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Presentation Goals 

Core concepts of transport network modelling 

 Applicability and typical level of rigor 

Very brief evolution and history of transport 

network models 

Advanced current model examples 

 Dynamics  

• Integrated demand/network model 

• Deployed large-scale network tool 

 Information  

• Novel emerging network models 



Transport Planning/Modelling 

 In essence, mathematically model individual 

travel choice and resulting system impacts 

 Trip/activity  Destination  Departure-time 

 Mode choice Toll Usage  Route 

 Lane   Acceleration 

 

 Congestion  Emissions  Safety 

 Energy Use  Reliability  Accessibility 

 

 And the list continues to grow 

Modeling is universal …… “common sense” IS a model 



Evolution of Network Models 

 Questions regarding transport 
systems continually grow more 
complex. 

 As a result, the modeling tools 
match (and often exceed) this 

complexity.  
 Domain-specific network issues 

 Physics of traffic/transit 

 Individual operational behaviour (e.g., 
reaction time, distraction ,stress) 

 Individual strategic behaviour (e.g., 
route/mode/toll/trip choice) 

 Recent advances include dynamics and information 



• Past and current centers established (as founding director) 

• rCITI at UNSW 

• Network Modeling Center – DTA (UT-Austin) 

• NSF Center for EVs (UT-Austin) 

• Over 200 papers and 40+ funded projects for: 

• ARC, NICTA, NSF, FHWA, SHRP, Texas/Illinois/Ohio/NJ DOTs, NCTCOG, 

Chicago RTA, MAE Center, SWUTC, USDOT, Port Authority of NY and NJ, 

Cities of Austin and San Francisco,  

• Parson Brinkerhoff, Research Systems Group, Booze Allen, Evans & Peck 

• TSS, PTV (transport software companies) and GoGet (car-share company) 

• On applications including: 
• Traffic/transit network optimization, routing algorithms, integrated financial 

analysis/PPPs, ITS, V2V, disrupted behavior, sustainability, EVs, health, 

environmental justice, etc.  

My recent and ongoing relevant efforts 



Dynamic Network Assignment 

Representation of traveler behavior within a 

large-scale network context 
 Primarily addressed through equilibrium models combined 

with simulation-based optimization approaches 

 

Sponsors to-date: 
 North Central Texas Council of Gov.  City of Austin 

 Federal Highway Administration  National Science Foundation 

 Chicago Regional Transportation Authority Texas DOT 

 Strategic Highway Research Program 

 Capitol Area Metropolitan Planning Organization 

Let’s start with traditional “static” approaches to the problem 



Simplified Static Equilibrium Model  
Braess’s Paradox (simplified example) 
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• P1 = P2 = 25 

Equilibrium flows 

• P1= A-B-D  

• P2 = A-C-D 

2 Paths 

c1+c2 = c3+c4 = 9.5 

Total cost = 475 



Braess’s Paradox Example 
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P3 = 50, P1 = 0, P2 = 0 
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C1 + C5 + C4 = 11 

Total cost = 550 



“Static” Traffic Assignment 

Formulation (Beckman, 1956) 
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Advances in Network Realities 

Numerous advances over the past 60 years 

 Stochasticity 

 Dynamics 

 Multiple classes of travel behaviour 

 Pricing 

 Network design 

 Signal design 

 Information 

 Demand/Supply integration  

 Many others 



Find 
Shortest 

Path 

Path 
Assignment 

Cost 
Function 

Link Flows 

Path for each O-D 
Travel time/cost per 

link 

MSA, Frank-Wolfe 
(flow averaging) 

“Static” Network Assignment Solution 
Approach 



Find 
Shortest 

Path 

Path 
Assignment 

Simulation 

TDSP (path generation) 
or Path update (DUE) 

Cell Transmission 
Model 

Optimal Time-dependant path 

for each departure time 

Path for each vehicle 
Travel time per link & 

time interval 

DUE algorithm 

6sec 
Time 

interval 

5 min 
Time 

interval 

6sec 
Time 

interval 

DTA Solution Approach 



DTA and Travel Demand 
Formulation 
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Corridor-level to Network-level Effects 

 Incorporate ITS or 

pricing approach into 

embedded simulation 

 DTA evaluates 

changes in route-

choice and network-

wide impacts 

 Example from a 

project evaluating 

ATM on Mopac 

corridor 



DTA Model Status 

Existing model being employed by the 

Central Texas region for long-term 

planning investments 

Numerous new capabilities and requests 

are in development 

Additional work is underway elsewhere in 

the state and nation 

Recognized outcome: the region has gained the 
ability to answer specific planning  questions 
quantitatively that they previous could not 



Evolving Stochastic Dynamic Network 
Research (examples) 

Past NSF Awards 

 “CAREER Accounting for Information and 

Recourse in the Robust Design and Optimization 

of Stochastic Transportation Networks” 

 “Multi-stage Optimization of Stochastic Dynamic 

Transportation Networks” 

Ongoing NSF Grants  

 “Predicting Disrupted Network Behavior” 

• Collaborative with Psychology (Prof. Brad Love) 

 “Center for Transportation and Electricity 

Convergence” 



Recall: Braess’s Paradox Example 
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• A-B-D (y1) 

• A-C-D (y2) 

• A-B-C-D (y3) 

3 Paths 

y’1=y’2=0 

c’1+c’5+c’4=9.2 

Z’=423.2 

y’3=46 

6.41 c

6.44 c

Z’-Z=87.4 



New Model for Our Problem 

We need similar models for information 

and uncertainty evaluation 

 

True impact of real-time ITS? 

