The Day that the Natto Vanished

Yoh'ichi Tohkura
Deputy Director-General of the National Institute of Informatics

A certain product abruptly vanished from supermarket shelves, a strange case that one occasionally hears about. The most recent such case—the disappearance of natto (fermented soybeans)—received widespread media coverage because it was the result of fabricated data. This case was caused when viewers overreacted to a report about the dietary effects of natto, which had been broadcast the day before on a TV program called "Hakkotsu! Aruaru Daijiten II." Apparently some supermarkets witnessed a doubling of natto sales.

The Meaning of “Information” that Changes with the Recipient

Though it is well-known that natto is a healthy food, there is no clear scientific proof that it aids dieting; as we have seen, the fabricated claims were discovered, and the TV station had no choice but to axe the program. The interesting point about this story is the reaction of the viewers, the way that they completely swallowed this “information,” provided by just one TV show. The phenomenon contains a number of aspects. One is the question of people's ability to judge the veracity of information. Obviously these judgments involve knowledge, common sense and the ability to use these to analyze information. In this bizarre case of the natto, the attitude of the consumers who acted without any analysis or appraisal of the information they were given is noticeable. It also forces us to look at the scientific literacy of the Japanese people, which is regarded as being amongst the worst in the world.

Another aspect is the link with the trend for food faddism, in which people begin to believe in and overestimate the health properties of a certain type of food. Though food faddism may be a special case, in general the way that information is accepted depends on the mentality of the recipient. In other words, the meaning of the same piece of information changes according to how seriously it is taken by the recipient.

Requisite Ability to Analyze and Recognize Information

As we enter the information explosion society, the huge wave of information produced each day threatens to engulf us. We are already in a situation in which it is impossible to escape completely from this information. What we first of all need is an ability to discern the quality of the endlessly diverse information that this explosion has thrown up, an ability to differentiate between unproven information and information that is based on facts and is trustworthy.

The ability to analyze information is what makes this feasible. As the relationship between information and human beings becomes closer and more intricate, an ability to accept and recognize the results of our analyses in an appropriate mental state—without either over-evaluating it or under-evaluating it—is as important as our ability to analyze information. The ability to analyze information works when it is combined with a well-balanced ability to recognize it. Surely the motivating force in managing to survive our age of ever-increasing information is an ability to analyze and recognize information, polished by a positive recognition of this patchwork data explosion—some of which is fabricated like the natto diet story—and our encounters with information in all its varied forms.
Akihiko Takano
Professor and Director, R&D Center for Informatics of Association
National Institute of Informatics (NII)

Mariko Takahashi
Science News Editor, The Asahi Shimbun

NII Interview: Akihiko Takano + Mariko Takahashi

From Search to Association
Information Technology that Brings Inspiration

Takahashi: I saw that the May 11, 2000 issue of the journal Nature featured an article entitled “Soup-up Search Engines” in which associative search (*1) technologies were discussed along with Google.
Takano: At that time, I was working at Hitachi, Ltd., and the “DualNAV” associative search interface we developed was mentioned in the article. The essence of DualNAV was extracted as independent software known as GEA or Generic Engine for Transposable Association. GEA was released as open source software, and it was used freely by anyone at no charge.
Takahashi: Do you think that, given the opportunity, associative search could have been made use of by Google?
Takano: Even now, I still believe that association is a technology that comes after Google.

Google’s truly exceptional quality is that, on its own, it has been able to create mechanisms and equipment that can gather enormous amounts of information on the web and create page rankings accurately without confusion. Another exceptional aspect of Google is its effectiveness in attracting the necessary financing and collecting web data in an unimaginable scale.

On the other hand, we have had a simple belief that what we have created is superior to Google in some sense, and we still feel that way. With an explosive growth in the amount of available information, the relevant information to any given request will become impossible to be returned as a whole. The question of how to rank the search results and so on comes second to the problem of how to get a broad overview of the search result. In associative search, the related keywords can be extracted from the data gathered, and they help us to get a broad overview of the data content. For this reason, it is only now, as we enter what is being called the age of “information explosions,” that associative search is demonstrating its true value.

