Collaborative Mobility: Using Geographic Information Science to Cultivate Cooperative Transportation

Harvey J. Miller

Department of Geography University of Utah, Salt Lake City, Utah USA

harvey.miller@geog.utah.edu

Challenges and opportunities

- We live in a time of **unprecedented pressures** on transportation systems
- We also live in a time of unprecedented opportunities to:

- Understand transportation systems
- Cultivate **effective** and **sustainable** transportation outcomes

Transport systems – Good!

- Mobility
 - We are a highly mobile people!
- However:
 - Increasing urbanization and motorization
 - Aging infrastructure
 - Flat/declining investment
 - Limits to physical expansion

Transport systems – Bad!

- Sustainability transport, cities
- Public health air quality, obesity
- Safety driving is dangerous!
- Security few options creates a brittle system
- Social equity extreme commuting, elderly aging-in-place
- Community personal contact, social capital

www.ecoautoninja.com

www.pteg.net

Collective action failures

- Game theory
- Behaviors that are individually rational but collectively irrational
- Mobility is a great example
 - Individually rational
 - Collective outcomes: congestion, resource depletion, damaged environments, loss of community
 - It gets worse! Population growth, urbanization in SE Asia, Africa

boxkauto.com

Transportation monocultures

- Few mobility options
- Inflexible People must adapt to the system
- Current infrastructure is saturated

• Transportation polyculture

- Wide spectrum of integrated mobility options
- Flexible System adapts to people
- More efficient and robust

DANIEL SPERLING & DEBORAH GORDO FOREWORD BY ARNOLD SCHWARZENEGGER

1. Sensed transportation

- Billions of sensors
 - Vehicles, travelers, and infrastructure
- Wireless communication
 - Transportation peers, stakeholders and infrastructure
- Example: Active safety systems
 - USDOT RITA
 - Situation report every 100 Msec
 - Broadcast through Dedicated Short-Range Communications (DSRC)

What should we do with all this information?

2. GIScience and Technologies

- 1. High resolution environmental monitoring systems such as satellite, airborne remote sensing and geosensor networks
- 2. Location-aware technologies that can report their precise geo-location densely with respect to time
- 3. Spatio-temporal and moving objects databases

LIDAR imagery

iPhone!

- Science and tools for exploring and analyzing massive spatio-temporal data.
- Tools for simulating transportation, urban and other human systems from the "bottom-up"
- 6. Data standards and infrastructures for **integrating** and **interoperating** data.

Space-time trajectories - real

Space-time trajectories simulated www.anl.gov

3. Social computing

- Weak definition: Using ICTs to facilitate social behavior
- Strong definition: Social information processing - Creation and processing of information through a networked social system

- "Citizens as sensors"
- Groups as sensors? can collaborative groups produce different geo-info than collectives?

www.perfectcirclepr.co.uk

Social computing and cooperation

- (Clay Shirky Here Comes Everyone)
- Group formation
 - Many to many communication
- Group coordination
 - Sharing Easy: Group is simply an aggregation

- Cooperation Harder: Joint synchronization of behaviors
- Collective action Hardest: shared creation and responsibility

Cooperative transportation

- What is cooperative transportation?
 - Stakeholders and travelers
 - Share transportation information and resources
 - Cooperate to solve operational problems
 - Use collective action to solve tactical and strategic issues
 - Multiscale decision-making
 - Local/operational: How will we get to work today?
 - Regional/strategic: What do we want our community to look like in 20 years?

