some
associated B's
Lukge

}

DRAW E_E
(

SAVE & RESET
5 . =A
name : String x|
LoD, i1 Integdes
eect e [3] — At ore -

o

[

anotherAttribute : Integer x
B Class -- AddiMore --
Associa tion
&, Generalization It
Tij Delete B9
& Undo z : Integer x
-- Add More --
0..1 theD
BD
GENERATE
id : String x
ok 7] Somepats : Date x
whetherTrueQrFalse : Boolean x
Generate Code -- Add More --

http://cruise.site.uottawa.ca/umple/

Principles and Applications of Model Driven Engineering

Lecture #4

http://cruise.site.uottawa.ca/umple/

Models and Programs

O Technical space notation
» Distinction between a MDE-model and a Programming-model
» Both are Software-models

» In the following we name models MDE-models and programs
Programming-models

O Issue of representation
» Usually a model is a graph and a program is a tree
O Issue of appearance

» Usually programs are expressed by a concrete textual syntax while many
models are expressed in a visual syntax

» This is being less significant now that many models are also expressed
textually

[Issue of conformance
» A program conforms to a grammar
» A model conforms to a metamodel
» Quite important (see next slide)

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 48

Grammars vs. Metamodels

L Issue of representation
» Grammars are trees
» Metamodels are graphs
L Issue of visibility
» Metamodels are open
» Grammars are rather closed
L Issue of evolutivity
» Grammars are (usually) fixed
» Metamodels are (usually) variable
U Issue of maturity
» Grammarware has 50+ years
» Modelware has much less maturity

LIRSS A WA - AT LT

1 7 1P R T ST T Principles and Applications of Model Driven Engineering

Lecture #4

49

Not to be confused

Multimodeling Composite Modeling

M1

M2 M

M3

A usual program is an example of a composite model, representing at the same time
the domain, the execution platform, and the application user requirements.

LIRSS A WA - AT LT

SIS R T ST Principles and Applications of Model Driven Engineering Lecture #4 50

Programming is difficult

A
Programming
Language

The World

The Application
Requirements

A Program

class BankCustomer{

}

The Machine class Printer{
/

class Application{
/

WA

EEI X715 R~ AT FE T Principles and Applications of Model Driven Engineering Lecture #4 51

Towards a new M3

L The current M3 (metametamodels) have been defined by opportunity
» Firstinspired by UML like MOF (for tooling reasons)
» Then aligned with UML (for political reasons)
» Thus object-oriented and class-based by opportunity, not by objective
» Then simplified by necessity (EMOF and ECORE)
» UML was class-based by objective (OOAD and targeting Java and similar languages)

L A M3 should be paradigm-agnostic

» Allowing to build any kind of metamodel (0O, functional, rule-based, event-based,
process-based, etc.)

» Thereis no need to be visual for a M3
L A M3 defines the representation system of the corresponding TS
» It should be defined with maximum care

3 SEFDRI SIS A, WA AT LR

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 52

Towards a new M3

] Characteristics of an ideal M3

» Minimalist (and not universalist)
» Based on typed hypergraphs
» Implementable on advanced Big Data systems (cloud, NoSQL, etc.)

» Allowing libraries of metamodels (lattices with true incremental
deltas)

» Allowing domain evolution (class-based is not the obvious
solution)

» Implemented on an open-source basis for rapid shared adoption
» With robust serialization (Json or XML-based)

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

53

Towards a new M3

1 Defining a new M3 is

MDE M3 level defining a new TS
conceptual framework > It should be conceptually
sound
EME improyed ° Typed hypergraphs
mappin mapping ..
o » It should be efficient and
scalable
N * Use some graph database
FCORE Minimal3 (bigdata, cloud, NoSQL,
Java Script/Funct. etc,)
+ +
Teneo HypergaphDB — Ex. HypergraphDB, Neo4],
OrientDB, CouchDB, etc.
Teneo is a Mod}eI-ReIationaI
mapping
and runtime database
persistence solution for EMF) example

LIRSS A WA - AT LT

X7 R T ST PT Principles and Applications of Model Driven Engineering Lecture #4 54

Modularity for Models

Multimodeling

1 By nature MDE is modular

U It promotes full separation
of aspects

M1

M2

M3

N
e

[57 17 95 1 ST T Principles and Applications of Model Driven Engineering Lecture #4 55

Q

Lack of good model modularity devices

Initially the definition of UML by Rational (formerly an ADA company) was to
borrow the package mechanism to the programming language community.