In other words, I am convinced that associative search as a technology was developed from a perspective that boarders the walls that Google is now hitting. Now that the core technology is complete, our focus will be on maintaining the same perseverance as Google in determining how to use this technology to provide effective and interesting services.

Takahashi: One of the interesting things about this technology is that the basic research was done at an industrial environment and the applied development is being pursued at a national institute. What made you decide originally to do research in association retrieval?
Takano: It started back in February 1996 when I was at Hitachi Advanced Research Laboratory. Several small groups were reorganized into a single research team, and I was chosen to lead that team. The team included one person who was studying the measures to evaluate the proximity among documents in terms of context (information retrieval), and another person who was studying word sense disambiguation with regard to words like “bank,” through contextual analysis (natural language processing).

Up to that time, I had had no interest in anything other than writing beautiful programs in an elegant programming language. To me, their approaches seemed like two sides of the same coin. I felt that evaluating the proximity of documents from the frequency of the words on the one hand, and determining the meaning of words from the surrounding context on the other, were inevitably linked. The coming together of three of us was the catalyst that inspired the concepts of associative search and computation for association. Then an outstanding software engineer joined and he turned this concept into reality.

Takahashi: How did these technologies developed at Hitachi become open source?
Takano: At the end of the 90s, the boom of basic research at industries subsided, and the pendulum began to swing back to the more practical research. We were moved to Central Research Laboratory, and it was at that point that we had to create an environment where researchers in our team could continue research in each individual area even if they went to different workplaces — for example, even if they quit Hitachi. Otherwise their spirits and morale would be shaken and ultimately no achievements would be possible.

Of course, Hitachi had put a lot of resources into the research on association, and it deems it good that DualNAV, the killer GUI for association we created. After we moved to Central Research Laboratory, it was only natural that we had to make sure that the people who had worked on it felt that they had contributed to the development of association engines at open source would expand the field itself and ultimately benefit Hitachi. In February 1999, just before we moved to the Central Research Laboratory, we submitted a proposal to the Information-technology Promotion Agency (IPA) for an Innovative Information Technology Incubation Project, and the proposal was approved. The outcome of this research project was the aforementioned GEA. I believe this is the best decision I made as a manager from my company days (laughs).

What is the next step for associative search?
Takano: The current tidemark of associative search is IMAGINE (*4). It facilitates users to combine several reliable information sources, and interact with them seamlessly by associative search. A wide perspective from various sources makes more balanced way for navigation within digital space. We believe it has the potential to replace keyword searches in the future. We are currently busy to develop a multilingual version of IMAGINE that can help associate beyond linguistic barriers. As our association does not rely on translation, it goes beyond culture. We hope it would make it possible to determine the correspondence between different cultures such as China, United States and Japan.

The competition among search engines to get the greatest number of hits soon be over. We will enter an era of association technologies, with which users get inspiration based on reliable information.

Word from the Interviewer:
Associative search is truly a fascinating technology. You lose all sense of time as you follow related documents and key-words one after another. It’s like an intellectual amusement park. My only concern is that, if you spend too much time in this amusement park, you’ll have no time to read the document you were originally searching for. There’s a danger that you’ll always think: “There must be a better reference” and you’ll never settle on anything. The goal should be to provide a service that answers the needs of the ordinary person. The CEO of Google told The Asahi Shimbun: “Our ultimate goal is to provide a service that enables people to truly understand the meaning of the information they search.” I hope NII won’t allow itself to be outrun in this regard.
Academic Portals for the “Information Explosion” Age

National Institute of Informatics (NII), in cooperation with universities and other entities, collects a comprehensive array of academic information created at research institutes. By reorganizing this information in an easy-to-use form, NII is working to develop an academic portal site to meet the diverse needs of the “information explosion” age.