Cooperative transportation

- Why cooperative transport? (a partial list)
 - Improve private transportation
 - Wasted capacity
 - Improve public transportation
 - "Last mile, " quasi-public transportation
 - Coordinate multi-modal transportation
 - Currently: loosely-coupled systems
 - Crowdsourcing and self-organization
 - The crowd can be wiser than the few
 - Inclusive planning
 - Engaged citizens = less NIMBYism?
 - Example: Envision Utah (www.envisionutah.org)

Traffic cam image from Salt Lake City

Cooperative transportation

Transport 2.0

- 1. Seamless, multimodal system
 - Web of integrated transport services
 - More providers and stakeholders
 - Multifaceted public sector

2. Cooperative decision environment

- Navigate, solve problems, explore, engage
- Group-forming and group-organizing tools

- A real-time, comprehensive, detailed, interactive and discoverable portrayal of a complex real-world system.
- Not an alternative reality but a reflection of reality that is tightly coupled to the real-world.
- A tool for investigating and managing reality
 - Help managers, citizens, users understand and manage real world systems

THE DAY SOFTWARE PUTS THE UNI-VERSE IN A SHOEBOX...HOW IT WILL HAPPEN AND WHAT IT WILL MEAN

- A live picture
 - A **comprehensive** depiction of the state of a complex system in **real time**
- A deep picture
 - An integrated representation with varying levels of detail
- Agents
 - Extract, process and report information
 - Make simple decisions
- A sense of experience
 - Search and retrieve information
 - Previous and analogous states

- A live picture
 - A **comprehensive** depiction of the state of a complex system in **real time**
- A deep picture
 - An **integrated** representation with **varying levels of detail**
- Agents
 - Extract, process and report information
 - Make simple decisions
- A sense of experience
 - Search and retrieve information
 - Previous and analogous states

- A live picture
 - A **comprehensive** depiction of the state of a complex system in **real time**
- A deep picture
 - An integrated representation with varying levels of detail
- Agents
 - Extract, process and report information
 - Make simple decisions
- A sense of experience
 - Search and retrieve information
 - Previous and analogous states

- A live picture
 - A **comprehensive** depiction of the state of a complex system in **real time**
- A deep picture
 - An integrated representation with varying levels of detail
- Agents
 - Extract, process and report information
 - Make simple decisions
- A sense of experience
 - Search and retrieve information
 - Previous and analogous states

- Why Mirror Worlds?
 - Managing complex systems
 - Shared problem-solving and selforganization
 - The new public square
 - E-government
 - The new conference room
 - Building Information Models
 - The new laboratory
 - Role playing experiments

• Mirror Worlds: Not just another...

- Spatial decision support system
 - Exploratory questions
 - Ongoing engagement -> Greater insight
 - Shared awareness (Clay Shirky)
 - Awareness plus awareness of awareness
- Grand simulation environment
 - Predict the present (Hal Varian; Duncan Watts)
 - Why plan based on predictions of complex systems?
 - Understand the present; plan to maximize good options

• Why GIScience and cooperative transportation?

- Trivially transportation is geographic
 - But geospatial infrastructure issues are not!
- Mirror Worlds are very geographic
 - Geo-sensors + Digital Earth + LBS + SDSS + GKD + social computing
- Is cooperation spatial (and temporal)?
 - Are there fundamental GIScience issues in facilitating cooperative behavior?

Competition and cooperation

- Prisoner's Dilemma
 - Game theory
 - Fundamental model of competition versus cooperation
- Optimal strategy: both defect
 - Nash equilibrium
 - No cooperation, even though it would be better for both!

aaroneo.com

Cooperation across time

- Iterated Prisoner's Dilemma (IPD)
 - Repeated play over time
 - Knowledge of past plays reputation
- Robert Axelrod's tournament
 - Altruistic strategies perform better than greedy strategies
 - Tit-for-Tat, Pavlov
 - Be nice, but not too nice, forgiving and transparent

www.univie.ac.at/virtuallabs

- Cooperation across space
 - Spatial Prisoner's Dilemma
 - Evolutionary game inheritance
 - Lattice structure
 - Defectors win in a "well-mixed" population
 - Space facilitates cooperation
 - Limits interactions to neighborhoods
 - Allows clusters of mutual cooperation

Defector: 50.8% (42.15%), Cooperator: 49.2% (57.85%)

Cooperators	Defectors
New cooperator	New defector
	20

Cooperation across space

- Beyond lattices
 - Cooperation depends on spatial structure relative to benefit/cost ratio
- Why?
 - Kin selection: Interactions of "related" individuals
- Other comments
 - Parameter space for cooperation can be small
 - Complex dynamics are typical