 Fundamental behavior, including 

anticipation, will change 

 

We will begin with an examination of 

individual routing under information 



Deterministic Costs:  
    Example Network 
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ABDG: 7 

ACEG: 4  

ACFG: 5 

   A user travel from A to G 

 Costs do not change 
with flow 

Three elementary 

paths 

 



AC/2-FG 

AC/1-EG 

State 2: ACFG 

State 1: ACEG 

Stochastic Costs: 
   Arc States & Hyper-paths 
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2 

2 states 

State 1 with cost  1 

State 2 with cost  3 

Both states have 

equal probability 

Online Routing: Users learn the state of CE 
when they reach C 

 
Recourse : Users change their paths en-route 

depending on the information received 

 
Solution : Model assigns users to hyperpaths 

 

1 3 



Online Shortest Path (OSP) 

Numerous issues exist for even simple 

OSPs 

 

A couple quick examples and solution 

properties 
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Notation 

o = origin node            d = destination node

Sa,b = Set of possible states for arc (a,b)

E[b|a,s]= expected cost to d from b, given

    that arc (a,b) is traversed at state s

SE = scan eligible list


-1

(a) = set of all predecessor nodes of a

(a) = set of all sucessor nodes of a

s  statein    wasb)(a, arc given that            

  k, statein   is  c)(b, arcy that  probabilit ,,

, cba

ksp
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A Priori (offline) Example 
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On-line Example 
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On-Line Example 
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Simple Combined Probability Matrix 
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Pair-Wise Combination 

Combine first two arcs: 

 

 

 

There can be at most 5 unique states in 

this matrix. 

Therefore, this matrix can be reduced 

and then combined with another arc.  
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Matrix Reduction 

 

 1)Create an empty dynamic Linked List (LL) 

 2)Remove row (a), consisting of a state cost and 

probability, from the original matrix 

 3)Perform a Binary Search on LL for the state of (a) 

 4)If it exists, add the probability from (a) to element in LL 

 5)If it does not exist, insert (a) into LL at the place pointed 

to by the binary search 
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Complexity of Reduction 

Take S to be the maximum number of 
States on any arc. 

This procedure must be carried out until 
the original combined matrix is empty, 
at most S2  times. 

Each steps takes O(1) except 3.  

The maximum size of a reduced matrix 
is nS. 

Step 3 can be completed in log( nS ). 

Reduction takes S2
 log( nS ). For each 

pair-wise combination 
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Probability Bounds, Positive Costs 

 C = Minimum Arc Cost, M = Maximum Arc Cost 

 N = Number of Nodes,   E=Expected # of Arcs 

p(i) = Probability of exactly i cycles 

F = Cumulative distribution  for # of Arcs 

 

C * E[# of Arcs]  NM 
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Probability Bounds 

 C * E  NM 

 

 

 Take (j) as a lower bound on E: 

                              where j 0 integer 

 

 (j) = j*(1-F(j)) 

 Since (j)  E  NM/C  

 => 1-F(j)  NM/(Cj) 
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Properties and Complexity 

Cumulative probability F() that the optimal 

solution will contain j arcs is bounded: 

 1-F(j)  nM/(Cj) 

 

State space matrices can be iteratively 

bounded and reduced 

 

Yields algorithm complexity, given error ε 

 O(n2mS2M(nM-C) / (C2 ε)) 



Step 1. 

E[d|i,s]=0     i -1(d),  sSi,t   

E[n|i,s]=    nN/d,     i-1(n), sSi,n  

SE:= d 

 

Step 2. 

while SE  

 Remove an element, n, from the SE 

 for each i-1(n), sSi,n, j(n) 

  If [n|i,s]< E[n|i,s],  then E[n|i,s]:=  [n|i,s] 

 SE:=SE {j-1(i)} 
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Online Algorithm 



UER Network Assignment Model 

Equilibrium Formulation 

 Accounts for congestion effect  

 Costs are a function of flow & network state 

 

 Cost functional form varies according to 

the network state 

 Travelers learn the cost functional form of 

an arc when they reach upstream node 

 

Model Assumptions 



Network Equilibrium with Recourse 

Develop analytical formulation for traffic 

network assignment problem under 

online information provision 

User Equilibrium System Optimal 

Develop a Frank-Wolfe based solution 

algorithm for solving the problem 

Static network 

assignment 

Limited one-step 

information 



When a traveler reaches node i they learn the cost functional 

 form for ALL arcs (i,j) 