In order for Japanese academic research to become more competitive, the academic content needed by the academic community must be secured, and it must be possible to add value to this content and disseminate it to the rest of the world. However, the number of academic papers being submitted has increased dramatically, and the price of overseas academic journals has also skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-skyrocketed. Moreover, it is not only academic papers that are needed as academic content. According to Koi-

The standard for interoperability among institutional repository systems
The Dublin Core Metadata Element Set (DCMES) is the bibliographical information standard for describing digital resources. In addition, the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) has been prepared as a protocol for automatically gathering and sharing metadata from digital archives. If these two standards are adhered to, people will be able to cross-search at such institutions. The institutional repositories completed their registration and can already be searched. NII provides assistance for the construction of institutional repositories. NII has provided technical information for the software needed for construction and training of maintenance staff. As of April 2007, 57 universities and completed institutional repositories had already been made available to the outside world at 41 of these universities. Although some universities in Japan have constructed institutional repositories without the assistance of NII, Mr. Ojiro says that “as long as the standards are adhered to, people will be able to cross-search the systems without being aware of any differences.”

In addition, NII has been cooperating with academic societies in Japan to construct a digital archive of academic papers. Moreover, in cooperation with consortia of university libraries, NII also collects data from overseas academic journals. Recently, joint subscription agreements for e-journals have been concluded with the German publisher Springer and Oxford University Press, and these e-journals have been made available together with the domestic Japanese digital academic paper archives. (As of April 2007, 6.3 million works were available.) In addition, NII has also provided assistance for the Cultural Heritage Online project. This project, conducted by the Ministry of Internal Affairs and Communications, is designed to make available in digital form tangible and intangible cultural assets, including museum collections and the like.

Devising Methods to Provide Content
The content collected in this manner takes many forms, including text and PDF files, HTML, graphic files and so on. For this reason, a method is needed to organize and integrate these many different formats. For example, in many cases the same paper has been deemed from multiple sources, and deduplication is needed. Technologies developed by NII researchers are helping to streamline this enormous quantity of pre-processing work. In addition, the information must also be provided in a form that will be easy for people to use. “Even if we provide a mechanism for simple cross-searching at the text level, this would not attain the ideal level desired by researchers,” says Mr. Ojiro. “The problem we need to resolve from this point is how, and in what form, to extract the necessary information from content that is heterogeneous in many ways and then turn it into ‘knowledge’. The new search technologies and information presentation techniques that have been developed by NII researchers will be effectively incorporated to make academic data ‘visible’.

Some of the systems already being provided by NII have incorporated the results of certain research projects on an ad-hoc basis. In the future, an effort will be made to make services more advanced and more user-friendly, primarily at the Research and Development Center for Scientific Information Resources (http://www.nii.ac.jp/gc/index.html) set up in 2006 within NII. Both researchers and operational department staff from NII participate in activities at the Center. Plans call for the achievements of NII researchers to first be made publicly available as test services. After needs and so on have been studied, these achievements will be incorporated one after another into actual services.

Seeking to Provide Value that is Distinct from Google
In the online world, NII services for collecting and providing academic content are subject to the same competition as the services of private sector companies. The one that engenders the most concern is the American firm Google. Google Scholar can search for academic papers, and Google is increasing its service options with links to the U. S. Patent Office and various other government agencies. And the company has been improving its search functions and user interface with surprising rapidity.

And, truth be told, NII also linked up with Google in April 2007 with the aim of expanding its user base, to enable Google users to access the NII database both from Google Scholar and via Google search engines. According to a recent analysis, by the end of 2007 access from Google may exceed that from the NII top menu. Is the academic societies and educational and research institutions that provide data, an increase in the number of hits is undoubtedly good news regardless of the route users have taken to get there. However, NII cannot be satisfied with this state of affairs. Mr. Ojiro expresses the desire to develop a service with a difference, “one that does not merely rank the wheat and chaff of content based on a single measure but provides high-quality content in an appropriate form that matches the advanced needs of the academic community.”