 \rightarrow cooperation

Amazingly simple rule due to biologist Martin Nowak

• Other spatial Prisoners' Dilemmas

- Social/dynamic networks (Fehl et al 2011 *Ecology Letters*)
 - Players can break links after bad interactions
 - Co-evolution of behaviors and social networks
- Continuous PDs (Ifti et al. 2004 J Theoretical Biology)
 - Players have degrees of cooperation
 - Neighborhood size, topology are critical
 - Cooperation robust, to a limit
- Neighborhoods: Fundamental units of cooperation
 - Space, time and networks

- Neighborhoods in cooperative transportation
 - Are there natural units of cooperation?
 - Home, work? The routes between?
 - The highway I am currently traveling?
 - People with similar patterns?
 - Cities, regions?
 - What type of neighborhoods do we need?
 - Operational, tactical, strategic decisions
 - How do we facilitate neighborhoods using geographic information?
 - Group forming and coordination
 - Shared awareness

- Cooperation in transportation science
 - User optimal (UO) flow
 - Travelers minimize average cost
 - Everyone travels on minimum cost route
 - System optimal (SO) flow
 - Travelers minimize marginal cost
 - Not everyone travels on minimum cost route
 - Coercion or cooperation
 - Only a small number of travelers need to be "pro-social" (Avineri 2009)

Conclusion

- Humanity is facing dire collective failures in the 21st century
 - Mobility is a prime example, but not the only one
- Some failures can be resolved through cooperative behavior
 - Better collective outcomes, but requires compromise
- Locational information/services and social media have potential for facilitating collaborative systems
 - LBS: Shapes interactions across time, space and network
 - Social media: Group forming, coordination and shared awareness

Research challenges

Cooperation science

- Under what conditions will people cooperate?
- What are the limits of cooperation?
 - How many need to cooperate?
- What else can we discover about the geography of cooperation?
 - Spatial and temporal expressions
 - What are the natural units of cooperation in different contexts?
 - The role of geographic information and knowledge
 - Can spatio-temporal thinking facilitate cooperation over space and time?

Research challenges

• Pervasive geographic information

- How do we deploy and support location aware technologies and services?
- Is there a business model for collaboration?
 - Or is it a public good?
- How do we deal with varying data quality?
 - Including volunteered geographic information
- How do we protect locational privacy?
- How will people react to unprecedented access to geographic information?

4. Conclusion: Research challenges

- Spatio-temporal knowledge delivery
 - Three facets of Big Data
 - Volume, scope and **speed**
 - How do we act quickly enough?
 - Before the data are stale
 - Technical and conceptual dimensions
 - Technical: Detecting patterns quickly
 - Conceptual: Making appropriate decisions quickly
 - Measure and nudge (instead of predict and constrain)
 - Predict the present (Hal Varian, Duncan Watts)
 - Choice architectures (Thaler and Sunstein)

4. Conclusion: Research challenges

- Educating the scientist and practitioner
 - New science, technologies and data will place unprecedented demands on education
 - What is the appropriate mix of transportation science, computer science and GIScience?
 - Both foundational and continuing education
 - Everyone academic and practitioner will need to continually re-educate throughout their careers

Thank you! harvey.miller@geog.utah.edu

Some readings

- De Waal, F. (2010) The Age of Empathy: Nature's Lessons for a Kinder Society
- Miller, H. J. (2008) "Transport 2.0: Meeting Grand Challenges with GIScience," ArcNews, Winter 2008/2009.
- Miller, H. J. (2012) "Location-based services in 2030: From sharing to collective action," in *Progress in Location-Based Services*, Springer
- Norwak, M. and Highfield, R. (2011) SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed
- Shirky, C. (2009) Here Comes Everybody: The Power of Organizing Without Organizations
- Shirky, C. (2011) Cognitive Surplus: How Technology Makes Consumers into Collaborators