UER Model Definitions & Assumptions  

Arc states follow a discrete probability distribution 

Special case: travelers learn the  
capacity on each arc 

Cijs( ) is the state-dependent cost function 
sSij  

Sij is the set of possible states for arc (i,j) 

Model A: All users see the same node state 

Model B: Users see different node states 



Model A : Expected Hyperpath Cost 

Hyperpath Flow kH

Node State 

System State 

combination of emanating link state realizations 

combination of node state realizations 

(for hyperpath k) 
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(given system state u) 

Link/Hyperpath 

incidence 

1 if hyperpath k uses arc (ij) under state u) 

0 otherwise  

Hyperarc Flow 
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Hyperarc Flow 

Vector 

Expected Hyperpath 

Cost Vector 

Hyperpath-Hyperarc 

Accessibility Matrix 
Probability of system state u 

Hyperpath flow vector 

Node-hyperpath accessibility matrix 



Model A: Formulation & Solution Algorithm 

 SOLUTION ALGORITHM : FRANK-WOLFE 

 Step 1: At  iteration n, fix the costs on the arcs  

 Step 2: Determine the optimal hyperpath H  

 Step 3: Conduct all-or-nothing assignment on H 

 Step 4: Determine the auxiliary link flows 

 Step 5: Determine          by a linear combination of 

 Step 6: Test for convergence. If no set n=n+1, go to Step 1 
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Model A: Equilibrium Condition 

 INSIGHTS 

 All used hyperpaths will have equal (and minimum) expected 
cost. 

 This implies that those network users who follow a UER solution 
without options, still receive precisely the same benefit as those 
users who actually experience the options. 

 

 

 

 

Property: A traffic network is in UER if each user follows a route that 

guarantees the minimum hyperpath (strategy) available and no user 

can unilaterally change his/her route to improve their travel time 

0][  uBHCP TT

0]][[  uBHCPH TTT

0H

EQUILIBRIUM 

CONDITION 



Without information 

PATHS  

P1:    A-B-D 

P2:    A-C-D 

P3:    A-C-B-D 

 

1 

2 

3 

4 

5 

A 

B 

C 

D 

 Arc CB has 2 STATES: 

State 1: C3(x)=1000 (wp 0.2) 

State 2: C3(x)=1 (wp 0.8) 

 Other arcs: single states 

C1(x)=5, C2(x)=x/10 (wp 1) 

C4(x)=X/10, C5(x)=5 (wp 1) 

 DEMAND: 40 users want to 

travel from A to D 

 Solution: all users split over 

paths P1 and P2 (P3 too risky) 

 P1 = P2 = 20 

 User Cost = 7 



UER Example 

HYPERPATHS  

H1:    A-B-D 

H2:    A-C/1-B-D & A-C/2-B-D 

H3:    A-C/1-B-D &  A-C/2-D 

H4:    A-C/1-D & A-C/2-D 

H5:    A-C/1-D & A-C/2-B-D 
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 Arc CB has 2 STATES: 

State 1: C3(x)=1000 (wp 0.2) 

State 2: C3(x)=1 (wp 0.8) 

 Other arcs: single states 

C1(x)=5, C2(x)=x/10 (wp 1) 

C4(x)=X/10, C5(x)=5 (wp 1) 

 DEMAND: 40 users want to 

travel from A to D 

 Users assigned to HYPERPATHS 



UER Example  

 

 

 
 

 

All used hyperpaths have equal and minimal expected costs 

 

HYPERPATH FLOW EXP COST 

H1 8.33 8.1666 

H2 0 207.1333 

H3 0 208.3333 

H4 2.5 8.1666 

H5 29.166 8.1666 

1 

2 

3 

4 

5 

A 

B 

C 

D 

Flow on BD depends on state of C. Even though states are 

not correlated, the flow induces dependency 

 



UER vs UE Without Information:  
     Braess Paradox 

 

 

 

 

If everybody has access to the network state information, system 

performance may be worse than under a no-Information scenario 

Fundamental implications when planning for  information 

provision through ITS devices 

Expected User Cost   

No Information: 7 
Expected User Cost 

UER : 8.1666 

These analytical models form the next generation of 

deployable practical models  

We need additional algorithmic computational improvement 



Summary 

 Overview of network equilibrium and DTA 

 

 New algorithms for online shortest path 

 

 New models for user equilibrium with recourse 

 

These models form one specific piece of 

the overall integrated system. 



  

Questions? 



Consideration: Possible Special Issue 

Computer-Aided Civil and Infrastructure 

Engineering (CACAIE) 

 Publisher: Wiley 

 Impact Factor: 3.382 

 ISI Journal Citation Report 

• 1/56 (Construction & Building Technology) 

• 2/28 (Transportation Science & Technology) 

• 3/118 (Engineering Civil) 

• 9/99 (Computer Science Interdisciplinary Applications) 