(Written by Atsushi Saito)
Training Professional Software Developers

The Top SE Project is a joint-industry-academia project whose goal is to train technology leaders in software development. The project’s third year ended this spring with its first graduating class of 12 students completing the program and being sent out to the front lines of software development.

Most university graduates who majored in information science feel that some of their coursework does not prove to be very useful. This was one of the findings contained in the “Report of the Field Survey on IT Education at Universities” issued by the Ministry of Economy, Trade and Industry in March 2004. The report concluded that, for example, the course on Formal Language and Automata “cannot be said to be unnecessary but should be studied to determine if it should be made an elective course.”

Fusing Information “Science” and “Practice”

Professor Shinichi Honiden, project manager of the “Education for Intellectual Product Development Through Science”, also known as the Top SE Project (*1), describes this situation as “unacceptable.” Professor Honiden also teaches at the National Institute of Informatics. “There is no waste in university courses,” he emphasizes. “Partly due to the fact that deadlines are tight, there’s no ‘science’ in the software development industry; it’s a crash program. At present, there is a lack of people who have a thorough knowledge of information science and can do high-quality design work.”

At the same time, although universities have cutting-edge software tools and techniques, they do not skillfully put these to practical use. In other words, “there is no science in industry, and there’s no hands-on training at universities.” The goal of the Top SE Project is to fill in this gap by training “superarchitects” who can do high-quality software design for new and very difficult development problems.

Training People Who Can Create “Blueprints”

How exactly can such “superarchitects” be trained? To answer that question, it is first necessary to determine the skills they require. Professor Honiden says these skills can be summed up in one word: modeling. “In the course of solving problems, “superarchitects” must be able to determine the essentials and figure out what tools to use and how to use them. In other words, they must have the ability to create ‘blueprints’. This skill is important at each stage in the software development process: planning, development, operation and maintenance.”

Prof. Honiden emphasizes. “Partly due to the fact that deadlines are tight, there’s no ‘science’ in the software development industry; it’s a crash program. At present, there is a lack of people who have a thorough knowledge of information science and can do high-quality design work.”

At the same time, although universities have cutting-edge software tools and techniques, they do not skillfully put these to practical use. In other words, “there is no science in industry, and there’s no hands-on training at universities.” The goal of the Top SE Project is to fill in this gap by training “superarchitects” who can do high-quality software design for new and very difficult development problems.

Most university graduates who majored in information science feel that some of their coursework does not prove to be very useful. This was one of the findings contained in the “Report of the Field Survey on IT Education at Universities” issued by the Ministry of Economy, Trade and Industry in March 2004. The report concluded that, for example, the course on Formal Language and Automata “cannot be said to be unnecessary but should be studied to determine if it should be made an elective course.”

Fusing Information “Science” and “Practice”

Professor Shinichi Honiden, project manager of the “Education for Intellectual Product Development Through Science”, also known as the Top SE Project (*1), describes this situation as “unacceptable.” Professor Honiden also teaches at the National Institute of Informatics. “There is no waste in university courses,” he emphasizes. “Partly due to the fact that deadlines are tight, there’s no ‘science’ in the software development industry; it’s a crash program. At present, there is a lack of people who have a thorough knowledge of information science and can do high-quality design work.”

At the same time, although universities have cutting-edge software tools and techniques, they do not skillfully put these to practical use. In other words, “there is no science in industry, and there’s no hands-on training at universities.” The goal of the Top SE Project is to fill in this gap by training “superarchitects” who can do high-quality software design for new and very difficult development problems.

Training People Who Can Create “Blueprints”

How exactly can such “superarchitects” be trained? To answer that question, it is first necessary to determine the skills they require. Professor Honiden says these skills can be summed up in one word: modeling. “In the course of solving problems, “superarchitects” must be able to determine the essentials and figure out what tools to use and how to use them. In other words, they must have the ability to create ‘blueprints’. This skill is important at each stage in the software development process: planning, development, operation and maintenance.”