IBM (S. Cook) proposed a better solution named schemes that was rejected
for political reason

By lack of a better idea, people considered models composed of packages in
MDA/MDE

To solve problems, OMG introduced the concept of profiles that make the
situation much worse

When the need to exchange models by serialization arose (SMIF), MDE/MDA
borrowed solutions to the XML community (XMI) and therefore introduced the
name space mechanism in the representation of models

Today there is still no specific model modularity and people are struggling with
packages, profiles and namespaces

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 56

Contexts and coreferences (Sowa graphs)

"John believes that Mary wants to marry a sailor"

‘ PERSON: John ! @

PROPOSITION:

‘ PERSON: Mary I @

SITUATION:

‘PERSON I -@ >| SAILOR ‘

1 X7 AP 3 S T ST T Principles and Applications of Model Driven Engineering Lecture #4

Revisiting model transformations

L Three objectives
» Use

v" Focus on usability and acceptance

> Reuse

v" Focus on sharing libraries of transformation components

» Re-architecture the IS
v' Radically different
v" Propose a clear alternative to 00-architecture
v" Closer to data-flow architectures of the 70’s

L The killer app will be here
» Need to find a significant application written in OO style (e.g.]Java)
» Rewrite it with metamodels and transformations
» Compare the building and maintenance costs

SIS, TS - AT LT

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4

58

Conclusion

O Even if we know some limited success stories
on MDE
» We still miss the great MDE Kkiller app
» MDE is not following the hype curve of OT

» UML has made very difficult the independent
expression of innovative software modeling
ideas

(J Did MDE miss the boat?

» Industrially probably yes on this iteration
Except for some small niches

>

» On the research side we learned a lot, and we
have now a vision for the future (this century)

>

There is still a chance that the next iteration of
MDE will provide the basis to get the software
industry out of the bad situation where it is
installed now

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 59

Robin Milner’s Grand Challenge for the century

Language is the raw material of software engineering, rather as water is
the raw material for hydraulic engineering...

A more thorough science-based approach to informatics and ubiquitous
computing is both necessary and possible. We often think in terms of
models, whether formal or not. These models, each involving a subset of
the immense range of concepts needed for ubiquitous computer
systems, should form the structure of our science...

Even more importantly, the relationships (either formal or informal)
among them are the cement that will hold our towers of models together.
For example, how do we derive a model for senior executives from one
used by engineers in designing a platform for business processes, or by
theoreticians in analyzing it?

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 60

THINK
OUTSIDE
THE BOX

;EO;((MDE is not «Linear Research»

O X

The original B-tree paper was bounced; the data cube paper was
bounced. The original transaction paper was bounced. Any paper

that is non-linear is going to get bounced.
Jim Gray, SIGMOD Record,
Vol. 32, No. 1, March 2003

[It is time the researchers realize that MDE is not a small delta in
software engineering or programming languages

1 The problem is not to invent a marginally better programming
language (executable UML?)

1 The question is to invent radically new ways of producing
software as a real answer to the real needs of people

 Providing the research community with a new advanced
modeling framework may allow the non-linear experiments that
will explore completely these new ways to produce useful and
reliable software applications.

1 7 s 952 9T ST T Principles and Applications of Model Driven Engineering Lecture #4 61

Thanks ><

 Questions?

e Comments?

JBezivin@gmail.com

1 7 1P R T ST T Principles and Applications of Model Driven Engineering Lecture #4 62

	Where will be MDE in 2030?
	Lecture 4: Where will be MDE in 2030?
	The present situation is not ideal
	Good time to reflect and react
	Engineering as a succession of hypes
	Quotations
	Technology waves
	Impact of some technological changes
	Measure of the perceived importance
	18 ± 3 Software Technology Maturation�(W. Riddle)
	Only 3 technology maturation cycles
	Riddle Software Technology Maturation
	Gartner ’s Hype Cycle Key Phases
	Gartner’s MDA adoption (2003)
	A possible scenario for MDE
	Boehm’s Pattern
	Negative points: Models Have Failed
	Many technologies have a limited life
	Promises and deliveries
	Sustainable Modeling?
	From the MDA whitepaper (Nov. 27, 2000)
	From the MDA whitepaper (Nov. 27, 2000)
	Some MDA success stories but no killer app. yet
	What is a Killer App?
	Decreasing importance of standards
	UML and MDE: friend or foe, devil or angel?
	UML as the modeling language archetype?
	Lack of focus
	Wrong focus
	Executability vs. Precision
	Too complex
	The work on platforms was�one of the MDE big failures
	XMI Failure
	Other problems
	Other problems
	Reasons to hope
	Some ideas learned
	Basic MDE Principles
	We learned a lot
	Transformation is key
	Characteristics of transformations
	Ubiquitous DSLs
	Research agenda
	Confusion between programming and modeling
	Modeling and programming languages
	The two parallel tracks
	The impossible dream
	Models and Programs
	Grammars vs. Metamodels
	Not to be confused
	Programming is difficult
	Towards a new M3
	Towards a new M3
	Towards a new M3
	Modularity for Models
	Lack of good model modularity devices
	Contexts and coreferences (Sowa graphs)
	Revisiting model transformations
	Conclusion
	Robin Milner’s Grand Challenge for the century
	MDE is not «Linear Research»
	Thanks

