ようこそNIIアイランドへ - the Global Lab

Helmut Prendinger (NII), Sebastian Ullrich (RWTH Aachen University, NII), Boris Brandherm (NII), Werner Breitfuss (The University of Tōkyō), Alena Neviarouskaya (The University of Tōkyō), Hugo Hernault (The University of Tōkyō), Alexis Selva-Binoche (NII), Tomohiro Ikekazi (NII), Klaus Bruegmann (NII), Birgit Endrass (University of Augsburg)

実生活

セカンド・ライフ

...「セカンド・ライフ」上に作られたシミュレーション・実験プラットホームは、サイバースペースでの私たちの暮らし方－仮想世界でいかに意思疎通し、交流し、協力するか－を変えることができ、現実の世界を経験したり改善したりすることもできる。

緊急にお願い

NII

連絡先: Helmut PRENDINGER／国立情報学研究所 コンテンツ科学研究所　准教授
TEL: 03-4212-2650　FAX: 03-4212-2650　Email: helmut@nii.ac.jp
This research proposes a novel type of test-bed and simulation environment for sensor-based applications which is multi-user capable and extensible by new simulators and provides a three dimensional interaction.

Our approach introduces a flexible architecture for an extensible test-bed for sensor-based applications. It employs Second Life to model an easily customizable three-dimensional environment with various interaction possibilities.

Current approaches
- Development and testing of new systems is realized in different ways, ranging from
 - real-world testing and
 - miniature mock-ups for prototyping to
 - software-based simulators.
- Some of the existing test-beds make use of simulators for the sensor devices to support the development.

Drawbacks
- Real-world testing requires significant resources and appropriate infrastructure
- Miniatures (e.g., made of wood or Lego) still rely on real sensors and have limitations in terms of fixed spatial structure and given equipment
- Software-based simulators so far are in two dimensions and not multi-user capable

To our knowledge, our contribution is the first to propose an easy-to-use architecture that allows developers of sensor-based systems to utilize existing systems and simulators in combination with the virtual environment of Second Life.

3D interaction
- The test-bed can be experienced immersively
- Anyone can interact with the environment in form of an avatar
- 3D content can be created easily
- Spatial characteristics of sensors and sensor networks can be modeled more accurately. These characteristics can also be visualized to identify problems and interferences,
- Sensor models and other objects can be moved easily and intuitively by ‘direct’ (avatar-mediated) manipulation, their parameters can also be changed by editing the object properties through the user interface of Second Life.

Extensibility
- New sensor types, such as temperature sensors, accelerometers, or light sensors, can be included.

Additional features
- ‘Bots’ can be programmed to simulate inhabitants of sensor-based environments
- Avatar behavior can be recorded and replayed