Prof. Honiden emphasizes. “Partly due to the fact that deadlines are tight, there’s no ‘science’ in the software development industry; it’s a crash program. At present, there is a lack of people who have a thorough knowledge of information science and can do high-quality design work.”

At the same time, although universities have cutting-edge software tools and techniques, they do not skillfully put these to practical use. In other words, “there is no science in industry, and there’s no hands-on training at universities.” The goal of the Top SE Project is to fill in this gap by training “superarchitects” who can do high-quality software design for new and very difficult development problems.

Marketing professionals are pursued in accordance with a well-designed program.

Training: 2003

- Top SE Project:
 - A 5-year project for human resource training in software development.
 - Funded by FY 2003 Special Science and Technology Coordination Funds for Fundamental Software, funded by FY 2003 Special Science and Technology Coordination Funds for Fundamental Software.
- NII-Universities:
 - Center within NII, a key role in information science education in Japan.
- Prof. Honiden:
 - A professor at the National Institute of Informatics.

*1 Top SE Project
- A 5-year project for human resource training in software development.
- Funded by FY 2003 Special Science and Technology Coordination Funds for Fundamental Software.
- NII-Universities:
 - Center within NII, a key role in information science education in Japan.
- Prof. Honiden:
 - A professor at the National Institute of Informatics.

*1 Top SE Project
- A 5-year project for human resource training in software development.
- Funded by FY 2003 Special Science and Technology Coordination Funds for Fundamental Software.
- NII-Universities:
 - Center within NII, a key role in information science education in Japan.
- Prof. Honiden:
 - A professor at the National Institute of Informatics.
The Day that the Natto Vanished

Yoh’ichi Takahara
Deputy Director-General of the National Institute of Informatics

A certain product abruptly vanished from supermarket shelves, a strange case that one occasionally hears about. The most recent such case—the disappearance of natto (fermented soybeans)—received wide media coverage because it was the result of fabricated data. The furo was caused when viewers over-reacted to a report about the dieting effects of natto, which had been broadcast the day before on a TV program called “Hakkutsu! Aruaru Daijiten II.” Apparently some supermarkets witnessed a doubling of natto sales.

The Meaning of “Information” that Changes with the Recipient

Though it is well-known that natto is a healthy food, there is no clear scientific proof that it aids dieting; as we have seen, the fabricated claims were discovered, and the TV station had no choice but to axe the program. The interesting point about this story is the reaction of the viewers, the way that they completely swallowed this “information,” provided by just one TV show. This phenomenon contains a number of aspects.

One is the question of people’s ability to judge the veracity of information. Obviously these judgments involve knowledge, common sense and the ability to use these to analyze information. In this bizarre case of the natto, the attitude of the consumers who acted without any analysis or appraisal of the information they were given is noticeable. It also forces us to look at the scientific literacy of the Japanese people, which is regarded as being amongst the worst in the world.

Another aspect is the link with the trend for food faddism, in which people start to believe in and overestimate the health properties of a certain type of food. Though food faddism may be a special case, in general the way that information is accepted depends on the mentality of the recipient. In other words, the meaning of the same piece of information changes depending on how seriously it is taken by the recipient. The meaning of information changes as a result of how it is amplified or dampened according to the recipient’s mentality.

Requisite Ability to Analyze and Recognize Information

As we enter the information explosion society, the huge wave of information produced each day threatens to engulf us. We are already in a situation in which it is impossible to escape completely from this information. What we need is the ability to discern the quality of the endlessly diverse information that this explosion has thrown up, an ability to differentiate between unproven information and information that is based on fact, and is trustworthy. The ability to analyze information is what makes this possible.

As the relationship between information and human beings becomes closer and more intricate, an ability to accept and recognize the results of our analyses in an appropriate mental state—without either over-evaluating it or under-evaluating it—is as important as our ability to analyze information. The ability to analyze information works when it is combined with a well-balanced ability to recognize it.

Surely the motivating force in managing to survive our age of ever-increasing information is an ability to analyze and recognize information—some of which is fabricated like the natto diet story—and our encounters with information in all its varied forms.